应用转基因技术研究Bacp/Nlp在肿瘤发生发展中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bacp/Nlp(Brcal associated centrosome protein/Ninein-like protein)是中心体定位的一个新的蛋白。本实验室前期的研究表明,Bacp/Nlp是一个潜在的癌基因,因此,利用转基因技术我们建立了Bacp/Nlp转基因小鼠模型,以探索Bacp/Nlp在肿瘤发生发展中的作用。
     在动物实验中,未经任何因素处理的转基因小鼠中有约20%产生自发性肿瘤,包括乳腺癌、睾丸原位癌等,而在对照组中没有发现任何类型肿瘤的形成。另外,我们用化学致癌剂7,12-二甲基苯并蒽(DMBA)和物理致癌因素X-Ray处理Bacp/Nlp转基因小鼠及对照小鼠,发现转基因小鼠对以上致癌因素更为敏感,在DMBA处理组中,Bacp/Nlp转基因小鼠中有约45.8%产生了包括肺腺癌、表皮鳞癌、胃肠道间质瘤在内的多种肿瘤,而对照组小鼠仅有15%的肿瘤产生率;而在X-Ray放射组中,转基因小鼠有60%的小鼠产生淋巴瘤,多于对照组小鼠的肿瘤形成率(42%),而且两组处理中,转基因小鼠肿瘤产生的时间都比对照组早。
     为了进一步探讨Bacp/Nlp促进肿瘤发生发展的机制,我们提取了MEF细胞进行了一系列生物学表型的测试,结果显示Bacp/Nlp转基因的MEF细胞比对照组细胞具有更强的体外生长能力和与细胞外基质的粘附能力。在对中心体的观察中发现转基因MEF细胞中有中心体扩增的现象,另外,转基因MEF细胞对凋亡刺激因素比对照的MEF细胞较为不敏感。
     因此,以上实验结果表明,Bacp/Nlp能够促进肿瘤的发生发展,而且其中的机制可能是通过促进细胞的生长和抗凋亡能力,以及促进中心体的不稳定性进而导致基因组的不稳定性。
Bacp/Nlp (Brcal associated centrosome protein/Ninein-like protein) is a novel centrosome associated protein. Recently, we found that Bacp/Nlp was a potential oncogene. In order to research into the relationship between Bacp/Nlp and tumorigenesis, we generated Bacp/Nlp transgenic mice by using transgenic technology. After identifying the Bacp/Nlp expressing transgenic mice, we carried out a series of experiments at animal and cell levels to investigate the possible role of Bacp/Nlp in tumorigenesis.
     We first carried out animal experimental studies to investigate the role of Bacp/Nlp in governing susceptibility to tumorigenesis under different conditions in vivo, and found that the transgenic mice without any treatment showed a nearly 20% incidence of spontaneous rumors, including breast cancer, carcinoma in situ of testicle, and a suspected ovary cancer. In contrast, none of the wild type mice showed any spontaneous tumors. In addition, we treated the Bacp/Nlp transgenic mice and their corresponding control mice with two types of DNA damage agent, including chemical carcinogen DMBA and physical carcinogen ionizing radiation (IR) to examine their tumorigenesis. In these studies, Bacp/Nlp transgenic mice showed increased tumor susceptibility to DNA damage agents.
     In the DMBA group, all mice were injected with a single i.p. dose of DMBA at 10-14days of age. At 42 weeks after DMBA injection, all animals were killed for pathological examination. About 45.8% of Bacp/Nlp transgenic mice were detected to have tumors, including lung adenocarcinoma, gastrointestinal stromal tumor, and squamous cell carcinoma, which were about 3 times as many as the control ones (15%).
     In the IR group, all mice were subjected to continued three dose of 3 Gy of X-Ray radiation every 6 days. At 32 weeks after irradiation, all mice were killed for pathological examination. The incidence of tumor of transgenic mice and control mice was 60% and 42%, respectively. The predominant tumor type in this group was lymphoma.
     In order to comprehend how Bacp/Nlp promoted tumorigenesis, we isolated MEF (mouse embryo fibroblast) cells from transgenic and the control mice to examine their biological phenotypes in vitro. We observed the transgenic MEF cells grew faster than the control MEF cells, and the former had a higher colony formation rate than the latter. Moreover, the transgenic MEF cells exhibited increased adhesion ability compared with the control MEF cells, but they did not showed obvious differences in in vitro invasion and migration assays. We also found centrosome amplification in transgenic MEF cells. After UV and X-Ray radiation, the apoptotic rate of transgenic MEF cells was less than the control MEF cells, which indicated that expression of Bacp/Nlp enhanced the anti-apoptotic ability of MEF cells.
     In summary, our findings indicated that Bacp/Nlp has strong ongenic property and promotes the tumorigenesis. The mechanisms might be through accelerating cell growth, promoting anti-apoptotic ability of cells to all kinds of DNA damage agents, and inducing centrosome abnormality that cause genome instability.
引文
1. Weiss, R. A., Multistage carcinogenesis. Br J Cancer, 2004. 91(12): p. 1981-2.
    2. Doll, R., Commentary: The age distribution of cancer and a multistage theory of carcinogenesis. Int J Epidemiol, 2004. 33(6): p. 1183-4.
    
