用户名: 密码: 验证码:
紫锥菊提取物对小鼠免疫和抗沙门氏菌感染能力的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫锥菊(Echinacea purpurea)是近年来备受关注的一种安全、高效多功能药用植物,其具有强大的免疫调节活性。巨噬细胞和树突状细胞(dendritic cell, DC)同为机体免疫系统的重要成员,前者具有吞噬、分泌、组织修复、抗原递呈等多种功能,后者为专职抗原提呈细胞并能分泌多种细胞因子,两者均在非特异性免疫(先天性免疫)和特异性免疫(获得性免疫)中有重要作用。Toll样受体(Toll-like receptor, TLR)主要表达于巨噬细胞和DC,该类受体在识别配体后,既能够通过激活炎症因子和I型IFN分泌,启动非特异性免疫反应,又可以通过促进DC成熟并递呈抗原,启动特异性免疫反应。因此,本研究拟先以小鼠为研究材料,探讨紫锥菊提取物(Echinacea purpurea extract, EE)对其机体免疫功能和抗沙门氏菌感染能力的影响,再以小鼠巨噬细胞和DC为研究对象,研究EE对两者免疫功能的影响以及TLR信号通路在此免疫调节活动中的作用,最终结合两方面的研究结果,阐明EE调控小鼠细胞和机体免疫功能以及抗沙门氏菌感染能力的机理。主要研究内容及结果如下:
     (一)EE对小鼠机体免疫功能和抗沙门氏菌感染能力的影响
     50只体重相近的C57BL/6雌性小鼠被随机分为5组,对照组、EE组、鼠伤寒沙门氏菌(Salmonella enterica serovar Typhimurium, ST)组、EE+ST组和庆大霉素(gentamycin, GM)+ST组,每组10只。对照组、EE组分别以PBS和EE (10mg)连续灌胃17天,研究EE对正常小鼠机体免疫功能的影响;ST组、EE+ST组和GM+ST组分别以PBS、EE (10mg)和PBS连续灌胃17天,并于第15天再灌胃5×10~8CFU ST感染小鼠,研究EE对小鼠机体抗沙门氏菌感染能力的影响。结果如下:
     EE对正常小鼠机体免疫功能的影响:(1)EE对正常小鼠生长和肠粘膜结构无显著影响,说明其对小鼠机体具有良好的安全性;(2)EE可显著提高小鼠机体免疫功能,提高其脾脏指数;(3)EE可在一定程度上可增强小鼠机体的抗体分泌功能,增加小肠分泌型IgA (secretory IgA, sIgA)分泌,但对IgG分泌没有影响;(4)EE可增强小鼠机体的非特异性免疫功能,显著上调小鼠血液、回肠、结肠、脾脏、肠系膜淋巴结(mesenteric lymph node, MLN)和肝脏中促炎细胞因子白介素(interleukin, IL)-6、IL-12、肿瘤坏死因子(Tumor necrosis factor, TNF)-α、干扰素(interferon, IFN)-γ和抑炎细胞因子IL-10的表达并显著增加其回肠和结肠的NO产生。
     EE对小鼠机体抗沙门氏菌感染能力的影响:(1)EE可缓解ST感染对小鼠机体和免疫系统的损伤,消除鼠伤寒沙门氏菌(Salmonella enterica serovar Typhimurium, ST)感染引起的小鼠体重下降,大幅减轻ST感染引起的肠粘膜损伤以及脾脏肿大和CD4+/CD8+值下降;(2)EE可降低肠粘膜的ST感染程度,显著减少回肠和结肠粘膜的中性粒细胞浸润以及ST在结肠的定植和ST向肝脏和脾脏中的移位;(3)EE可增强ST感染小鼠机体的抗体分泌功能,显著促进IgG和sIgA分泌;(4)EE可增强ST感染小鼠机体的非特异性免疫功能,显著上调血液、脾脏、MLN和肝脏中促炎细胞因子IL-6、IL-12、TNF-α、IFN-y和抑炎细胞因子1L-10的表达并显著增加其回肠和结肠的NO产生。
     以上结果提示,EE能够通过增强小鼠的机体免疫功能,提高其抗感染能力。
     (二)EE对小鼠巨噬细胞免疫功能的影响
     本研究分别以200μg/mL和100μg/mL EE处理RAW264.7小鼠巨噬细胞系和骨髓源巨噬细胞(bone marrow-derived macrophage, BMDM),研究EE对两者免疫功能的影响。结果如下:
     EE对RAW264.7小鼠巨噬细胞系免疫功能的影响:(1)EE对RAW264.7细胞的安全浓度为0-200μg/mL;(2) EE可激活RAW264.7细胞,显著提高酸性磷酸酶(acid phosphatase, ACP)和乳酸脱氢酶(Lactate dehydrogenase, LDH)活性;(3)EE可增强RAW264.7细胞的吞噬功能;(4)EE可增加RAW264.7细胞的细胞因子分泌,显著上调促炎因子IL-1β、IL-6、IL-12、TNF-α、IFN-γ抗炎因子IL-10、转化生长因子(transforming growth factor, TGF)-β1和抗病毒细胞因子IFN-p的基因表达和分泌;(5)EE可增强RAW264.7细胞的NO合成功能,显著提高诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)的基因表达和活性以及NO产量。
     EE对小鼠BMDM免疫功能的影响:(1)EE对小鼠BMDM的安全浓度为0-100μg/mL;(2) EE可诱导小鼠BMDM发生M1型极化,显著上调M1型巨噬细胞标志基因IL-6、TNF-α、IFN-γ、iNOS和表面标志CD197的表达;(3)EE可活化小鼠BMDM,并增强其抗原递呈能力,显著提高ACP和LDH活性,上调巨噬细胞活化标志CD80、CD86和MHC-II的表面表达;(4)EE可增强小鼠BMDM的吞噬功能;(5)EE可增加小鼠BMDM的细胞因子分泌,显著上调促炎因子IL-1β、IL-6、IL-12、TNF-α、IFN-γ、抑炎因子IL-10、TGF-β1和抗病毒细胞因子IFN-p的基因表达和分泌;(6)EE可提高小鼠BMDM的NO合成功能,提高iNOS基因表达和活性及NO产量;(7)EE可调控TLR及其衔接分子MyD88、 TRIF的基因表达,并激活信号分子ERK、JNK、p38MAPK及NF-κB,以调节小鼠BMDM的细胞因子分泌和NO合成。其中TLR-ERK通路介导了EE诱导的IL-1β,TNF-a和TGF-β1基因表达和分泌,TLR-JNK通路介导了EE诱导的IL-1β、 IL-6、IL-12、TNF-α、IFN-γ、IL-10和TGF-β1基因表达和分泌,TLR-p38MAPK通路介导了EE诱导的IL-1β、IL-6、IL-12、IFN-γ、TGF-β1和IFN-β基因表达和分泌,TLR-NF-κB通路介导了IL-6、IL-12、IFN-γ、IL-10、TGF-β1和IFN-β基因表达和分泌,同时,TLR-JNK通路还介导了iNOS的表达以及NO产生。
     以上结果提示,EE不仅能够激活小鼠巨噬细胞并增强其免疫功能,而且可以通过TLR信号通路调控其细胞因子分泌和NO合成。
     (三)EE对小鼠DC免疫功能的影响
     本研究分别以400μg/mL EE处理小鼠骨髓源DC (bone marrow-derived DC, BMDC),研究EE对其免疫功能的影响。结果如下:(1)EE对小鼠BMDC的安全浓度为0-400μg/mL;(2) EE可促进小鼠BMDC成熟,并增强其抗原递呈功能,显著上调DC成熟标志CD40、CD80、CD83、CD86和MHC-II的表面表达;(3)EE降低小鼠BMDC抗原摄取能力,降低其吞噬功能和ACP活性;(4)EE可增加小鼠BMDC的细胞因子分泌,上调促炎因子IL-1β、IL-6、IL-12、TNF-α、 IFN-γ、抑炎因子IL-10、TGF-β1和抗病毒细胞因子IFN-β的基因表达和分泌;(5)EE可调控TLR及其衔接分子MyD88、TRIF的基因表达,并激活信号分子ERK、JNK、p38MAPK及NF-κB,以调节小鼠BMDM的细胞因子分泌。其中TLR-ERK通路介导了EE诱导的IL-1β、IL-6、TNF-α、IFN-γ、IL-10和TGF-β1基因表达与分泌,TLR-JNK通路介导了EE诱导的IL-1β、IFN-y和IFN-β基因表达与分泌,TLR-p38MAPK通路介导了EE诱导的IL-1β、TNF-α、IL-10、TGF-β1和IFN-β基因表达与分泌,TLR-NF-κB通路介导了EE诱导的IL-12、IFN-γ、TGF-β1和IFN-β基因表达与分泌。以上结果提示,EE不仅能够促进小鼠DC成熟并增强其免疫功能,而且可以通过TLR信号通路调控其细胞因子分泌。
