替代性活化的巨噬细胞促进小鼠肺腺癌淋巴管生成的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前研究认为,活化的巨噬细胞是可以执行不同功能的复杂群体。其中,替代性活化的巨噬细胞(aaMphi)参与了细胞生长、血管生成、免疫抑制、组织修复和间质形成等过程。肺腺癌间质中有大量肿瘤相关巨噬细胞(TAM)浸润,且与其进展和转移密切相关,而经淋巴道转移是肺腺癌播散的主要途径之一。但是,肺腺癌间质中TAM是否存在替代性活化表型、该活化表型在淋巴管生成中有否作用及其机制尚不明确。本课题拟首先寻找人肺腺癌间质TAM呈替代性活化的证据;进而通过建立小鼠Lewis肺癌(LLC)移植瘤模型等实验明确aaMphi在小鼠肺腺癌淋巴管生成中的作用;最后,探讨aaMphi促进小鼠肺腺癌淋巴管生成的作用机制。本课题旨在为阐明肺腺癌的转移机制提供新的证据,为拮抗肺腺癌淋巴管生成提供新靶点。
     目的
     鉴定肺腺癌TAM的活化表型,探讨aaMphi促进小鼠肺腺癌淋巴管生成的机制。
     方法
     1、免疫组织化学SP法检测人肺腺癌组织中CD68、血管内皮生长因子(VEGF)-C和血管内皮生长因子受体(VEGFR)-3表达,并计数CD68阳性TAM、VEGF-C阳性指数和VEGFR-3阳性微淋巴管密度(LMVD),分析其相关性及与临床病理特征之间的关系。
     2、以CD68阳性作为TAM之标记,以CD68和巨噬细胞甘露糖受体(MMR)双阳性作为aaMphi之标记,以CD68和诱导型一氧化氮合酶(iNOS)双阳性作为经典活化的巨噬细胞(caMphi)之标记,采用双标免疫荧光染色和激光共聚焦显微镜鉴定人肺腺癌TAM的活化表型。
     3、以IFN-γ+LPS或IL-4处理小鼠RAW264.7巨噬细胞,分别建立caMphi或aaMphi模型;观察CpG+IL-10RA能否逆转aaMphi表型。将aaMphi与LLC细胞混合注射至小鼠颈部背侧皮下,建立移植瘤模型;免疫组织化学SP法检测并计数移植瘤LYVE-1阳性LMVD,HE染色检测淋巴结和远处器官转移情况;另取小鼠随机分组计算生存率。
     4、应用不完全弗氏佐剂(IFA)诱导小鼠腹腔淋巴管瘤形成,消化法分离获得LEC,置于自制鼠尾胶包被的培养瓶(板)中培养。免疫荧光化学法检测LEC表达VEGFR-3和LYVE-1,3H-TdR掺入法检测LEC增殖活力,淋巴管形成实验判定LEC能否形成淋巴管样结构。
     5、采用transwell系统共培养aaMphi和小鼠LEC,绘制LEC生长曲线,细胞迁移实验观察LEC迁移,基质胶实验观察LEC管样结构形成;实时定量RT-PCR分别检测共培养前后aaMphi表达VEGF-C和VEGF-D mRNA,以及LEC表达VEGFR-3和Prox1 mRNA。之后,选择浓度为100ng/ml的VEGF-C建立aaMphi转分化系统;分别于第0、7、14和28天以实时定量RT-PCR法检测aaMphi表达VEGFR-3、Prox1和Fizz1;连续28天观察管样结构形成情况。最后,采用transwell系统共培养aaMphi和小鼠LLC细胞,免疫细胞化学检测LLC细胞表达VEGF-C,3H-TdR掺入法和transwell侵袭模型分别观察aaMphi对LLC细胞增殖和侵袭的影响。
     结果
     1、人肺腺癌TAM计数(103.36±15.31)、VEGF-C阳性指数(20.60±11.96)均明显高于肺良性病变(32.15±5.48,3.82±3.21)(P<0.01);人肺腺癌VEGFR-3阳性率(54.7%)和肺良性病变VEGFR-3阳性率(50.0%)之间无统计学差异(P>0.05),但前者VEGFR-3阳性LMVD(11.56±10.73)明显高于后者(4.29±4.18)(P<0.01)。人肺腺癌TAM计数、VEGF-C阳性指数均与淋巴结转移、P-TNM分期密切相关,VEGFR-3阳性LMVD只与淋巴结转移密切相关。人肺腺癌TAM计数和VEGF-C阳性指数、VEGFR-3阳性LMVD之间均呈正相关(r=0.338,P<0.05;r=0.410,P<0.01);VEGF-C阳性指数和VEGFR-3阳性LMVD之间也呈正相关(r=0.653,P<0.01)。
     2、40例人肺腺癌组织中TAM均同时表达CD68和MMR,MMR阳性巨噬细胞占全部TAM的74.7~98.2%;其中,有3例肺腺癌TAM同时表达CD68和iNOS,但iNOS阳性巨噬细胞占全部TAM的比例仅为2.4~12.7%。在10例肺良性病变中,8例同时表达CD68和iNOS,2例仅表达CD68;未见有同时表达CD68和MMR的病例。
     3、成功地建立了小鼠caMphi和aaMphi模型,且CpG+IL-10RA能逆转aaMphi为caMphi。与空白对照组比较,aaMphi组和RAW264.7组移植瘤LMVD增高(14.80±3.64,10.50±3.17),淋巴结转移数较多(10.80±1.32,7.30±0.95)(P<0.01),双肺转移结节数增多(32.50±4.91,29.30±4.42)(P<0.01),荷瘤小鼠生存率降低(P<0.01);其中,aaMphi组LMVD和淋巴结转移数明显高于RAW264.7组(P<0.05),但双肺转移结节数和荷瘤小鼠生存率之间无统计学差异(P>0.05)。caMphi组和aaMphi+CpG+IL-10RA组移植瘤未见LYVE-1表达和淋巴结转移,双肺转移结节数较少(5.80±1.15,5.17±1.28) (P<0.01),荷瘤小鼠生存率提高(P<0.01)。
     4、IFA能诱导小鼠腹腔淋巴管瘤形成,所获LEC活细胞数大于98%,并高表达VEGFR-3和LYVE-1。在自制鼠尾胶包被的培养瓶(板)中,LEC生长状况良好,3H-TdR掺入率明显增加;在鼠尾胶凝胶中,LEC能形成淋巴管样结构。
     5、与aaMphi共培养后,小鼠LEC增殖、迁移和管样结构形成能力均明显高于空白对照组、caMphi组和RAW264.7细胞组。与共培养前比较,aaMphi表达VEGF-C明显增加(P<0.01),但表达VEGF-D无明显变化(P>0.05);LEC表达VEGFR-3和Prox1均明显增加(P<0.05~0.01)。建立转分化系统之后,小鼠aaMphi表达VEGFR-3和Prox1逐渐增加,而表达Fizz1逐渐下降,至第14天分别达到最高值和最低值;第28天和第14天的情况无明显差别。随着时间推移,aaMphi在基质胶中逐渐形成明显的管样结构。在4个共培养组中,aaMphi组小鼠LLC细胞表达VEGF-C最强,增殖速度最快,侵袭能力最强,RAW264.7组次之;而与空白对照组相比,caMphi组LLC细胞表达VEGF-C无明显变化,增殖和侵袭则受到抑制。
     结论
     1、TAM与人肺腺癌组织VEGF-C表达和淋巴管生成呈正相关,可能促进了肺腺癌淋巴结转移。
     2、人肺腺癌组织中TAM呈现出替代性活化的表型特征。
     3、aaMphi能促进小鼠LLC移植瘤淋巴管生成、淋巴结和肺转移,并降低荷瘤小鼠生存率。在形成移植瘤的过程中,未经处理的巨噬细胞可以朝着aaMphi的方向极化。CpG+IL-10RA能通过逆转aaMphi表型并最终拮抗小鼠肺腺癌淋巴管生成。
     4、以自制鼠尾胶为贴黏剂的体系是一种简便、廉价和稳定的小鼠LEC体外培养体系。
     5、aaMphi能够通过促进LEC增殖、迁移和管样结构形成,直接转分化为LEC和上调LLC细胞表达VEGF-C等三种方式促进小鼠肺腺癌淋巴管生成。
Nowadays, activated macrophages are considered as complicated groups which can execute distinct functions. Among them, alternatively activated macrophages (aaMphi) participate in the process of cell growth, angiogenesis, immunosuppression, tissue repair and stroma formation. There is a great quantity of tumor-associated macrophages (TAM) infiltrating in the stroma of human lung adenocarcinoma, which are closely related to tumor development and metastasis. Lymphatic metastasis is one of the major routes of lung adenocarcinoma dissemination. However, the activated phenotypes of TAM and their roles in lymphangiogenesis remain unknown. This thesis will i) identify TAM in human lung adenocarcinoma to be aaMphi, ii) investigate the roles of aaMphi in lymphangiogenesis of lung adenocarcinoma based on the models of mouse Lewis lung carcinoma (LLC) transplantation tumors, iii) explore the possible mechanisms of the induction of lymphangiogenesis by aaMphi in lung adenocarcinoma. This research shows new approach for the lymphangiogenesis in lung adenocarcinoma and thus provides a new target for the inhibition of the metastasis of this kind of malignant carcinoma.