    3. 詹启敏 主编,分子肿瘤学. 2005, 北京:人民卫生出版社.
    4. Cheng, K. C. and Loeb, L. A., Genomic stability and instability: a working paradigm. Curr Top Microbiol Immunol, 1997. 221: p. 5-18.
    
    5. Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al., Genetic alterations during colorectal-tumor development. N Engl J Med, 1988. 319(9): p. 525-32.
    
    6. Greenman, C., Stephens, P., Smith, R., et al., Patterns of somatic mutation in human cancer genomes. Nature, 2007. 446(7132): p. 153-8.
    
    7. Lingle, W. L., Barrett, S. L., Negron, V. C., et al., Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A, 2002. 99(4): p. 1978-83.
    
    8. Khodjakov, A., Cole, R. W., Oakley, B. R., et al., Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol, 2000. 10(2): p. 59-67.
    
    9. Hinchcliffe, E. H., Miller, F. J., Cham, M., et al., Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science, 2001. 291(5508): p. 1547-50.
    
    10. Kramer, A., Neben, K. and Ho, A. D., Centrosome replication, genomic instability and cancer. Leukemia, 2002. 16(5): p. 767-75.
    11. Piel, M., Nordberg, J., Euteneuer, U., et al., Centrosome-dependent exit of cytokinesis in animal cells. Science, 2001. 291(5508): p. 1550-3.
    12. Carroll, P. E., Okuda, M., Horn, H. F., et al., Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene, 1999. 18(11): p. 1935-44.
    13. Sato, N., Mizumoto, K., Nakamura, M., et al., Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet, 2001. 126(1): p. 13-9.
    14. Ghadimi, B. ML, Sackett, D. L., Difilippantonio, M. J., et al., Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer, 2000. 27(2): p. 183-90.
    15. Pihan, G. A., Wallace, J., Zhou, Y., et al., Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res, 2003. 63(6): p. 1398-404.
    16. Pihan, G. A., Purohit, A., Wallace, J., et al., Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res, 2001. 61 (5): p. 2212-9.
    17. Kuo, K. K., Sato, N., Mizumoto, K., et al., Centrosome abnormalities in human carcinomas of the gallbladder and intrahepatic and extrahepatic bile ducts. Hepatology, 2000. 31(1): p. 59-64.
    18. Duensing, S., Lee, L. Y., Duensing, A., et al., The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A, 2000. 97(18): p. 10002-7.
    