     综上所述,EE能够激活小鼠巨噬细胞并诱导其发生M1型极化,促进小鼠DC成熟,进而增强两者免疫功能,并通过提高小鼠机体免疫功能,增加其抗沙门氏菌感染能力。
Echinacea purpurea is a safe, efficient herb with multiple biological activities, such as immunomodulation, anti-inflammation, anti-oxidation, anti-bacteria, anti-fung, anti-virus and anti-cancer, and attracts much attention widely in recent years. Macrophages and dendritic cells (DCs) are both crucial members of immune system. Macrophages possess multiple biological functions, including phagocytosis, secretion, tissue repair and antigen presentation, whereas DCs are professional antigen presenting cells and can secrete a variety of cytokines. The above two cells both play important roles in innate immunity (non-specific immunity) and adaptive immunity (specific immunity). Toll-like receptors (TLRs) are mainly expressed in macrophages and DCs. After recognizing their ligands, these receptors can not only induce the secretion of inflammatory cytokines and type I IFN to trigger innate immune responses, but also enhance the maturation of DCs and their antigen presenting capacity to trigger adaptive immune responses. Therefore, the purpose of this study is to investigate the effects of EE on body immune functions and anti-Salmonella infection ability of mice, and explore the effects of Echinacea purpurea extract (EE) on the immune functions of murine macrophages and DCs, and the role of TLR signaling pathway in these immunomodulatory activities. Finally, the mechanism that EE modulates celluar and body immunity and anti-Salmonella infection ability of mice will be clarified. The main research content and results are listed as follows:
     1Effect of EE on body immune functions and anti-Salmonella infection ability of mice
     A total of fifty5-week old C57BL/6female mice with similar body weight were randomly divided into5groups, including control group, EE group, ST (Salmonella enterica serovar Typhimurium) group, EE+ST group and GM (gentamycin)+ST group, with10mice per group. The mice in control group and EE group were gavaged with PBS and EE respectively for17days to investigate the effect of EE on body immune functions of mice; The mice in ST group, EE+ST group and GM+ST group were gavaged with PBS, EE and PBS respectively for17days and infected with5×108CFU ST also by gavaging on the15th day, to investigate the effect of EE on anti-Salmonella infection ability of mice. The results are listed as follows:
     Effect of EE on body immune functions of mice:(a) EE had no effects on the body weight and intestinal mucosa structure of mice, indicating that EE is safe for the body of mice;(b) EE could significantly increase the spleen index of mice, indicating that EE could enhance their body immune immunity;(c) EE could significantly stimulate sIgA secretion in the small intestine of mice, but had no effect on IgG secretion, indicating that EE could enhance the antibody secretion in mice to some extent;(d) EE could not noly significantly upregulate the expression of proinflammatory cytokines interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-a, interferon (IFN)-y and anti-inflammatory cytokine IL-10in the blood, ileum, colon, spleen, mesenteric lymph node (MLN) and liver of mice, but also increase NO production in their ileal and colonic mucosa, indicating that EE could enhance the non-specific immune functions of mice.