     Objective
     To identify the activated phenotypes of TAM in lung adenocarcinoma, and to explore the possible mechanisms by which aaMphi induce lymphangiogenesis in mouse lung adenocarcinoma.
     Methods
     1. The expression of CD68, vascular endothelial growth factor (VEGF)-C and vascular endothelial growth factor receptor (VEGFR)-3 was detected by immunohistochemistry (SP method) in human lung adenocarcinoma, respectively, and then CD68 positive TAM counts, VEGF-C positive indexes and VEGFR-3 positive lymphatic microvessel density (LMVD) were counted for the analysis of the correlations among them and their relationships with clinicopathological features.
     2. Since CD68 being the marker of TAM, co-expression of CD68 and macrophage mannose receptor (MMR) was used as the marker of aaMphi, and co-expression of CD68 and inducible nitric oxide synthase (iNOS) was used as the marker of classically activated macrophages (caMphi). The activated phenotypes of TAM in human lung adenocarcinoma were detected by double-labelled immunofluorescence staining and observed by laser confocal microscopy.
     3. To establish the models of caMphi or aaMphi, RAW264.7 macrophages were treated by IFN-γ+LPS or IL-4, respectively. Then, whether the reversion of aaMphi phenotype by CpG+IL-10RA or not was investigated. The models of mice LLC transplantation tumors were established via subcutaneous injection of LLC cells and aaMphi. The LYVE-1+ LMVD were detected by immunohistochemistry (SP method), meanwhile, the numbers of metastatic lymph nodes and nodes in distant organs were detected by HE staining. Furthermore, another 50 mice were monitored for survival rates.
     4. Mice lymphangiomas in abdominal cavity were induced by intraperitoneal injection of incomplete Freund’s adjuvant (IFA). LEC were obtained from the induced lymphangiomas after disruption and digestion, and then were cultured in the flask or plate previously coated with self-made rat-tail collagen. Expressions of VEGFR-3 and LYVE-1 were identified by immunofluorescence. The proliferation activity of LEC was evaluated by 3H-TdR incorporation efficiency. The capability of LEC to form lymphatic vessel-like structures was assessed by the in vitro lymphatic vessel formation assay.
     5. Based on the co-culture systems of aaMphi and murine LEC, cell growth curve of LEC was drawn, and migration assay and matrigel assay were used to observe the effect of aaMphi on the migration and tube-like structure formation of LEC. Expressions of VEGF-C and VEGF-D mRNA in aaMphi, VEGFR-3 and Prox1 mRNA in LEC were detected by real time quantitative RT-PCR. Then, 100ng/ml VEGF-C was selected for establishing the aaMphi transdifferentiation system. The mRNA expression of VEGFR-3, Prox1 and Fizz1 in aaMphi were detected by real time quantitative RT-PCR on the day 0, 7, 14 and 28 following VEGF-C stimulation, respectively. During the 28 days, tube-like structure formation was observed by inverted phase contrast microscope continuously. Finally, based on the aaMphi-LLC cells co-culture, VEGF-C expressions in LLC cells were detected by immunocytochemsitry. Besides, 3H-TdR incorporation and transwell invasion model were used to observe the effect of aaMphi on the proliferation and invasion of LLC cells, respectively.
     Results
     1. TAM counts and VEGF-C positive indexes in lung adenocarcinoma were (103.36±15.31) and (20.60±11.96), which were both higher than those in lung benign lesion (32.15±5.48, 3.82±3.21), respectively (P<0.01). There was no significant difference in VEGFR-3 positive rates between lung adenocarcinoma (54.7%) and lung benign lesion (50.0%) (P>0.05), but VEGFR-3 positive LMVD was significantly higher in the former (11.56±10.73) than in the latter (4.29±4.18) (P<0.01). CD68 positive TAM counts, VEGF-C positive indexes were related to lymph node metastasis and P-TNM staging, but VEGFR-3 positive LMVD was only related to lymph node metastasis. Close correlations were found between TAM counts and VEGF-C positive indexes, VEGFR-3 positive LMVD, respectively (r=0.338, P<0.01; r=0.410, P<0.01), and also found between VEGF-C positive indexes and VEGFR-3 positive LMVD (r=0.653, P<0.01).
     2. Co-exprssion of CD68 and MMR of TAM were detected in all the 40 lung adenocarcinoma specimens, and the percentages of MMR positive macrophages in TAM were 74.7~98.2%. Among the 40 cases, co-exprssion of CD68 and iNOS of TAM were detected in 3 cases, and the percentages of iNOS positive macrophages in TAM were only 2.4~12.7%. Among the 10 cases with lung benign lesion, 8 cases co-expressed CD68 and iNOS, 2 cases only expressed CD68, and there was no case which co-expressed CD68 and MMR.
     3. Mouse caMphi and aaMphi models were established successfully, and aaMphi could be reversed into caMphi by CpG+IL-10RA. Compared to blank control group, aaMphi group and RAW264.7 group have increased LMVD in transplantation tumors (14.80±3.64, 10.50±3.17), enhanced number of metastatic lymph nodes (10.80±1.32, 7.30±0.95) (P<0.01), incremented quantity of metastatic nodes in double lungs (32.50±4.91, 29.30±4.42) (P<0.01), and decreased survival rates of tumor-bearing mice (P<0.01). Besides, the number of metastatic lymph nodes and LMVD in aaMphi group were higher than those in RAW264.7 group (P<0.05), but there was no significant difference in the metastatic nodes in double lungs and the survival rates of mice between them (P>0.05). In caMphi group and aaMphi+CpG+IL-10RA group, LYVE-1 expression in transplantation tumors and lymph node metastasis were hardly detected, the metastatic nodes in double lungs were less (5.80±1.15, 5.17±1.28) (P<0.01), and the survival rates of tumor-bearing mice increased (P<0.01).