    19. Gustafson, L. M., Gleich, L. L., Fukasawa, K., et al., Centrosome hyperamplification in head and neck squamous cell carcinoma: a potential phenotypic marker of tumor aggressiveness. Laryngoscope, 2000. 110(11): p. 1798-801.
    20. Miyoshi, Y., Iwao, K., Egawa, C., et al., Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer, 2001. 92(3): p. 370-3.
    21. Casenghi, M., Meraldi, P., Weinhart, U., et al., Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell, 2003. 5(1): p. 113-25.
    22. Weaver, Z., Montagna, C., Xu, X., et al., Mammary tumors in mice conditionally mutant for Brcal exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene, 2002. 21(33): p. 5097-107.
    23. Wang, Q., Hirohashi, Y., Furuuchi, K.., et al., The centrosome in normal and transformed cells. DNA Cell Biol, 2004. 23(8): p. 475-89.
    24. Ouyang, X., Wang, X., Xu, K., et al., Effect of p53 on centrosome amplification in prostate cancer cells. Biochim Biophys Acta, 2001. 1541(3): p. 212-20.
    25. Hsu, L. C. and White, R. L., BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A, 1998. 95(22): p. 12983-8.
    26. Bertwistle, D. and Ashworth, A., The pathology of familial breast cancer: How do the functions of BRCA1 and BRCA2 relate to breast tumour pathology? Breast Cancer Res, 1999. 1(1): p. 41-7.
    27. Hollander, M. C., Kovalsky, O., Salvador, J. M., et al., Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res, 2001. 61(6): p. 2487-91.
    28. David L. Spector, R. D. G., Leslie A. Leinwand, 细胞实验指南. 2001,北京:科学出版社.
    29. Jaenisch, R., Fan, H. and Croker, B., Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: tissue distribution of viral DNA and RNA and leukemogenesis in the adult animal. Proc Natl Acad Sci U S A, 1975. 72(10): p. 4008-12.
    30. Gordon, J. W., Scangos, G. A., Plotkin, D. J., et al., Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A, 1980. 77(12): p. 7380-4.
    31. Palmiter, R. D., Brinster, R. L., Hammer, R. E., et al., Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 1982. 300(5893): p. 611-5.
    32. Sandmoller, A., Halter, R., Gomez-La-Hoz, E., et al., The uteroglobin promoter targets expression of the SV40 T antigen to a variety of secretory epithelial cells in transgenic mice. Oncogene, 1994. 9(10): p. 2805-15.
    33. Spalding, J. W., Momma, J., Elwell, M. R., et al., Chemically induced skin carcinogenesis in a transgenic mouse line (TG.AC) carrying a v-Ha-ras gene. Carcinogenesis, 1993. 14(7): p. 1335-41.
    34. Chugh, P., Matta, H., Schamus, S., et al., Constitutive NF-kappaB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc Natl Acad Sci U S A, 2005. 102(36): p. 12885-90.
    35. Dowsett, M, Smith, I. E., Ebbs, S. R., et al., Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. Clin Cancer Res, 2006. 12(3 Pt 2): p. 1024s-1030s.
    36. Xiao, D., Srivastava, S. K., Lew, K. L., et al., Ally1 isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis, 2003. 24(5): p. 891-7.
    37. Anthoney, D. A., McIlwrath, A. J., Gallagher, W. M., et al., Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res, 1996. 56(6): p. 1374-81.
    
    38. Slupianek, A., Hoser, G., Majsterek, I., et al., Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol, 2002. 22(12): p. 4189-201.
    39. Taketo, M., Schroeder, A. C., Mobraaten, L. E., et al., FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A, 1991. 88(6): p. 2065-9.
    40. Stanley, L. A., Molecular aspects of chemical carcinogenesis: the roles of oncogenes and tumour suppressor genes. Toxicology, 1995. 96(3): p. 173-94.
    41. Huang, L., Snyder, A. R. and Morgan, W. F., Radiation-induced genomic instability and its implications for radiation carcmogenesis. Oncogene, 2003. 22(37): p. 5848-54.
    42. Gulubova, M. V., Expression of cell adhesion molecules, their ligands and tumour necrosis factor alpha in the liver of patients with metastatic gastrointestinal carcinomas. Histochem J, 2002. 34(1-2): p. 67-77.
    43. Itoh, T., Umekawa, H. and Furuichi, Y., Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion, and metastasis of murine B16 melanoma cells. Biosci Biotechnol Biochem, 2005. 69(3): p. 448-54.
    44. Casenghi, M., Barr, F. A. and Nigg, E. A., Phosphorylation of Nlp by Plk1 negatively regulates its dynein-dynactin-dependent targeting to the centrosome. J Cell Sci, 2005. 118(Pt 21): p. 5101-8.
    45. Rapley, J., Baxter, J. E., Blot, J., et al., Coordinate regulation of the mother centriole component nlp by nek2 and plkl protein kinases. Mol Cell Biol, 2005. 25(4): p. 1309-24.
    46. Sluder, G. and Hinchcliffe, E. H., The apparent linkage between centriole replication and the S phase of the cell cycle. Cell Biol Int, 1998. 22(1): p. 3-5.
    47. Hinchcliffe, E. H. and Sluder, G., Two for two: Cdk2 and its role in centrosome doubling. Oncogene, 2002. 21(40): p. 6154-60.
    48. Hinchcliffe, E. H., Li, C., Thompson, E. A., et al., Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science, 1999. 283(5403): p. 851-4.
    