     Effect of EE on anti-Salmonella infection ability of mice:(a) EE could eliminate the weight loss of mice caused by Salmonella enterica serovar Typhimurium (ST) infection, and significantly reduce the intestinal mucosa damage, splenomegaly and the decrease of the ratio of splenic CD3+CD4+cells to CD3+CD8+cells in mice caused by ST infection, indicating that EE could mitigate the body and immune system damage of mice caused by ST;(b) EE could significantly reduce the neutrophil infiltration in the ileal and colonic mucosa of ST-infected mice, the ST colonization in their colon and the translocation of ST to their liver and spleen, indicating that EE could reduce ST infection extent in the intestinal mucosa of ST-infected mice;(c) EE could significantly stimulate IgG and sIgA secretion in mice, indicating that EE could enhance the antibody secretion in ST-infected mice;(d) EE could not noly significantly upregulate the expression of proinflammatory cytokines IL-6, IL-12, TNF-a, IFN-y and anti-inflammatory cytokine IL-10in the blood, spleen, MLN and liver of ST-infected mice, but also increase NO production in their ileal and colonic mucosa, indicating that EE could enhance the non-specific immune function of ST-infected mice.
     The above results suggested that EE could enhance the body immune functions of mice, and increase their anti-infection ability.
     2Effect of EE on immune functions of murine macrophages
     In this study, RAW264.7murine macrophage cell line and bone marrow-derived macrophages (BMDMs) were treated with200μg/mL and100μg/mL EE respectively to investigate the Effects of EE on the immune functions of both cells. The results are listed as follows:
     Effect of EE on immune functions of RAW264.7murine macrophage cell line:(a) The safe concentration of EE for RAW264.7cells range from0μg/mL to200μg/mL;(b) EE could significantly increase the activities of macrophage marker enzymes ACP and LDH, indicating that EE could activate RAW264.7cells;(c) EE could significantly enhance the phagocytic function of RAW264.7cells;(d) EE could significantly upregulate the gene expression and secretion of proinflammatory cytokines IL-1β,IL-6, IL-12, TNF-a, IFN-y, anti-inflammatory cytokines IL-10, transforming growth factor (TGF)-β1and antiviral cytokine IFN-β, indicating that EE could enhance cytokine secretion in RAW264.7cells;(e) EE could significantly induce iNOS gene expression and elevate its activity, and increase NO production, indicating that EE could enhance NO synthesis in RAW264.7cells.
     Effect of EE on immune functions of murine BMDMs:(a) The safe concentration of EE for murine BMDMs range from0μg/mL to100μg/mL;(b) EE could upregulate the expression of M1macrophage marker genes IL-6, TNF-a, IFN-y, iNOS and surface marker CD197, indicating that EE could induce the M1polarization of murine BMDMs;(c) EE could significantly increased the activities of macrophage marker enzymes ACP and LDH, and upregulate the surface expression of macrophage activation markers CD80, CD86and MHC-II, indicating that EE could activate murine BMDMs and enhance their antigen-presenting capacity;(d) EE could significantly enhance the phagocytic function of murine BMDMs;(e) EE could significantly upregulate the gene expression and secretion of proinflammatory cytokines IL-1β, IL-6, IL-12, TNF-a, IFN-γ, anti-inflammatory cytokines IL-10, TGF-β1and antiviral cytokine IFN-β, indicating that EE could enhance cytokine secretion in murine BMDMs;(f) EE could significantly induce iNOS expression and elevate its activity, and increase NO production, indicating that EE could enhance NO synthesis in murine BMDMs (g) EE could modulate the gene expression of TLRs and their adaptors MyD88, TRIF, and activate signaling molecules ERK, JNK, p38MAPK and NF-κB, to modulate cytokine secretion in murine BMDMs:TLR-ERK pathway mediated EE-induced IL-1β, TNF-a and TGF-β1gene expression and secretion, TLR-JNK pathway mediated EE-induced IL-1β, IL-6, IL-12, TNF-a, IFN-y, IL-10and TGF-β1gene expression and secretion, TLR-p38MAPK pathway mediated EE-induced IL-1β, IL-6, IL-12, IFN-y, TGF-β1and IFN-β gene expression and secretion, TLR-NF-κB pathway mediated EE-induced IL-6, IL-12, IFN-y, IL-10, TGF-β1and IFN-β gene expression and secretion; Meanwhile, TLR-JNK pathway also mediated EE-induced iNOS expression and NO production.
     The above results suggested that EE could not only activate murine macrophages and enhance their immune functions, but also modulate their cytokine secretion and NO synthesis via TLR signaling pathway.