     4. Mice lymphangiomas in abdominal cavity were induced successfully by IFA, and more than 98% living LEC were harvested. The expression of VEGFR-3 and LYVE-1 were positive in LEC. In the rat-tail collagen coated flask or plate, LEC grew well, with 3H-TdR incorporation efficiency increasing obviously. In the gel formed by rat-tail collagen, LEC could form lymphatic vessel-like structures.
     5. After co-culture, the ability of LEC to proliferate, migrate and form tube-like structure in aaMphi group was significantly stronger than that in blank control, caMphi, and RAW264.7 groups. The expression of VEGF-C mRNA in aaMphi, VEGFR-3 and Prox1 mRNA in LEC increased significantly after co-culture (P<0.05~0.01), however, there was no significant change in VEGF-D mRNA level in aaMphi (P>0.05). After the aaMphi transdifferentiation system was established, the expression of VEGFR-3 and Prox1 mRNA in aaMphi incresesd greatly, while the Fizz1 mRNA in aaMphi decreased. On day 14, VEGFR-3 and Prox1 mRNA reached the peak value, and Fizz1 mRNA reduced to the minimum level. There was no significant difference in the expression of VEGFR-3, Prox1 and Fizz1 mRNA between on the day 28 and day 14. With the time passed, aaMphi could form tube-like structure in matrigel. Among the four macrophages-LLC cells co-culture groups, aaMphi group has the highest VEGF-C expression, fastest growth velocity, and strongest invasion capability of LLC cells, with RAW264.7 group ranking the secondary. Compared to blank control group, VEGF-C expression in LLC cells of caMphi group has no change, and the proliferation and invasion of LLC cells were inhibited.
     Conclusions
     1. TAM are positively correlated to VEGF-C expression and lymphangiogenesis, and probably contribute to lymph node metastasis in human lung adenocarcinoma.
     2. TAM in human lung adenocarcinoma is proved to be one kind of aaMphi.
     3. aaMphi can promote the lymphangiogenesis, lymph node and lung metastasis of LLC transplantation tumors, and reduce the tumor-bearing mice survival. In the progression of transplantation tumors, the function of RAW264.7 cells may be polarized toward that of aaMphi. CpG+IL-10RA can inhibit aaMphi-induced lymphangiogenesis by the reversion of aaMphi phenotype.
     4. Mouse LEC culture system using rat-tail collagen as adhesives is a convenient, cheap and stable culture system.
     5. aaMphi can induce lymphangiogenesis in lung adenocarcinoma by the means of promoting the proliferation, migration and tube-like structure formation of LEC, transdifferentiating into LEC, and promoting the expression of VEGF-C in LLC cells.
引文
1. Mosser DM. The many faces of macrophage activation. J Leukoc Biol, 2003, 73(2): 209-212
    2. Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol, 2006, 80(6): 1298-1307.
    3. Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, et al. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology, 2006, 211(6-8): 487-501
    4. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res, 2006, 66(2): 605-612
    5. Mantovani A, Schioppa T, Porta C, et al. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev, 2006, 25(3): 315-322
    6. Porta C, Subhra Kumar B, Larghi P, et al. Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol, 2007, 604: 67-86
    7. Allavena P, Sica A, Solinas G, et al. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit Rev Oncol Hematol, 2008, 66(1): 1-9
    8. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070): 946-953
    9. Stacker SA, Farnsworth RH, Karnezis T, et al. Molecular pathways for lymphangiogenesis and their role in human disease. Novartis Found Symp, 2007, 281: 38-43
    10. Achen MG, Stacker SA. Tumor lymphangiogenesis and metastatic spread-New players begin to emerge. Int J Cancer, 2006, 119(8): 1755-1760
    11.王艳,朱波,叶明福,等.非小细胞肺癌VEGF-C表达与淋巴生成和淋巴转移关系的研究.中国肺癌杂志, 2006, 9(2): 182-186
    12.王艳,孙建国,叶明福,等. Podoplanin阳性淋巴管密度与非小细胞肺癌预后的关系.中华结核和呼吸杂志, 2006, 29(11): 758-761
    13. Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages expresslymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol, 2002, 161(3): 947-956
    14. Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest, 2005, 115(9): 2363-2372
    15. Guiducci C, Vicari AP, Sangaletti S, et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res, 2005, 65(8): 3437-3446
    16. Sica A, Rubino L, Mancino A, et al. Targeting tumour-associated macrophages. Expert Opin Ther Targets, 2007, 11(9): 1219-1229
    17. Loberg RD, Ying C, Craig M, et al. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 2007, 9(7): 556-562
    18. Nesbit M, Schaider H, Miller TH, et al. Low-level monocyte chemoattractant rotein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol, 2001, 166(11): 6483-6490
    19. Varney ML, Olsen KJ, Mosley RL, et al. Paracrine regulation of vascular endothelial growth factor-a expression during macrophage-melanoma cell interaction: role of monocyte chemotactic protein-1 and macrophage colony-stimulating factor. J Interferon Cytokine Res, 2005, 25(11): 674-683
    20. Knowles HJ, Harris AL. Macrophages and the hypoxic tumour microenvironment. Front Biosci, 2007, 12: 4298-4314
    21. Chen JJ, Lin YC, Yao PL, et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol, 2005, 23(5): 953-964
    22. Vicioso L, Gonzalez FJ, Alvarez M, et al. Elevated serum levels of vascular endothelial growth factor are associated with tumor-associated macrophages in primary breast cancer. Am J Clin Pathol, 2006, 125(1): 111-118
    23. Koga F, Kageyama Y, Kawakami S, et al. Prognostic significance of endothelial Per-Arnt-sim domain protein 1/hypoxia-inducible factor-2alpha expression in a subset of tumor associated macrophages in invasive bladder cancer. J Urol, 2004, 171(3): 1080-1084
    24.梁青春,魏启幼,陈宁.甲状腺乳头状癌肿瘤相关巨噬细胞与血管及淋巴管生成的关系.广东医学, 2005, 26(12): 1686-1687
    25. Soeda S, Nakamura N, Ozeki T, et al. Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma. Gynecol Oncol, 2008, 109(1):122-128
    26. Bailey C, Negus R, Morris A, et al. Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis, 2007, 24(2):121-130
    27. Koca E, Haznedaroglu IC, Uner A, et al. Angiotensin-converting enzyme expression of the lymphoma-associated macrophages in the lymph nodes of Hodgkin's disease. J Natl Med Assoc, 2007, 99(11): 1243-1247
    28. Clark CE, Hingorani SR, Mick R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res, 2007, 67(19): 9518-9527
    29. Liu SY, Chang LC, Pan LF, et al. Clinicopathologic significance of tumor cell-lined vessel and microenvironment in oral squamous cell carcinoma.Oral Oncol, 2008, 44(3): 277-285
    30. Guo SJ, Lin DM, Li J, et al.Tumor-associated macrophages and CD3-zeta expression of tumor-infiltrating lymphocytes in human esophageal squamous-cell carcinoma. Dis Esophagus, 2007, 20(2): 107-116
    31. Jenny B, Harrison JA, Baetens D, et al. Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. J Pathol, 2006, 209(1): 34-43
    32. Ohba K, Miyata Y, Kanda S, et al. Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and plasminogen activator inhibitors in patients with renal cell carcinoma: correlation with tumor associated macrophage and prognosis. J Urol, 2005, 174(2): 461-465
    33. Peng SH, Deng H, Yang JF, et al. Significance and relationship between infiltrating inflammatory cell and tumor angiogenesis in hepatocellular carcinoma tissues.World J Gastroenterol, 2005, 11(41): 6521-6524