    49. D'Assoro, A. B., Lingle, W. L. and Salisbury, J. L., Centrosome amplification and the development of cancer. Oncogene, 2002. 21(40): p. 6146-53.
    50. Kuntziger, T. and Bornens, M., The centrosome and parthenogenesis. Curr Top Dev Biol, 2000. 49: p. 1-25.
    51. Peloponese, J. M., Jr., Haller, K., Miyazato, A., et al., Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc Natl Acad Sci U S A, 2005. 102(52): p. 18974-9.
    52. Brown, C. R., Doxsey, S. J., White, E., et al., Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol, 1994. 160(1): p. 47-60.
    53. Giannakakou, P., Sackett, D. L., Ward, Y, et al., p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol, 2000. 2(10): p. 709-17.
    54. Morris, V. B., Brammall, J., Noble, J., et al., p53 localizes to the centrosomes and spindles of mitotic cells in the embryonic chick epiblast, human cell lines, and a human primary culture: An immunofluorescence study. Exp Cell Res, 2000. 256(1): p. 122-30.
    55. Tarapore, P. and Fukasawa, K., Loss of p53 and centrosome hyperamplification. Oncogene, 2002. 21(40): p. 6234-40.
    
    56. Li, P., Nijhawan, D., Budihardjo, I., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997. 91(4): p. 479-89.
    57. Zou, H., Henzel, W. J., Liu, X., et al., Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 1997. 90(3): p. 405-13.
    
    58. Liu, X., Kim, C. N., Yang, J., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57.
    59. Kaufmann, S. H. and Hengartner, M. O., Programmed cell death: alive and well in the new millennium. Trends Cell Biol, 2001. 11(12): p. 526-34.
    60. Nakamura, K., Bossy-Wetzel, E., Burns, K., et al., Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol, 2000. 150(4): p. 731-40.
    61. Kawamura, K., Moriyama, M., Shiba, N., et al., Centrosome hyperamplification and chromosomal instability in bladder cancer. Eur Urol, 2003. 43(5): p. 505-15.
    62. Shono, M., Sato, N., Mizumoto, K., et al., Stepwise progression of centrosome defects associated with local tumor growth and metastatic process of human pancreatic carcinoma cells transplanted orthotopically into nude mice. Lab Invest, 2001.81(7): p. 945-52.
    63. Al-Romaih, K., Bayani, J., Vorobyova, J., et al., Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genet Cytogenet, 2003. 144(2): p. 91-9.
    64. Loo, L. W., Grove, D. I., Williams, E. M., et al., Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res, 2004. 64(23): p. 8541-9.
    65. Raff, M. C., Social controls on cell survival and cell death. Nature, 1992. 356(6368): p. 397-400.
    1. Dutcher, S. K., Motile organelles: the importance of specific tubulin isoforms. Curr Biol, 2001. 11(11): p. R419-22.
    
    2. Kramer, A., Neben, K. and Ho, A. D., Centrosome replication, genomic instability and cancer. Leukemia, 2002. 16(5): p. 767-75.
    
    3. Doxsey, S., Re-evaluating centrosome function. Nat Rev Mol Cell Biol, 2001. 2(9): p. 688-98.
    
    4. Lingle, W. L. and Salisbury, J. L., Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol, 1999. 155(6): p. 1941-51.
    
    5. Khodjakov, A., Cole, R. W., Oakley, B. R., et al., Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol, 2000. 10(2): p. 59-67.
    