     3Effect of EE on immune functions of murine DCs
     In this study, murine bone marrow-derived DCs (BMDCs) were treated with400μg/mL EE to investigate the Effects of EE on their immune functions. The results are listed as follows:(a) The safe concentration of EE for murine BMDCs range from0μg/mL to400μg/mL;(b) EE could upregulate the surface expression of DC maturation markers CD40, CD80, CD83, CD86and MHC-II, indicating that EE could promote the maturation of murine BMDCs and enhance their antigen-presenting function;(c) EE could reduce the phagocytic function and ACP activaity of murine BMDCs, indicating that EE could downregulate their antigen uptake capacity;(d) EE could significantly upregulate the gene expression and secretion of proinflammatory cytokines IL-1β, IL-6, IL-12, TNF-a, IFN-y, anti-inflammatory cytokines IL-10, TGF-β1and antiviral cytokine IFN-P, indicating that EE could enhance cytokine secretion in murine BMDCs;(e) EE could modulate the gene expression of TLRs and their adaptors MyD88, TRIF, and activate signaling molecules ERK, JNK, p38MAPK and NF-κB, to modulate cytokine secretion in murine BMDCs:TLR-ERK pathway mediated EE-induced IL-1β, IL-6, TNF-a, IFN-y, IL-10and TGF-β1gene expression and secretion, TLR-JNK pathway mediated EE-induced IL-1β, IFN-y and IFN-P gene expression and secretion, TLR-p38MAPK pathway mediated EE-induced IL-1β, TNF-a, IL-10, TGF-β1IFN-β gene expression and secretion, TLR-NF-κB pathway mediated EE-induced IL-12, IFN-y, TGF-β1and IFN-β gene expression and secretion, indicating that EE could modulate cytokine secretion in murine BMDCs through TLR signaling pathways. The above results suggested that EE could not only promote the maturation of murine DCs and enhance their immune functions, but also modulate their cytokine secretion via TLR signaling pathway.
     In conclusion, EE could induce M1macrophage polarization and DC maturation to enhance the immune functions of both cells, and enhance the body immune functions of mice to increase their anti-Salmonella infection ability.
引文
1 Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family[J]. Immunol Lett,2003,85(2):85-95.
    2 Akira S, Takeda K. Toll-like receptor signaling[J]. Nat Rev Immunol,2004,4(7): 499-511.
    3 Akira S, Uematsu S, Takeuchi. Pathogen recognition and innate immunity[J]. Cell,2006,124(4):783-801.
    4 Albert ML, Pearce SF, Francisco LM, et al. Immature dendritic cells phagocytose apoptotic cells via avb5 and CD36, and cross-present antigens to cytotoxic T lymphocytes[J]. J Exp Med,1998,188(7):1359-1368.
    5 Antoine JC, Prina E, Courret N, et al. Leishmania spp.:on the interactions they establish with antigen-presenting cells of their mammalian hosts[J]. Adv Parasitol,2004,58:1-68.
    6 Arai KI, Lee F, Miyajima A, et al. Cytokines:coordinators of immune and inflammatory responses[J]. Annu Rev Biochem,1990,59:783-786.
    7 Ariel A, Timor O. Hanging in the balance:endogenous anti-inflammatory mechanisms in tissue repair and fibrosis[J]. J Pathol,2013,229(2):250-263.
    8 Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflamatory macrophages to support myogenesis[J]. J Exp Med,2007,204:1057-1069.
    9 Asselin-Paturel C, Boonstra A, Dalod M, et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology [J]. Nat Immunol,2001, 2(12):1144-1150.
    10 Austyn JM, Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage[J]. Eur J Immunol,1981,11(10):805-815.
    11 Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol,2000,18:767-811.
    12 Banchereau J, Steinman RM. Dendritic cells and the control of immunity [J]. Nature,1998,392(6673):245-252.
    13 Barrett B. Medicinal properties of Echinacea; A critical review[J]. Phytomedicine,2003,10(1):66-86.
    14 Barth H, Schnober EK, Neumann-Haefelin C, et al. Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells[J]. J Virol,2008,82(7):3466-3479.
    15 Bauer M, Redecke V, Ellwart JW, et al. Bacterial CpG-DNA triggers activation and maturation of human CD11c-, CD123+dendritic cells[J]. J Immunol,2001, 166(8):5000-5007.
    16 Bauer R. Echinacea-Drogen:Wirkungen und Wirksubstanzen (Echinacea-containing drugs:Effects and active constituents)[J]. Zeitschrift fur Arztliche Fortbildung (Journal for doctor training),1996,90(2):111-115.
    17 Bauer R. Chemistry, analysis and immunological investigations of Echinacea phytopharmaceuticals[M]//Wagner H. Immunomodulatory Agents from Plants. Birkhauser Verlag:Basel, Boston, Berlin,1999:41-88.
    18 Bell JK, Mullen GE, Leifer CA, et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors[J]. Trends Immunol.2003,24(10):528-533.
    19 Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections[J]. J Immunol,2008,181:3733-3739.
    20 Benson JM, Pokorny AJ, Rhule A, et al. Echinacea purpurea extracts modulate murine dendritic cell fate and function[J]. Food Chem Toxicol,2010,48(5): 1170-1177.
    21 Berman S, Justis JC, Tilles JG, et al. Dramatic increase in immune mediated HIV killing activity induced by Echinacea angustifolia[C]. Int Conf AIDS,1998, 12:582.
    22 Binns SE, Purgina B, Bergeron C, et al. Light-mediated antifungal activity of Echinacea extract[J]. Planta Med,2000,66(3):241-244.
    23 Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets:cancer as a paradigm[J]. Nat Immunol,2010,11:889-896.
    24 Blasius AL, Beutler B. Intracellular toll-like receptors[J]. Immunity,2010,32(3): 305-315.
    25 Bodinet C, Mentel R, Freudenstein J, et al. Effect of oral application of immunomodulating plant extract on Influenza virus type A infection in mice[J]. Planta Med,2002,68(10):896-900.
    26 Bogunovic M, Ginhoux F, Helft J, et al. Origin of the lamina propria dendritic cell network[J]. Immunity,2009,31(3):513-525.
    27 Borkowski TA, Letterio JJ, Farr AG, et al. A role for endogenous transforming growth factor β1 in Langerhans cell biology:the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells[J]. J Exp Med,1996, 184(6):2417-2422.