    34. Sickert D, Aust DE, Langer S, et al. Characterization of macrophage subpopulations and microvessel density in carcinomas of the gastrointestinal tract. Anticancer Res, 2007, 27(3B): 1693-1700
    35. Oshima H, Oshima M, Inaba K, et al. Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J, 2004, 23(7): 1669-1678
    36. Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anticancer therapies. Am J Pathol, 2005, 167(3): 627-635
    37. Van den Brule F, Califice S, Garnier F, et al. Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest, 2003, 83(3): 377-386
    38. Lin EY, Nguyen AV, Russell RG, et al. Colonystimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med, 2001, 193(6): 727-740
    39. Lin CY, Lin CJ, Chen KH, et al. Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction.FEBS Lett, 2006, 580(13): 3042-3050
    40. Hagemann T, Wilson J, Kulbe H, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J Immunol, 2005, 175(2): 1197-1205
    41. Goswami S, Sahai E, Wyckoff JB, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res, 2005, 65(12): 5278-5283
    42. Wyckoff J, Wang W, Lin EY, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res, 2004, 64(19): 7022-7029
    43. Oosterling SJ, van der Bij GJ, Meijer GA, et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol, 2005, 207(2): 147-155
    44. Mareel M, Madani I. Tumour-associated host cells participating at invasion and metastasis: targets for therapy? Acta Chir Belg, 2006, 106(6): 635-640
    45. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol, 2006, 16(1): 38-52
    46. Mitsuhashi M, Liu J, Cao S, et al. Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin E2 derived from mammary carcinomas. JLeukoc Biol, 2004, 76(2): 322-332
    47. Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res, 2007, 67(11): 5064-5066
    48. Lamagna C, Aurrand-Lions M, Imhof BA. Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol, 2006, 80(4): 705-713
    49. Dirkx AE, Oude Egbrink MG, Wagstaff J, et al. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis.J Leukoc Biol, 2006, 80(6):1183-1196
    50. Yao PL, Lin YC, Wang CH, et al. Autocrine and paracrine regulation of interleukin-8 expression in lung cancer cells. Am J Respir Cell Mol Biol, 2005, 32(6): 540-547
    51. White ES, Strom SR, Wys NL, et al. Non-small cell lung cancer cells induce monocytes to increase expression of angiogenic activity. J Immunol, 2001, 166(12): 7549-7555
    52. Kataki A, Scheid P, Piet M, et al. Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med, 2002, 140(5): 320-328
    53. Kojima H, Shijubo N, Abe S. Thymidine phosphorylase and vascular endothelial growth factor in patients with Stage I lung adenocarcinoma. Cancer, 2002, 94(4): 1083-1093
    54. Liss C, Fekete MJ. Retinoic acid modulates the ability of macrophages to participate in the induction of the angiogenic phenotype in head and neck squamous cell carcinoma. Int J Cancer, 2002, 100(3): 283-289
    55. Leek RD, Landers R. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer, 1998, 77(12): 2246-2251
    56. Banciu M, Metselaar JM, Schiffelers RM, et al. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia, 2008, 10(2): 108-117
    57. Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest, 2005, 115(9): 2316-2319
    58. Cursiefen C, Chen L, Borges LP, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. JClin Invest, 2004, 113(7): 1040-1050
    59. Hamrah P, Chen L, Cursiefen C, et al. Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res, 2004, 79(4): 553-561
    60. Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest, 2005, 115(2): 247-257
    61. Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell, 2005, 7(6): 513-520
    62. Bjorndahl MA, Cao R, Burton JB, et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res, 2005, 65(20): 9261-9268
    63. Skobe M, Hamberg LM, Hawighorst T, et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol, 2001, 159(3): 893-903
    64. Schledzewski K, Falkowski M, Moldenhauer G, et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol, 2006, 209(1): 67-77
    65.冯红超,宋宇峰,温玉明.口腔癌组织中血管内皮生长因子-C在肿瘤相关巨噬细胞内的表达及与淋巴结转移的关系.癌症, 2004, 23(3): 278-281
    66.蔡方,赵勇,武彤彤,等.肿瘤相关巨噬细胞浸润与淋巴结转移的关系.实用癌症杂志, 2006, 21(3): 261-262, 268
    67. Saban MR, Memet S, Jackson DG, et al. Visualization of lymphatic vessels through NF-kappaB activity. Blood, 2004, 104(10): 3228-3230
    68. Kojima H, Shijubo N, Yamada G, et al. Clinical significance of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 in patients with T1 lung adenocarcinoma. Cancer, 2005, 104(8): 1668-1677
    69. Ogawa E, Takenaka K, Yanagihara K, et al. Clinical significance of VEGF-C status in tumour cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer, 2004, 91(3): 498-503
    70. Sica A, Schioppa T, Mantovani A, et al. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 2006, 42(6): 717-727
    71. Stein M, Keshav S, Harris N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med, 1992, 176(1): 287-292
    72. Gratchev A, Kzhyshkowska J, K?the K, et al. Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology, 2006, 211(6-8): 473-486
    73. Gordon S. Alternative activation of macrophages. Nat Rev Immunol, 2003, 3(1): 23-35
    74. Raes G, Brys L, Dahal BK, et al. Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol, 2004, 77(3): 321-327
    75. Sutterwala FS, Noel GJ, Clynes R, et al. Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med, 1997, 185(11): 1977-1985
    76. Anderson CF, Mosser DM. A novel phenotype for an activated macrophage: the type 2 activated macrophage. J Leukoc Biol, 2002, 72(1): 101-106
    77. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002, 23(11): 549-555
    78. Mantovani A, Sozzani S, Locati M, et al. Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp, 2004, 256: 137-145
    79. Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer, 2004, 40(11): 1660-1667
    80. Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci, 2008, 13: 453-461
    81. Scarpino S, Stoppacciaro A, Ballerini F, et al. Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active inrecruiting dendritic cells. Am J Pathol, 2000, 156(3): 831-837
    82. Hagemann T, Wilson J, Burke F, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol, 2006, 176(8): 5023-5032
    83. Mantovani A, Marchesi F, Porta C, et al. Inflammation and cancer: breast cancer as a prototype. Breast, 2007, 16(Suppl 2): S27-33
    84. Huang M, Wang J, Lee P, et al. Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res, 1995, 55(17): 3847-3853
    85. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev, 2003, 8(3): 223-246
    86. Ito N, Nakamura H, Tanaka Y, et al. Lung carcinoma: analysis of T helper type 1 and 2 cells and T cytotoxic type 1 and 2 cells by intracellular cytokine detection with flow cytometry. Cancer, 1999, 85(11): 2359-2367
    87. Massi D, Marconi C, Franchi A, et al. Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors. Hum Pathol, 2007, 38(10): 1516-1525
    88. Umemura N, Saio M, Suwa T, et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol, 2008, 83(5): 1136-1144
    89. Tsagozis P, Eriksson F, Pisa P. Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages. Cancer Immunol Immunother, 2008 Feb 23 [Epub ahead of print]
    90. Ghosh D, Maiti TK. Effects of native and heat-denatured Abrus agglutinin on tumor-associated macrophages in Dalton's lymphoma mice. Immunobiology, 2007, 212(8): 667-673