    6. Hinchcliffe, E. H., Miller, F. J., Cham, M., et al., Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science, 2001. 291(5508): p. 1547-50.
    
    7. Piel, M., Nordberg, J., Euteneuer, U., et al., Centrosome-dependent exit of cytokinesis in animal cells. Science, 2001. 291(5508): p. 1550-3.
    
    8. Bornens, M., Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol, 2002. 14(1): p. 25-34.
    
    9. D'Assoro, A. B., Lingle, W. L. and Salisbury, J. L., Centrosome amplification and the development of cancer. Oncogene, 2002. 21(40): p. 6146-53.
    
    10. Hinchcliffe, E. H. and Sluder, G., Two for two: Cdk2 and its role in centrosome doubling. Oncogene, 2002. 21(40): p. 6154-60.
    
    11. Hinchcliffe, E. H., Li, C., Thompson, E. A., et al., Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science, 1999. 283(5403): p. 851-4.
    
    12. Lacey, K. R., Jackson, P. K. and Stearns, T., Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2817-22.
    13. Matsumoto, Y., Hayashi, K. and Nishida, E., Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol, 1999. 9(8): p. 429-32.
    14. Mussman, J. G., Horn, H. F., Carroll, P. E., et al., Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene, 2000. 19(13): p. 1635-46.
    15. Meraldi, P., Lukas, J., Fry, A. M., et al., Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol, 1999. 1(2): p. 88-93.
    16. Balczon, R., Bao, L., Zimmer, W. E., et al., Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol, 1995. 130(1): p. 105-15.
    17. Lutz, W., Lingle, W. L., McCormick, D., et al., Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem, 2001. 276(23): p. 20774-80.
    18. Roghi, C., Giet, R., Uzbekov, R., et al., The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J Cell Sci, 1998. 111 ( Pt 5): p. 557-72.
    19. Megraw, T. L., Li, K., Kao, L. R., et al., The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development, 1999. 126(13): p. 2829-39.
    20. Giet, R. and Prigent, C., Aurora/Ipl 1 p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci, 1999. 112 ( Pt 21): p. 3591-601.
    21. Kemp, C. A., Kopish, K. R., Zipperlen, P., et al., Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev Cell, 2004. 6(4): p. 511-23.
    22. Chen, S., Luo, W., Li, G., et al., [Therapeutic experience of primary inferior tracheal tumor. Report of 10 cases]. Hunan Yi Ke Da Xue Xue Bao, 1998. 23(5): p. 511-2.
    23. Meraldi, P., Honda, R. and Nigg, E. A., Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. Embo J, 2002. 21(4): p. 483-92.
    24. Zhou, H., Kuang, J., Zhong, L., et al., Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet, 1998. 20(2): p. 189-93.
    25. Gritsko, T. M., Coppola, D., Paciga, J. E., et al., Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res, 2003. 9(4): p. 1420-6.
    26. Bischoff, J. R., Anderson, L., Zhu, Y., et al., A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J, 1998. 17(11): p. 3052-65.
    27. Sakakura, C., Hagiwara, A., Yasuoka, R., et al., Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer, 2001. 84(6): p. 824-31.
    28. Mayor, T., Stierhof, Y. D., Tanaka, K., et al., The centrosomal protein C-Napl is required for cell cycle-regulated centrosome cohesion. J Cell Biol, 2000. 151(4): p. 837-46.
    29. Katayama, H., Sasai, K., Kawai, H., et al., Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet, 2004. 36(1): p. 55-62.
    30. Liu, Q., Kaneko, S., Yang, L., et al., Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem, 2004.279(50): p. 52175-82.
    31. Liu, X., Kim, C. N., Yang, J., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57.
    32. Sorrentino, R., Libertini, S., Pallante, P. L., et al., Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab, 2005. 90(2): p. 928-35.
    33. Dutertre, S., Hamard-Peron, E., Cremet, J. Y., et al., The absence of p53 aggravates polyploidy and centrosome number abnormality induced by Aurora-C overexpression. Cell Cycle, 2005. 4(12): p. 1783-7.
    34. Mayor, T., Meraldi, P., Stierhof, Y. D., et al., Protein kinases in control of the centrosome cycle. FEBS Lett, 1999. 452(1-2): p. 92-5.
    35. Liu, X. and Erikson, R. L., Activation of Cdc2/cyclin B and inhibition of centrosome amplification in cells depleted of Plkl by siRNA. Proc Natl Acad Sci U S A, 2002. 99(13): p. 8672-6.
    36. Smith, M. R., Wilson, M. L., Hamanaka, R., et al., Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun, 1997. 234(2): p. 397-405.
    37. Pihan, G. A., Purohit, A., Wallace, J., et al., Centrosome defects and genetic instability in malignant tumors. Cancer Res, 1998. 58(17): p. 3974-85.
    