    28 Bottcher A, Gaipl US, Furnrohr BG, et al. Involvement of phosphatidylserine, alphavbeta3, CD14, CD36, and complement Clq in the phagocytosis of primary necrotic lymphocytes by macrophages[J]. Arthritis Rheum,2006,54:927-938.
    29 Bradley PP, Christensen RD Rothstein G. Cellular and extracellular myeloperoxidase in pyogenic inflammation[J]. Blood,1982,60:618-622.
    30 Brasel K, De Smedt T, Smith JL, et al. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures[J]. Blood,2000,96(9): 3029-3039.
    31 Brawand P, Fitzpatrick DR, Greenfield BW, et al. Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs[J]. J Immunol,2002,169(12):6711-6719.
    32 Brenzel KN. Sunset Western Garden Book[M]. Menlo Park, CA:Sunset Publish Corporation,1995:606-607.
    33 Brocker T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells[J]. J Exp Med, 1997,186(8):1223-1232.
    34 Brocker T, Riedinger M, Karjalainen K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo[J]. J Exp Med,1997,185(3):541-550.
    35 Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans[J]. Nature,2001(6851),413:36-37.
    36 Burger RA, Torres AR, Hughes B G, et al. Echinacea-induced cytokine production by human macrophages[J]. Int J lmmumopharmacol,1997.19(7): 371-379.
    37 Campbell JJ, Hedrick J, Zlotnik A. et al. Chemokines and the arrest of lymphocytes rolling under flow conditions[J]. Science,1998,279(5349): 381-384.
    38 Caux C, Vanbervliet B, Massacrier C, et al. CD34+hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha[J]. J Exp Med,1996,184(2): 695-706.
    39 Cavaillon JM. Cytokines and macrophages[J]. Biomed Pharmacother.1994, 48(10):445-453.
    40 Cech NB, Eleazer MS, Shoffner LT, et al. High performance liquid chromatography/electrospray ionization mass spectrometry for simultaneous analysis of alkamides and caffeic acid derivatives from Echinacea purpurea extracts[J]. J Chromatogr A,2006,1103(2):219-228.
    41 Cella M, Jarrossay D, Facchetti F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type Ⅰ interferon[J]. Nat Med,1999a,5(8):919-923.
    42 Cella M, Salio M, Sakakibara Y, et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA[J]. J Exp Med,1999b,189(5): 821-829.
    43 Chang-Rodriguez S, HoetzeneckerW, Schwarzler C, et al. Fetal and neonatal murine skin harbors Langerhans cell precursors[J]. J Leukoc Biol,2005,77(3): 352-360.
    44 Chaudhuri AA, So AY, Sinha N, et al. MicroRNA-125b potentiates macrophage activation[J]. J Immunol,2011.187(10):5062-5068.
    45 Chen X, Lu J, Zhang Y, et al. Studies of macrophage immuno-modulating activity of polysaccharides isolated from Paecilomyces tenuipes[J]. Int J Biol Macromol,2008,43(3):252-256.
    46 Chen XW, Shen Y, Sun CY, et al. Anti-class A scavenger receptor autoantibodies from systemic lupus erythematosus patients impair phagocytic clearance of apoptotic cells by macrophages in vitro[J]. Arthritis Res Ther,2011,13:R9.
    47 Chen ZJ. Ubiquitin signalling in the NF-κB pathway[J]. Nat Cell Biol,2005, 7(8):758-765.
    48 Chicca A, Adinolfi B, Martinotti E, et al. Cytotoxic effects of Echinacea root hexanic extracts on human cancer cell lines[J]. J Ethnopharmacol,2007,110(1): 148-153.
    49 Chorro L, Sarde A, Li M, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network[J]. J Exp Med,2009,206(13):3089-3100.
    50 Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity[J]. Nat Immunol,2004,5(12):1219-1226.
    51 Crofton RW, Diesselhoff-den Dulk MM, van Furth R. The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state[J]. J Exp Med, 1978,148:1-17.
    52 Currier NL, Miller SC. Echinacea purpurea and melatonin augment natural-killer cells in leukemic mice and prolong life span[J]. J Altern Complement Med,2001,7(3):241-251.
    53 Czyzewska A, Majkowska-Skrobek G. Discovering of mucosal immunity[J]. Pol Merkuriusz Lek,2005,19(112):580-583.
    54 Dalby-Brown L, Barsett H, Landbo AKR, et al. Synergistic Antioxidative Effects of Alkamides, Caffeic Acid Derivatives, and Polysaccharide Fractions from Echinacea purpurea. on in Vitro Oxidation of Human Low-Density Lipoproteins[J]. J Agric Food Chem,2005,53(24):9413-9423.
    55 Davies JQ, Gordon S. Isolation and culture of human macrophages[M]// Helgason CD, Miller CL, Totowa NJ. Basic cell culture protocols. Humana Press:New York,2005:105-116.
    56 de LeBlanc Ade M, Castillo NA, Perdigon G. Anti-infective mechanisms induced by a probiotic Lactobacillus strain against Salmonella enterica serovar Typhimurium infection [J]. Int J Food Microbiol,2010,138(3):223-231.
    57 De Smedt T, Pajak B, Muraille E, et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo[J]. J Exp Med,1996,184(4): 1413-1424.
    58 Demoulin S. Roncarati P, Delvenne P, et al. Production of large numbers of plasmacytoid dendritic cells with functional activities from CD34+ hematopoietic progenitor cells:use of interleukin-3[J]. Exp Hematol,2012, 40(4):268-278.
    59 Deng L, Wang C, Spencer E, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain[J]. Cell,2000,103(2):351-361.
    60 DeWaal Malefyt RD, Abrams J, Bennett B, et al. Interleukin-10(IL-10) inhibits cytokine synthesis by human monocytes:an autoregulatory role of IL-10 produced by monocytes[J]. J ExpMed,1991,174(5):1209-1220.