    91. Kumar S, Deepak P, Acharya A. Hsp70 induces Th1 polarization through tumor-associated macrophages in a T-cell lymphoma. Neoplasma, 2007, 54(2): 113-122
    92. Van Ginderachter JA, Meerschaut S, Liu Y, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood, 2006, 108(2): 525-535
    93. Watkins SK, Egilmez NK, Suttles J, et al. IL-12 rapidly alters the functional profile oftumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol, 2007, 178(3): 1357-1362
    94. Teng X, Li D, Champion HC, et al. FIZZ1/RELMalpha, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. Circ Res, 2003, 92(10): 1065-1067
    95. Be?towski J. Adiponectin and resistin--new hormones of white adipose tissue. Med Sci Monit, 2003, 9(2): RA55-61
    96. Nair MG, Cochrane DW, Allen JE, et al. Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro. Immunol Lett, 2003, 85(2):173-180
    97. Noel W, Hassanzadeh G, Raes G, et al. Infection stage-dependent modulation of macrophage activation in Trypanosoma congolense-resistant and -susceptible mice. Infect Immun, 2002, 70(11): 6180-6187
    98. Nair MG, Gallagher IJ, Taylor MD, et al. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun, 2005, 73(1): 385-394
    99. Yamada H, Gursel I, Takeshita F. Effect of suppressive DNA on CpG-induced immune activation. J Immunol, 2002, 169(10): 5590-5594
    100. Flaminio MJ, Borges AS, Nydam DV, et al. The effect of CpG-ODN on antigen presenting cells of the foal. J Immune Based Ther Vaccines, 2007, 5: 1
    101. Higgins D, Marshall JD, Traquina P, et al. Immunostimulatory DNA as a vaccine adjuvant. Expert Rev Vaccines, 2007, 6(5):747-759
    102. Baral RN, Saha A, Chatterjee SK, et al. Immunostimulatory CpG oligonucleotides enhance the immune response of anti-idiotype vaccine that mimics carcinoembryonic antigen. Cancer Immunol Immunother, 2003, 52(5): 317-327
    103. Mahfouz M, Hashimoto W, Das Gupta TK, et al. Bacterial proteins and CpG-rich extrachromosomal DNA in potential cancer therapy. Plasmid, 2007, 57(1): 4-17
    104. Klinman DM, Conover J, Coban C. Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection. Infect Immun, 1999, 67(11): 5658-5663
    105. Wang L, Jiang W, Ding G, et al.The newly identified CpG-N ODN208 protects micefrom challenge with CpG-S ODN by decreasing TNF-alpha release. Int Immunopharmacol, 2007, 7(5): 646-655
    106. Hessel EM, Chu M, Lizcano JO, et al. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J Exp Med, 2005, 202(11): 1563-1573
    107. Santeliz JV, Van Nest G, Traquina P, et al. Amb a 1-linked CpG oligodeoxynucleotides reverse established airway hyperresponsiveness in a murine model of asthma. J Allergy Clin Immunol, 2002, 109(3): 455-462
    108. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121(3): 335-348
    109. Bobek V, Kolostova K, Pinterov D, et al. Syngeneic lymph-node-targeting model of green fluorescent protein-expressing Lewis lung carcinoma. Clin Exp Metastasis, 2004, 21(8): 705-708
    110. Religa P, Cao R, Bjorndahl M, et al. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood, 2005, 106(13): 4184-4190
    111. He Y, Rajantie I, Ilmonen M, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res, 2004, 64(11): 3737-3740
    112. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol, 2004, 5(1): 74-80
    113. Vlahakis NE, Young BA, Atakilit A, et al. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem, 2005, 280(6): 4544-4552
    114. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice.Development, 2002, 129(20): 4797-4806
    115. Shin JW, Min M, Larrieu-Lahargue F, et al. Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell, 2006, 17(2): 576-584
    116. Bjorndahl M, Cao R, Nissen LJ, et al. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci U S A, 2005, 102(43): 15593-15598
    117. Cao R, Bjorndahl MA, Religa P, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 2004, 6(4): 333-345
    118. Cao R, Bjorndahl MA, Gallego MI, et al. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood, 2006, 107(9): 3531-3536
    119. Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer, 2007, 96(4): 541-545
    120. Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis, 2007, 38(3): 258-268
    121. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev, 2006, 25(4): 677-694
    122. Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol, 2004, 14(3): 181-185
    123. He Y, Rajantie I, Pajusola K, et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res, 2005, 65(11): 4739-4746
    124. Craig M, Ying C, Loberg RD. Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo.J Cell Biochem, 2008, 103(1): 1-8
    125. Ando T, Jordan P, Joh T, et al. Isolation and characterization of a novel mouse lymphatic endothelial cell line: SV-LEC. Lymphat Res Biol, 2005, 3(3): 105-115
    126. Kato S, Shimoda H, Ji RC, et al. Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers. Anat Sci Int, 2006, 81(2):71-83
    127. Gao F, Lu YM, Cao ML, et al. Expression and quantification of LYVE-1 in human colorectal cancer. Clin Exp Med, 2006, 6(2): 65-71
    128. Wicki A, Christofori G. The potential role of podoplanin in tumour invasion. Br J Cancer, 2007, 96(1):1-5
    129. Hong YK, Detmar M. Prox1, master regulator of the lymphatic vasculature phenotype.Cell Tissue Res, 2003, 314(1): 85-92
    130. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J, 2002, 21(7): 1505-1513
    131. Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn, 2002, 225(3): 351-357
    132.周宏志,顾晓明,胡敏,等.小鼠肝癌H22诱导淋巴管生成的体外研究.中华肿瘤杂志, 2003, 25(1): 39-42
    133. Kriehuber E, Breiteneder-Geleff S, Groeger M, et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med, 2001, 194(6): 797-808
    134.胡学庆,蒋朝华,刘宁飞.人真皮微淋巴管内皮细胞的分离培养和鉴定.中华实验外科杂志, 2007, 24(3): 336-338
    135. Kasten P, Schn?ink G, Bergmann A, et al. Similarities and differences of human and experimental mouse lymphangiomas. Dev Dyn, 2007, 236(10): 2952-2961
    136. Norgall S, Papoutsi M, R?ssler J, et al. Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC Cancer, 2007, 7: 105
    137. Religa P, Cao R, Bjorndahl M, et al. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood, 2005, 106(13): 4184 -4190
    138. Sironi M, Conti A, Bernasconi S, et al. Generation and characterization of a mouse lymphatic endothelial cell line.Cell Tissue Res, 2006, 325(1): 91-100
    139.蔡莉蓉,李玉珍,刘秀华.鼠尾胶为贴黏剂的微血管内皮细胞培养.军医进修学院学报, 2005, 26(6): 464-465
    140.李明焕,田铧,刘执玉,等. ECV304细胞用于三维血管新生的研究.中国现代普通外科进展, 2004, 7(3): 165-167
    141. Kerjaschki D, Huttary N, Raab I, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med, 2006, 12(2): 230-234
    142. Cursiefen C, Maruyama K, Jackson DG, et al. Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea, 2006, 25(4): 443-447
    143. Ji RC. Characteristics of lymphatic endothelial cells in physiological and pathologicalconditions. Histol Histopathol, 2005, 20(1): 155-175
    144. Van der Auwera I, Van den Eynden GG, Colpaert CG, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res, 2005, 11(21): 7637-7642
    145. Schoppmann SF, Fenzl A, Nagy K, et al. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery, 2006, 139(6): 839-846
    146. Schoppmann SF, Schindl M, Breiteneder-Geleff S, et al. Inflammatory stromal reaction correlates with lymphatic microvessel density in early-stage cervival cancer. Anticancer Res, 2001, 21(5): 3419-3423
    147. Ristimaki A, Narko K, Enholm B, et al. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem, 1998, 273(14): 8413-8418
    148.唐瑞峰,王曙霞,张风瑞,等.白细胞介素-1α、6对胰腺癌细胞分泌内皮生长因子A、C的调节作用.中华实验外科杂志, 2005, 22(4): 401-403