    38. Tokumitsu, Y., Mori, M., Tanaka, S., et al., Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol, 1999. 15(4): p. 687-92.
    39. Strebhardt, K., Kneisel, L., Linhart, C., et al., Prognostic value of pololike kinase expression in melanomas. Jama, 2000. 283(4): p. 479-80.
    40. Lauze, E., Stoelcker, B., Luca, F. C, et al., Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. Embo J, 1995. 14(8): p. 1655-63.
    
    41. Winey, M., Goetsch, L., Baum, P., et al., MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol, 1991. 114(4): p. 745-54.
    42. Winey, M. and Byers, B., Assembly and functions of the spindle pole body in budding yeast. Trends Genet, 1993. 9(9): p. 300-4.
    43. Weiss, M. M., Kuipers, E. J., Postma, C., et al., Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol, 2004. 26(5-6): p. 307-17.
    44. Hardwick, K. G., Weiss, E., Luca, F. C., et al., Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science, 1996. 273(5277): p. 953-6.
    45. Fisk, H. A., Mattison, C. P. and Winey, M., Human Mpsl protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci U S A, 2003. 100(25): p. 14875-80.
    46. Hayward, D. G., Clarke, R. B., Faragher, A. J., et al., The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res, 2004. 64(20): p. 7370-6.
    47. Graf, R., DdNek2, the first non-vertebrate homologue of human Nek2, is involved in the formation of microtubule-organizing centers. J Cell Sci, 2002. 115(Pt 9): p. 1919-29.
    48. Rapley, J., Baxter, J. E., Blot, J., et al., Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases. Mol Cell Biol, 2005. 25(4): p. 1309-24.
    49. Hames, R. S. and Fry, A. M., Alternative splice variants of the human centrosome kinase Nek2 exhibit distinct patterns of expression in mitosis. Biochem J, 2002. 361 (Pt 1): p. 77-85.
    50. Fletcher, L., Cerniglia, G. J., Yen, T. J., et al., Live cell imaging reveals distinct roles in cell cycle regulation for Nek2A and Nek2B. Biochim Biophys Acta, 2005. 1744(2): p. 89-92.
    51. Mayor, T., Hacker, U., Stierhof, Y. D., et al., The mechanism regulating the dissociation of the centrosomal protein C-Napl from mitotic spindle poles. J Cell Sci, 2002. 115(Pt 16): p. 3275-84.
    52. Hayward, D. G. and Fry, A. M., Nek2 kinase in chromosome instability and cancer. Cancer Lett, 2006. 237(2): p. 155-66.
    53. Schultz, S. J., Fry, A. M., Sutterlin, C., et al., Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ, 1994. 5(6): p. 625-35.
    54. Greenman, C., Stephens, P., Smith, R., et al., Patterns of somatic mutation in human cancer genomes. Nature, 2007. 446(7132): p. 153-8.
    55. Wai, D. H., Schaefer, K. L., Schramm, A., et al., Expression analysis of pediatric solid tumor cell lines using oligonucleotide microarrays. Int J Oncol, 2002. 20(3): p. 441-51.
    56. de Vos, S., Hofmann, W. K., Grogan, T. M., et al., Gene expression profile of serial samples of transformed B-cell lymphomas. Lab Invest, 2003. 83(2): p. 271-85.
    