    61 Di Pucchio T, Chatterjee B, Smed-Sorensen A, et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I[J]. Nature Immunol, 2008,9(5):551-557.
    62 Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites[J]. J Exp Med,1998,188(2):373-386.
    63 Doherty TM, Seder RA, Sher A. Induction and regulation of IL-15 expression in murine macrophages[J]. J Immunol,1996,156(2):735-741.
    64 Dunne DW, Resnick D, Greenberg J, et al. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid[J]. Proc Natl Acad Sci USA,1994,91(5):1863-1867.
    65 Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations [J] J Leukocyte Biol, 2006,80(6):1298-1307.
    66 Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidised low density lipoprotein[J]. J Biol Chem,1993,268(16):11811-11816.
    67 Engering AJ, Cella M, Fluitsma D, et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells[J]. Eur J Immunol,1997,27(9):2417-2425.
    68 Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway[J]. Nat Immunol,2003,4(5): 491-496.
    69 Forster I, Lieberam I. Peripheral tolerance of CD4 T cells following local activation in adolescent mice[J]. Eur. J. Immunol,1996,26(12):3194-3202.
    70 Fogg DK, Sibon C, Miled C, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells[J]. Science,2006,311(5757): 83-87.
    71 Franca EL, Morceli G, Fagundes DL, et al. Secretory IgA-Fca receptor interaction modulating phagocytosis and microbicidal activity by phagocytes in human colostrum of diabetics[J]. APMIS,2011,119(10):710-719.
    72 Fujii S, Liu K, Smith C, et al. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation[J]. J Exp Med,2004,199(12): 1607-1618.
    73 Fujita F, Taniguchi Y, Kato T, et al. Identification of NAP 1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling[J]. Mol Cell Biol,2003,23(21):7780-7793.
    74 Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells[J]. Science,2010,327(5966):656-661.
    75 GeurtsvanKessel CH, Willart MA, van Rijt LS, et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b-but not plasmacytoid dendritic cells[J]. J Exp Med,2008,205(7):1621-1634.
    76 Gilliet M, Boonstra A, Paturel C, et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor[J]. J Exp Med,2002,195(7): 953-958.
    77 Ginhoux F, Liu K, Helft J, et al. The origin and development of nonlymphoid tissue CD103+DCs[J]. J Exp Med,2009,206(13):3115-3130.
    78 Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo[J]. Nat. Immunol,2006,7(3):265-273.
    79 Goel V, Gahler R, Basu TK, et al. Echinacea stimulates macrophage function in the lung and spleen of normal rats[J]. J Nutr Biechem,2002,13(8):487-492.
    80 Goodbourn S, Didcock L, Randall RE. Interferons:cell signalling, immune modulation, antiviral response and virus countermeasures[J]. J Gen Virol,2000, 81(Pt 10):2341-2364.
    81 Greenberg JW, Fischer W, Joiner KA. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor[J]. Infect Immun,1996,64(8): 3318-3325.
    82 Greter M, Lelios I, Pelczar P, et al. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia[J]. Immunity,2012,37(6):1050-1060.
    83 Guilliams M, Bruhns P, Saeys Y, et al. The function of Fcy receptors in dendritic cells and macrophages[J]. Nat Rev Immunol,2014,14(2):94-108.
    84 Gunn MD, Tangemann K, Tam C, et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes[J]. Proc Natl Acad Sci USA,1998,95(1):258-263.
    85 Hacker H, Redecke V, Blagoev B, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6[J]. Nature, 2006,439(7073):204-207.
    86 Hampton RY, Golenbock DT, Penman M, et al. Recognition and plasma clearance of endotoxin by scavenger receptors[J]. Nature,1991,352(6333): 342-344.
    87 Hartmann G, Weiner GJ, Krieg AM. CpG DNA:a potent signal for growth, activation, and maturation of human dendritic cells[J]. Proc Natl Acad Sci USA, 1999,96(16):9305-9310.
    88 Hayden MS, Ghosh S. Signaling to NF-κB[J]. Genes Dev,2004,18(18): 2195-2224.
    89 He T, Tang C, Xu S, et al. Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity[J]. Cell Mol Immunol,2007,4(2):105-111.
    90 Hennessy EJ, O'Neill LAJ. Toll-like receptors:very clever molecules[EB/OL]. Cambridge:Abcam,2012. http://www.abcam.com/?pageconfig=resource&rid= 12189&pid=10629
    91 Hertz CJ, Kiertscher SM, Godowski PJ, et al. Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2[J]. J Immunol,2001,166(4): 2444-2450.
    92 Hoeffel G, Wang Y, Greter M, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages[J]. J Exp Med,2012,209(6):1167-1181.
    93 Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus[J]. Nat Rev Immunol,2012,12(3):157-167.
    94 Hu C, Kitts DD. Studies on the antioxidant activity of Echinacea root extract[J]. J Agric Food Chem,2000,48(5):1466-1472.
    95 Huang Q, Xu X, Mao YL, et al. Effects of Bacillus subtilis B10 on viability and biological functions of murine macrophages[J]. Animal Science Journal,2013, 84(3):247-252.
    96 Huntley AL, Joanna TC, Ernst E. The Safety of Herbal Medicinal Products Derived from Echinacea Species:A Systematic Review[J]. Drug Safety,2005, 28(5):387-400.
    97 Hussein WM, Liu TY, Skwarczynski M, Toth I. Toll-like receptor agonists:a patent review (2011-2013)[J]. Expert Opin Ther Pat,2014,24(4):453-470.
    98 Inaba K, Inaba M, Naito M, et al. Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo[J]. J Exp Med,1993,178(2):479-488.
    99 Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bonemarrow cultures supplemented with granulocyte/macrophage colony-stimulating factor[J]. J Exp Med,1992.176(6): 1693-1702.