    149. Al-Rawi MA, Watkins G, Mansel RE, et al. The effects of interleukin-7 on the lymphangiogenic properties of human endothelial cells. Int J Oncol, 2005, 27(3): 721-730
    150. Shao X, Liu C. Influence of IFN-alpha and IFN-gamma on Lymphangiogenesis. J Interferon Cytokine Res, 2006, 26(8): 568-574
    151. Saban MR, Memet S, Jackson DG, et al. Visualization of lymphatic vessels through NF-kappaB activity. Blood, 2004, 104(10): 3228-3230
    152. Hamrah P, Chen L, Zhang Q, et al. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol, 2003, 163(1): 57-68
    153. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 2001, 7(2): 192-198
    154. Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology, 2002, 62(2): 121-127
    155. Chen Z, Varney ML, Backora MW, et al. Down-regulation of vascular endothelial cellgrowth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res, 2005,65(19): 9004-9011
    156. Hume DA, Ross IL, Himes SR, et al.The mononuclear phagocyte system revisited. J Leukoc Biol, 2002, 72(4): 621-627
    157. Hume DA. The mononuclear phagocyte system. Curr Opin Immunol, 2006, 18(1): 49-53
    158. Ito WD, Khmelevski E. Tissue macrophages:‘‘satellite cells’’for growing collateral vessels? A hypothesis. Endothelium, 2003, 10(4-5): 233-235
    159. Fernandez Pujol B, Lucibello FC, Gehling UM, et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation, 2000, 65(5): 287-300
    160. Slack JM. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol, 2007, 8(5): 369-378
    161. Meivar-Levy I, Ferber S. New organs from our own tissues: liver-to-pancreas transdifferentiation. Trends Endocrinol Metab, 2003, 14(10): 460-466
    162. Zhu P, Huang L, Ge X, et al. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol, 2006, 87(6): 463-474
    163. Wang H, Yan S, Chai H, et al. Shear stress induces endothelial transdifferentiation from mouse smooth muscle cells. Biochem Biophys Res Commun, 2006, 346(3): 860-865
    164. Yu YH, Liu BH, Mersmann HJ, et al. Porcine peroxisome proliferator-activated receptor gamma induces transdifferentiation of myocytes into adipocytes. J Anim Sci, 2006, 84(10): 2655-2665
    165. Sharifi BG, Zeng Z, Wang L, et al. Pleiotrophin induces transdifferentiation of monocytes into functional endothelial cells. Arterioscler Thromb Vasc Biol, 2006, 26(6): 1273-1280
    166. Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res, 2001, 49(3): 671-680
    167. Bertrand S, Godoy M, Semal P, et al. Transdifferentiation of macrophages into fibroblasts as a result of Schistosoma mansoni infection. Int J Dev Biol, 1992, 36(1): 179-184
    168. Ninomiya K, Takahashi A, Fujioka Y, et al. Transforming growth factor-beta signaling enhances transdifferentiation of macrophages into smooth muscle-like cells. Hypertens Res, 2006, 29(4): 269-276
    169. Jabs A, Moncada GA, Nichols CE, et al. Peripheral blood mononuclear cells acquire myofibroblast characteristics in granulation tissue. J Vasc Res, 2005, 42(2): 174-180
    170. Thowfeequ S, Myatt EJ, Tosh D. Transdifferentiation in developmental biology, disease, and in therapy. Dev Dyn, 2007, 236(12): 3208-3217
    171.郭巨江,苏逢锡,姚和瑞,等.替代激活的单核细胞促进人乳腺癌细胞SKBR3的生长侵袭.南方医科大学学报, 2007, 27(4): 410-413
    1. Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer, 2004, 40(11): 1660-1667
    2. Nesbit M, Schaider H, Miller TH, et al. Low-level monocyte chemoattractant rotein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol, 2001, 166(11): 6483-6490
    3. Allavena P, Sica A, Vecchi A, et al. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev, 2000, 177(1): 141-149
    4. Mosser DM. The many faces of macrophage activation. J Leukoc Biol, 2003, 73(2): 209-212
    5. Sica A, Schioppa T, Mantovani A, et al. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 2006, 42(6): 717-727
    6. Mantovani A, Sozzani S, Locati M, et al. Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp, 2004, 256: 137-145
    7. Hagemann T, Wilson J, Burke F, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol, 2006, 176(8): 5023-5032
    8. Knowles H, Leek R, Harris AL. Macrophage infiltration and angiogenesis in human malignancy . Novartis Found Symp, 2004, 256: 189-200
    9. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res, 2006, 66(2): 605-612
    10. Chen JJ, Lin YC, Yao PL, et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol, 2005, 23(5): 953-964
    11. Oshima H, Oshima M, Inaba K, et al. Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J, 2004, 23(7): 1669-1678
    12. Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anticancer therapies. Am J Pathol, 2005, 167(3): 627-635
    13. Van den Brule F, Califice S, Garnier F, et al. Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects bothcancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest, 2003, 83(3): 377-386
    14. Lin EY, Nguyen AV, Russell RG, et al. Colonystimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med, 2001, 193(6): 727-740
    15. Hagemann T, Wilson J, Kulbe H, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J Immunol, 2005, 175(2 ): 1197-1205
    16. Goswami S, Sahai E, Wyckoff JB, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res, 2005, 65(12): 5278-5283
    17. Wyckoff J, Wang W, Lin EY, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res, 2004, 64(19): 7022-7029
    18. Oosterling SJ, van der Bij GJ, Meijer GA, et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol, 2005, 207(2): 147-155
    19. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol, 2006, 16(1): 38-52
    20. Yao PL, Lin YC, Wang CH, et al. Autocrine and paracrine regulation of interleukin-8 expression in lung cancer cells. Am J Respir Cell Mol Biol, 2005, 32(6): 540-547
    21. White ES, Strom SR, Wys NL, et al. Non-small cell lung cancer cells induce monocytes to increase expression of angiogenic activity. J Immunol, 2001, 166(12): 7549-7555
    22. Kataki A, Scheid P, Piet M, et al. Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med, 2002, 140(5): 320-328
    23. Junker N, Johansen JS, Andersen CB, et al. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer, 2005, 48(2): 223-231
    24. Kojima H, Shijubo N, Abe S. Thymidine phosphorylase and vascular endothelial growth factor in patients with Stage I lung adenocarcinoma. Cancer, 2002, 94(4): 1083-1093
    25. Koukourakis MI, Giatromanolaki A, Kakolyris S, et al. Different patterns of stromal and cancer cell thymidine phosphorylase reactivity in non-small-cell lung cancer:impact on tumour neoangiogenesis and survival. Br J Cancer, 1998, 77(10): 1696-1703
    26. Liss C, Fekete MJ. Retinoic acid modulates the ability of macrophages to participate in the induction of the angiogenic phenotype in head and neck squamous cell carcinoma. Int J Cancer, 2002, 100(3): 283-289
    27. Leek RD, Landers R. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer, 1998, 77(12): 2246-2251
    28. Banciu M, Metselaar JM, Schiffelers RM, et al. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia, 2008, 10(2): 108-117
    29. Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest, 2005, 115(9): 2363-2372
    30. Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest, 2005, 115(9): 2316-2319
    31. Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol, 2002, 161(3): 947-956
    32. Bjorndahl MA, Cao R, Burton JB, et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res, 2005, 65(20): 9261-9268