    57. Weber, R. G., Bridger, J. M., Benner, A., et al., Centrosome amplification as a possible mechanism for numerical chromosome aberrations in cerebral primitive neuroectodermal tumors with TP53 mutations. Cytogenet Cell Genet, 1998. 83(3-4): p. 266-9.
    58. Carroll, P. E., Okuda, M., Horn, H. F., et al., Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene, 1999. 18(11): p. 1935-44.
    59. Ouyang, X., Wang, X., Xu, K., et al., Effect of p53 on centrosome amplification in prostate cancer cells. Biochim Biophys Acta, 2001. 1541(3): p. 212-20.
    60. Murphy, K. L. and Rosen, J. M., Mutant p53 and genomic instability in a transgenic mouse model of breast cancer. Oncogene, 2000. 19(8): p. 1045-51.
    61. Tarapore, P., Tokuyama, Y., Horn, H. F., et al., Difference in the centrosome duplication regulatory activity among p53 'hot spot' mutants: potential role of Ser 315 phosphorylation-dependent centrosome binding of p53. Oncogene, 2001. 20(47): p. 6851-63.
    
    62. Fukasawa, K., Choi, T., Kuriyama, R., et al., Abnormal centrosome amplification in the absence of p53. Science, 1996. 271(5256): p. 1744-7.
    63. Okuda, M., Horn, H. F., Tarapore, P., et al., Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell, 2000. 103(1): p. 127-40.
    64. Tarapore, P. and Fukasawa, K., Loss of p53 and centrosome hyperamplification. Oncogene, 2002. 21(40): p. 6234-40.
    65. el-Deiry, W. S., Tokino, T., Velculescu, V. E., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817-25.
    66. Harper, J. W., Adami, G. R., Wei, N., et al., The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993. 75(4): p. 805-16.
    67. Shinmura, K., Bennett, R. A., Tarapore, P., et al., Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene, 2006.
    68. Mantel, C., Braun, S. E., Reid, S., et al., p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood, 1999. 93(4): p. 1390-8.
    69. Dowsett, M., Smith, I. E., Ebbs, S. R., et al., Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. Clin Cancer Res, 2006. 12(3 Pt 2): p. 1024s-1030s.
    70. Sherr, C. J., Cancer cell cycles. Science, 1996. 274(5293): p. 1672-7.
    71. Sherr, C. J., Cell cycle control and cancer. Harvey Lect, 2000. 96: p. 73-92.
    72. Weinberg, R. A., The retinoblastoma protein and cell cycle control. Cell, 1995. 81(3): p. 323-30.
    73. Borel, F., Lohez, O. D., Lacroix, F. B., et al., Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc Natl Acad Sci U S A, 2002. 99(15): p. 9819-24.
    74. Wang, Q., Hirohashi, Y., Furuuchi, K.., et al., The centrosome in normal and transformed cells. DNA Cell Biol, 2004. 23(8): p. 475-89.
    75. Hollander, M. C., Sheikh, M. S., Bulavin, D. V., et al., Genomic instability in Gadd45a-deficient mice. Nat Genet, 1999. 23(2): p. 176-84.
    76. Shao, S., Wang, Y., Jin, S., et al., Gadd45a interacts with aurora-A and inhibits its kinase activity. J Biol Chem, 2006. 281(39): p. 28943-50.
    77. Casenghi, M., Meraldi, P., Weinhart, U., et al., Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell, 2003. 5(1): p. 113-25.
    78. Duensing, S., Lee, L. Y, Duensing, A., et al., The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A, 2000. 97( 18): p. 10002-7.
    79. Butel, J. S., Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis, 2000. 21(3): p. 405-26.
    80. Yeh, C. T., Hepatitis B virus X protein: searching for a role in hepatocarcinogenesis. J Gastroenterol Hepatol, 2000. 15(4): p. 339-41.
    81. Yun, C., Cho, H., Kim, S. J., et al., Mitotic aberration coupled with centrosome amplification is induced by hepatitis B virus X oncoprotein via the Ras-mitogen-activated protein/extracellular signal-regulated kinase-mitogen-activated protein pathway. Mol Cancer Res, 2004. 2(3): p. 159-69.