    100 InvivoGen. Toll-Like Receptors Review[EB/OL]. San Diego:InvivoGen; 2012. http://www.invivogen.com/review-tlr
    101 Irla M. Kupfer N, Suter T, et al. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity[J]. J Exp Med,2010,207(9):1891-1905.
    102 Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members[J]. Mol Cell, 2003,11(2):293-302.
    103 Jenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation[J]. Science, 2011,332(6035):1284-1288.
    104 Jensen PE. Recent advances in antigen processing and presentation[J]. Nat Immunol,2007,8(10):1041-1048.
    105 Jiang W, Swiggard WJ, Heufler C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing[J]. Nature,1995,375(6527):151-155.
    106 Jiang Z, Mak TW, Sen G, et al. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β[J]. Proc Natl Acad Sci USA,2004,101(10):3533-3538.
    107 Jin MS, Lee JO. Structures of the Toll-like receptor family and its ligand complexes[J]. Immunity,2008,29(2):182-191.
    108 Jurkstiene V, Kondrotas AJ, Kevelaitis E. Imunines sistemos kompensacines reakcijos ir rausvaziedes eziuoles(Echinacea purpurea (L.) Moench) preparatq poveikis (Compensatory reactions of immune system and action of Purple Coneflower (Echinacea purpurea (L.) Moench) preparations)[J]. Medicina (Kaunas),2004,40(7):657-662.
    109 Kabashima K. Banks TA, Ansel KM, et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells[J]. Immunity, 2005,22(4):439-450.
    110 Kamada N, Hisamatsu T, Honda H, et al. Human CD14+macrophages in intestinal lamina propria exhibit potent antigen-presenting ability[J]. J Immunol, 2009,183(3):1724-1731.
    111 Kaplan DH, Li MO, Jenison MC, et al. Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells[J]. J Exp Med,2007,204(11): 2545-2552.
    112 Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors[J]. Nat Immunol,2010,11(5):373-384.
    113 Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity,2011,34(5):637-650.
    114 Kawai T, Sato S, Ishii KJ, et al. Interferon-a induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol,2004,5(10):1061-1068.
    115 Khazen W, M'bika JP, Tomkiewicz C, et al. Expression of macrophage-selective markers in human and rodent adipocytes[J]. FEBS Lett,2005,579(25): 5631-5634.
    116 Klein L, Hinterberger M, Wirnsberger G, et al. Antigen presentation in the thymus for positive selection and central tolerance induction[J]. Nat Rev Immunol,2009,9(12):833-844.
    117 Koblansky AA, Jankovic D, Oh H, et al. Recognition of Profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii[J]. Immunity, 2013,38(1):119-130.
    118 Kondo M, Wagers AJ, Manz MG, et al. Biology of hematopoietic stem cells and progenitors:implications for clinical application [J]. Annu Rev Immunol,2003, 21:759-806.
    119 Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity[J]. J Immunol Methods,1983,64(3):313-320.
    120 Krause P, Singer E, Darley PI, et al. Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation:enhanced T cell stimulatory capacity despite IDO[J]. Leukoc Biol,2007,82(5):1106-1114.
    121 Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP)[J]. Annu Rev Biochem,1994,63:601-637.
    122 Kumagai Y, Kumar H, Koyama S, et al. Cutting edge:TLR-dependent viral recognition along with type ⅠIFN positive feedback signaling masks the requirement of viral replication for IFN-a production in plasmacytoid dendritic cells[J]. J Immunol,2009,182(7):3960-3964.
    123 Kurts C, Kosaka H. Carbone FR, et al. Class I-restricted cross-presentation of exogenous self antigens leads to deletion of autoreactive CD8+T cells[J]. J Exp Med,1997,186(2):239-245.
    124 La Flamme AC, Kharkrang M, Stone S. et al. Type Ⅱ-Activated Murine Macrophages Produce IL-4[J]. PLoS ONE,2012,7(10):e46989.
    125 Landsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung[J]. J Immunol,2007,178(4):2000-2007.
    126 Laskin DL. Macrophages and inflammatory mediators in chemical toxicity:a battle of forces[J]. Chem Res Toxicol,2009,22(8):1376-1385.
    127 Leenen PJ, de Bruijn MF, Voerman JS, et a!. Markers of mouse macrophage development detected by monoclonal antibodies[J]. J Immunol Methods,1994, 174(1-2):5-19.
    128 Lemke G, Burstyn-Cohen T. TAM receptors and the clearance of apoptotic cells[J]. Ann N Y Acad Sci,2010,1209:23-29.
    129 Leuttig B, Steinmuller C, Gifford GE, et al. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea[J]. J Natl Cancer Inst,1989,81(9):669-675.
    130 Li C, Ni CZ, Havert ML, et al. Downstream regulator TANK binds to the CD40 recognition site on TRAF3[J]. Structure,2002a,10(3):403-411.
    131 Li S, Strelow A, Fontana EJ, et al. IRAK-4:a novel member of the IRAK family with the properties of an IRAK-kinase[J]. Proc Natl Acad Sci USA,2002b, 99(8):5567-5572.
    132 Liu K. Dendritic Cell, Toll-Like Receptor, and The Immune System [J]. J Cancer Mol,2006,2(6):213-215.
    133 Liu K, Victora GD, Schwickert TA, et al. In vivo analysis of dendritic cell development and homeostasis[J]. Science,2009,324(5925):392-397.
    134 Loke P, MacDonald AS, Robb A, et al. Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact[J]. Eur J Immunol,2000,30(9):2669-2678.
    135 Ludewig B, Oehen S, Barchiesi F, et al. Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells[J]. J. Immunol,1999,163(4):1839-1844.
    136 Luettig B, Steinmuller C, Gifford GE, et al. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea[J]. J Natl Cancer Inst,1989,81(9):669-675.