    33. Skobe M, Hamberg LM, Hawighorst T, et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol, 2001, 159(3): 893-903
    34.冯红超,宋宇峰,温玉明.口腔癌组织中血管内皮生长因子-C在肿瘤相关巨噬细胞内的表达及与淋巴结转移的关系.癌症, 2004, 23(3): 278-281
    35. Colombo MP, Mantovani A. Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res, 2005, 65(20): 9113-9116
    36. Guiducci C, Vicari AP, Sangaletti S, et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res, 2005, 65(8): 3437-3446
    1. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070): 946-953
    2. Kerjaschki D, Huttary N, Raab I, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med, 2006, 12(2): 230-234
    3. Cursiefen C, Maruyama K, Jackson DG, et al. Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea, 2006, 25(4): 443-447
    4. Paavonen K, Puolakkainen P, Jussila L, et al. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol, 2000, 156(5): 1499-1504
    5. Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell, 2005, 7(6): 513-520
    6. Van der Auwera I, Van den Eynden GG, Colpaert CG, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res, 2005, 11(21): 7637-7642
    7. Schoppmann SF, Fenzl A, Nagy K, et al. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery, 2006, 139(6): 839-846
    8. Schoppmann SF, Schindl M, Breiteneder-Geleff S, et al. Inflammatory stromal reaction correlates with lymphatic microvessel density in early-stage cervival cancer. Anticancer Res, 2001, 21(5): 3419-3423
    9. Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer, 2004, 40(11): 1660-1667
    10. Allavena P, Sica A, Vecchi A, et al. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues[J]. Immunol Rev, 2000, 177(1): 141-149
    11. Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis.Am J Pathol, 2002, 161(3): 947-956
    12. Bjorndahl MA, Cao R, Burton JB, et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res, 2005, 65(20): 9261-9268
    13. Skobe M, Hamberg LM, Hawighorst T, et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol, 2001, 159(3): 893-903
    14. Jenny B, Harrison JA, Baetens D, et al. Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. J Pathol, 2006, 209(1): 34-43
    15. Hamrah P, Chen L, Zhang Q, et al. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol, 2003,163(1): 57-68
    16. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 2001, 7(2): 192-198
    17. Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology, 2002, 62(2): 121-127
    18. Chen Z, Varney ML, Backora MW, et al. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res, 2005,65(19): 9004-9011
    19. Ristimaki A, Narko K, Enholm B, et al. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem, 1998, 273(14): 8413-8418
    20.唐瑞峰,王曙霞,张风瑞,等.白细胞介素-1α、6对胰腺癌细胞分泌内皮生长因子A、C的调节作用.中华实验外科杂志, 2005, 22(4): 401-403
    21. Al-Rawi MA, Watkins G, Mansel RE, et al. The effects of interleukin-7 on the lymphangiogenic properties of human endothelial cells. Int J Oncol, 2005, 27(3): 721-730
    22. Shao X, Liu C. Influence of IFN- alpha and IFN- gamma on Lymphangiogenesis. J Interferon Cytokine Res, 2006, 26(8): 568-574
    23. Saban MR, Memet S, Jackson DG, et al. Visualization of lymphatic vessels through NF-kappaB activity. Blood, 2004, 104(10): 3228-3230
    24. Su JL, Shih JY, Yen ML, et al. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res, 2004, 64(2): 554-564
    25. Timoshenko AV, Chakraborty C, Wagner GF, et al. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer, 2006, 94(8): 1154-1163
    26. von Rahden BH, Stein HJ, Puhringer F, et al. Coexpression of cyclooxygenases (COX-1, COX-2) and vascular endothelial growth factors (VEGF-A, VEGF-C) in esophageal adenocarcinoma. Cancer Res, 2005, 65(12): 5038-5044
    27. Thiele W, Sleeman JP. Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol, 2006, 124(1): 224-241
    28. Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 2002, 296(5574): 1883-1886
    1. Mosser DM. The many faces of macrophage activation. J Leukoc Biol, 2003, 73(2): 209-212
    2. Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol, 2006, 80(6): 1298-1307.
    3. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med, 1992, 176(1): 287-292
    4. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol, 1995, 25(4):1101-1104
    5. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, Goerdt S. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol, 2001, 53(4): 386-392
    6. Gratchev A, Kzhyshkowska J, K?the K, et al. Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology, 2006, 211(6-8): 473-486
    7. Gordon S. Alternative activation of macrophages. Nat Rev Immunol, 2003, 3(1): 23-35
    8. Anderson CA, Mosser DM. A novel phenotype for activated macrophages: the type II activated macrophage. J Leukoc Biol, 2002, 72(1): 101-106
    9. Gerber JS, Mosser DM. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors. J Immunol, 2001,166(11): 6861-6868
    10. Hume DA. The mononuclear phagocyte system. Curr Opin Immunol, 2006, 18(1): 49-53
    11. Bingle L, Brown NJ, Lewis CE. The role of tumor-associated macrophages in tumor progression: implications for new anticancer therapies. J Pathol, 2002, 196(3): 254-265
    12. Sica A, Rubino L, Mancino A, et al. Targeting tumour-associated macrophages. Expert Opin Ther Targets, 2007, 11(9): 1219-1229
    13. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment ofmacrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 2004, 104(8): 2224-2234
    14. Zeni E, Mazzetti L, Miotto D, Lo Cascio N, Maestrelli P, Querzoli P, Pedriali M, De Rosa E, Fabbri LM, Mapp CE, Boschetto P. Macrophage expression of interleukin-10 is a prognostic factor in nonsmall cell lung cancer. Eur Respir J, 2007, 30(4): 627-632
    15. Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep, 2005, 14(2): 425-431
    16. Lackner C, Jukic Z, Tsybrovskyy O, Jatzko G, Wette V, Hoefler G, Klimpfinger M, Denk H, Zatloukal K. Prognostic relevance of tumour-associated macrophages and von Willebrand factor-positive microvessels in colorectal cancer. Virchows Arch, 2004, 445(2): 160-167
    17. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res, 2006, 66(2): 605-612
    18. Mantovani A, Schioppa T, Porta C, et al. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev, 2006, 25(3): 315-322
    19. Porta C, Subhra Kumar B, Larghi P, et al. Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol, 2007, 604: 67-86
    20. Allavena P, Sica A, Solinas G, et al. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit Rev Oncol Hematol, 2008, 66(1): 1-9
    21. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res, 2001, 7(3): 462-468
    22. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070): 946-953
    23. Stacker SA, Farnsworth RH, Karnezis T, et al. Molecular pathways for lymphangiogenesis and their role in human disease. Novartis Found Symp, 2007, 281: 38-43
    24. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis.EMBO J, 2001, 20(4): 672-682
    25. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG. Vascular endothelial growth factor-D promotes the metastatic spread of cancer via the lymphatics. Nature Med, 2001, 7(2): 186-191
    26. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst, 2002, 94(11): 819-825
    27. Chen Z, Varney ML, Backora MW, et al. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res, 2005, 65(19): 9004-9011
    28. Schoppmann SF, Fenzl A, Nagy K, et al. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery, 2006, 139(6): 839-846
    29. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121(3): 335-348