    82. Elmore, L. W., Hancock, A. R., Chang, S. F., et al., Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14707-12.
    83. Forgues, M., Difilippantonio, M. J., Linke, S. P., et al., Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol, 2003. 23(15): p. 5282-92.
    84. De Luca, A., Mangiacasale, R., Severino, A., et al., E1A deregulates the centrosome cycle in a Ran GTPase-dependent manner. Cancer Res, 2003. 63(6): p. 1430-7.
    85. Gaillard, S., Fahrbach, K. M., Parkati, R., et al., Overexpression of simian virus 40 small-T antigen blocks centrosome function and mitotic progression in human fibroblasts. J Virol, 2001. 75(20): p. 9799-807.
    86. Duensing, S. and Munger, K., Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta, 2001. 1471(2): p. M81-8.
    87. Salisbury, J. L., D'Assoro, A. B. and Lingle, W. L., Centrosome amplification and the origin of chromosomal instability in breast cancer. J Mammary Gland Biol Neoplasia, 2004. 9(3): p. 275-83.
    88. Nigg, E. A., Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer, 2002. 2(11): p. 815-25.
    89. Kawamura, K., Moriyama, M., Shiba, N., et al., Centrosome hyperamplification and chromosomal instability in bladder cancer. Eur Urol, 2003. 43(5): p. 505-15.
    90. Sato, N., Mizumoto, K., Nakamura, M., et al., Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet, 2001. 126(1): p. 13-9.
    91. Shono, M., Sato, N., Mizumoto, K., et al., Stepwise progression of centrosome defects associated with local tumor growth and metastatic process of human pancreatic carcinoma cells transplanted orthotopically into nude mice. Lab Invest, 2001.81(7): p. 945-52.
    92. Ghadimi, B. M., Sackett, D. L., Difilippantonio, M. J., et al., Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer, 2000. 27(2): p. 183-90.
    93. Al-Romaih, K., Bayani, J., Vorobyova, J., et al., Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genet Cytogenet, 2003. 144(2): p. 91-9.
    94. Loo, L. W., Grove, D. I., Williams, E. M., et al., Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res, 2004. 64(23): p. 8541-9.
    95. Pihan, G. A., Wallace, J., Zhou, Y., et al., Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res, 2003. 63(6): p. 1398-404.
    96. Pihan, G. A., Purohit, A., Wallace, J., et al., Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res, 2001. 61(5): p. 2212-9.
    97. Kuo, K. K., Sato, N., Mizumoto, K., et al., Centrosome abnormalities in human carcinomas of the gallbladder and intrahepatic and extrahepatic bile ducts. Hepatology, 2000. 31(1): p. 59-64.
    98. Salisbury, J. L., Whitehead, C. M., Lingle, W. L., et al., Centrosomes and cancer. Biol Cell, 1999. 91(6): p. 451-60.
    99. Lingle, W. L., Lutz, W. H., Ingle, J. N., et al., Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A, 1998. 95(6): p. 2950-5.
    100. Kong, Q. Z., Zhang, N. and Zhao, Y. F., The roles of centrosome in cancer development. Drug News Perspect, 2004. 17(3): p. 195-200.
    101. Gustafson, L. M., Gleich, L. L., Fukasawa, K., et al., Centrosome hyperamplification in head and neck squamous cell carcinoma: a potential phenotypic marker of tumor aggressiveness. Laryngoscope, 2000. 110(11): p. 1798-801.
    102. D'Assoro, A. B., Barrett, S. L., Folk, C., et al., Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat, 2002. 75(1): p. 25-34.
    103. Miyoshi, Y., Iwao, K., Egawa, C., et al., Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer, 2001. 92(3): p. 370-3.
    104. Jablonski, S. A., Liu, S. T. and Yen, T. J., Targeting the kinetochore for mitosis-specific inhibitors. Cancer Biol Ther, 2003. 2(3): p. 236-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700