    30. Bobek V, Kolostova K, Pinterov D, et al. Syngeneic lymph-node-targeting model of green fluorescent protein-expressing Lewis lung carcinoma. Clin Exp Metastasis, 2004, 21(8): 705-708
    31. Wang J, Guo Y, Zhang BC, Chen ZT, Gao JF. Induction of apoptosis and inhibition of cell migration and tube-like formation by dihydroartemisinin in murine lymphatic endothelial cells, Pharmacology, 2007, 80(4): 207-218
    32. Nakamura ES, Koizumi K, Kobayashi M, Saiki I. Inhibition of lymphangiogenesis- related properties of murine lymphatic endothelial cells and lymph node metastasis of lung cancer by the matrix metalloproteinase inhibitor MMI270. Cancer Sci, 2004, 95(1): 25-31
    33. Raes G, No?l W, Beschin A, Brys L, de Baetselier P, Hassanzadeh GH. FIZZ1 and Ym as tools to discriminate between differentially activated macrophages. Dev Immunol, 2002, 9(3): 151-159
    34. Kato S, Shimoda H, Ji RC, et al. Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers. Anat Sci Int, 2006, 81(2): 71-83
    35. Norgall S, Papoutsi M, R?ssler J, Schweigerer L, Wilting J, Weich HA. Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC Cancer, 2007, 7: 105
    36. Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell, 2005, 7(6): 513-520
    37. Chen JJ, Lin YC, Yao PL, et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol, 2005, 23(5): 953-964
    38. Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol, 2002, 161(3): 947-956
    39. Vicioso L, Gonzalez FJ, Alvarez M, et al. Elevated serum levels of vascular endothelial growth factor are associated with tumor-associated macrophages in primary breast cancer. Am J Clin Pathol, 2006, 125(1): 111-118
    40. Koga F, Kageyama Y, Kawakami S, et al. Prognostic significance of endothelial Per-Arnt-sim domain protein 1/hypoxia-inducible factor-2alpha expression in a subset of tumor associated macrophages in invasive bladder cancer. J Urol, 2004, 171(3): 1080-1084
    41. Varney ML, Olsen KJ, Mosley RL, et al. Paracrine regulation of vascular endothelial growth factor-a expression during macrophage-melanoma cell interaction: role of monocyte chemotactic protein-1 and macrophage colony-stimulating factor. J Interferon Cytokine Res, 2005, 25(11): 674-683
    42. Soeda S, Nakamura N, Ozeki T, et al. Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma. Gynecol Oncol, 2008, 109(1): 122-128
    43. Bailey C, Negus R, Morris A, et al. Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis, 2007, 24(2): 121-130
    44. Koca E, Haznedaroglu IC, Uner A, et al. Angiotensin-converting enzyme expression of the lymphoma-associated macrophages in the lymph nodes of Hodgkin's disease. J NatlMed Assoc, 2007, 99(11): 1243-1247
    45. Clark CE, Hingorani SR, Mick R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res, 2007, 67(19): 9518-9527
    46. Liu SY, Chang LC, Pan LF, et al. Clinicopathologic significance of tumor cell-lined vessel and microenvironment in oral squamous cell carcinoma.Oral Oncol, 2008, 44(3): 277-285
    47. Guo SJ, Lin DM, Li J, et al.Tumor-associated macrophages and CD3-zeta expression of tumor-infiltrating lymphocytes in human esophageal squamous-cell carcinoma. Dis Esophagus, 2007, 20(2): 107-116
    48. Jenny B, Harrison JA, Baetens D, et al. Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. J Pathol, 2006, 209(1): 34-43
    49. Ohba K, Miyata Y, Kanda S, et al. Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and plasminogen activator inhibitors in patients with renal cell carcinoma: correlation with tumor associated macrophage and prognosis. J Urol, 2005, 174(2): 461-465
    50. Peng SH, Deng H, Yang JF, et al. Significance and relationship between infiltrating inflammatory cell and tumor angiogenesis in hepatocellular carcinoma tissues. World J Gastroenterol, 2005, 11(41): 6521-6524
    51. Sickert D, Aust DE, Langer S, et al. Characterization of macrophage subpopulations and microvessel density in carcinomas of the gastrointestinal tract. Anticancer Res, 2007, 27(3B): 1693-1700
    52. Scarpino S, Stoppacciaro A, Ballerini F, et al. Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am J Pathol, 2000, 156(3): 831-837
    53. Hagemann T, Wilson J, Burke F, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol, 2006, 176(8): 5023-5032
    54. Mantovani A, Marchesi F, Porta C, et al. Inflammation and cancer: breast cancer as a prototype. Breast, 2007, 16(Suppl 2): S27-33
    55. Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002, 23(11): 549-555
    56. Mantovani A, Sozzani S, Locati M, et al. Infiltration of tumours by macrophages anddendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp, 2004, 256: 137-145
    57. Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer, 2004, 40(11): 1660-1667
    58. Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci, 2008, 13: 453-461
    59. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev, 2003, 8(3): 223-246
    60. Ito N, Nakamura H, Tanaka Y, et al. Lung carcinoma: analysis of T helper type 1 and 2 cells and T cytotoxic type 1 and 2 cells by intracellular cytokine detection with flow cytometry. Cancer, 1999, 85(11): 2359-2367
    61. Massi D, Marconi C, Franchi A, et al. Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors. Hum Pathol, 2007, 38(10): 1516-1525
    62. Umemura N, Saio M, Suwa T, et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol, 2008, 83(5): 1136-1144
    63. Cursiefen C, Chen L, Borges LP, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest, 2004, 113(7): 1040-1050
    64. Hamrah P, Chen L, Cursiefen C, et al. Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res, 2004, 79(4): 553-561
    65. Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest, 2005, 115(2): 247-257
    66. Skobe M, Hamberg LM, Hawighorst T, et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol, 2001, 159(3): 893-903
    67. Schledzewski K, Falkowski M, Moldenhauer G, et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol, 2006, 209(1): 67-77
    68. Craig M, Ying C, Loberg RD. Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo. J Cell Biochem, 2008, 103(1): 1-8
    69. Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest, 2005, 115(9): 2363-2372
    70. Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest, 2005, 115(9): 2316-2319
    71. Luo Y, Zhou H, Krueger J, et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest, 2006, 116(8): 2132-2141
    72. Colombo MP, Mantovani A. Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res, 2005, 65(20): 9113-9116
    73. Guiducci C, Vicari AP, Sangaletti S, et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res, 2005, 65(8): 3437-3446
    74. Tsagozis P, Eriksson F, Pisa P. Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages. Cancer Immunol Immunother, 2008 Feb 23 [Epub ahead of print]
    75. Ghosh D, Maiti TK. Effects of native and heat-denatured Abrus agglutinin on tumor-associated macrophages in Dalton's lymphoma mice. Immunobiology, 2007, 212(8): 667-673
    76. Kumar S, Deepak P, Acharya A. Hsp70 induces Th1 polarization through tumor-associated macrophages in a T-cell lymphoma. Neoplasma, 2007, 54(2): 113-122
    77. Van Ginderachter JA, Meerschaut S, Liu Y, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood, 2006, 108(2): 525-535
    78. Watkins SK, Egilmez NK, Suttles J, et al. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol, 2007, 178(3): 1357-1362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700