    137 Luo XB, Chen B, Yao SZ, et al. Simultaneous analysis of caffeic acid derivatives and alkamides in roots and extracts of Echinacea purpurea by high-performance liquid chromatography-photodiode array detection-electro-spray mass spectrometry[J]. J Chromatogr A,2003,986(1):73-81.
    138 Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCr Method[J]. Methods,2001,25(4): 402-408.
    139 Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells[J]. Semin Immunol,2009,21(5):265-272.
    140 Maass N, Bauer J, Roth-maier DA, et al. Efficiency of Echinacea purpurea on performance and immune status in pigs[J]. J Anim Physiol Anim Nutr (Berl), 2005,89(7-8):244-252.
    141 Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends immunol,2004,25(12): 677-686.
    142 Mantovani A, Sica A, Locati M. New vistas on macrophage differentiation and activation[J]. Eur J Immunol,2007,37(1):14-16.
    143 Mantovani A, Sica A, Locati M, et al. Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes[J]. Trends Immunol.2002,23(11):549-555.
    144 Manz MG, Traver D, Akashi K, et al. Dendritic cell development from common myeloid progenitors[J]. Ann N Y Acad Sci,2001,938:167-174.
    145 Martinez FO, Sica A, Mantovani A. Macrophage activation and polarization [J]. Front Biosci,2008,13:453-461.
    146 Martinez-Pomares L, Platt N, McKnight AJ, et al. Macrophage membrane molecules:markers of tissue differentiation and heterogeneity[J]. Jmmunobiology,1996,195(4-5):407-416.
    147 Massberg S, Schaerli P, Knezevic-Maramica I, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues[J]. Cell,2007,131(5),994-1008.
    148 Mastroeni P, Sheppard M. Salmonella infections in the mouse model:host resistance factors and in vivo dynamics of bacterial spread and distribution in the tissues[J]. Microbes Infect,2004,6(4):398-405.
    149 Matsuno K, Ezaki T, Kudo S, et al. A life stage of particle-laden rat dendritic cells in vivo:their terminal division, active phagocytosis, and translocation from the liver to the draining lymph[J]. J Exp Med,1996,183(4):1865-1878.
    150 Matute-Bello G, Lee JS, Frevert CW, et al. Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice[J]. J Immunol Methods,2004, 292(1-2):25-34.
    151 May G. Willuhn G. Antivirale Wirkung wassriger Pflanzenextrakte in Gewebekulturen (Antiviral effect of aqueous plant extracts in tissue culture)[J]. Arzneimittelforsehung (Drug Research),1978,28(1):1-7.
    152 Mazanec MB, Nedrud JG, Kaetzel CS, et al. A three-tiered view of the role of IgA in mucosal defense[J]. Immunology Today,1993,14(9):430-435.
    153 McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells:linking innate and adaptive immunity[J]. J Virol,2005,79(1):17-27.
    154 McKeown L, Vail M, Williams S, et al. Platelet adhesion to collagen in individuals lacking glycoprotein IV[J]. Blood,1994,83(10):2866-2871.
    155 Means TK, Mylonakis E, Tampakakis E, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36[J]. J Exp Med,2009,206(3):637-653.
    156 Mellman I, Steinman RM. Dendritic cells:specialized and regulated antigen processing machines[J]. Cell,2001,106(3):255-258.
    157 Merad M, Ginhoux F. Dendritic cell genealogy:a new stem or just another branch?[J]. Nature Immunol,2007,8(11):1199-1201.
    158 Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells[J]. Nat Rev Immunol,2008, 8(12):935-947.
    159 Merad M, Manz MG. Dendritic cell homeostasis[J]. Blood,2009,113(15): 3418-3427.
    160 Merad M, Manz MG, Karsunky H, et al. Langerhans cells renew in the skin throughout life under steady-state conditions[J]. Nat Immunol,2002,3(12): 1135-1141.
    161 Merad M, Sathe P, Helft J, et al. The dendritic cell lineage:ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting[J]. Annu Rev Immunol,2013,31:563-604.
    162 Merali S, Binns S, Paulin-Levasseur M, et al. Antifungal and Anti-inflammatory Activity of the Genus Echinacea[J]. Pharm Biol,2003,41(6):412-420.
    163 Meylan E, Burns K, Hofmann K, et al. RDP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation[J]. Nat Immunol,2004,5(5):503-507.
    164 Miller S C. Echinacea:a miracle herb against aging and cancer? Evidence in vivo in mice[J]. Evid Based Complement Alternat Med,2005,2(3):309-314.
    165 Mishima S, Saito K, Gu Y, et al. Antioxidant and immuno-enhancing effects of Echinacea purpurea[J]. Biol Pharm Bull,2004,27(7):1004-1009.
    166 Moll H. Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis[J]. Immunol Today,1993,14(8):383-387.
    167 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol,2008,8(12):958-969.
    168 Mukhopadhyay S1, Pluddemann A, Gordon S. Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance[J]. Adv Exp Med Biol. 2009,653:1-14.
    169 Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes:selective expression of TLR3 in dendritic cells[J]. J Immunol,2000,164(11):5998-6004.
    170 Muller-Jakic B, Breu W, Probstle A, et al. In vitro inhibition of cyclooxygenase and 5-lipooxygenase by alkamides from Echinacea and Achillea species[J]. Planta Med,1994,60(1):37-40.
    171 Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions[J]. J Exp Med,2007,204(12):3037-3047.
    172 Naik SH, Metcalf D, van Nieuwenhuijze A, et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes[J]. Nat Immunol,2006, 7(6):663-671.
    173 Naik SH, Proietto AI, Wilson NS, et al. Cutting edge:generation of splenic CD8 and CD8 dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures[J]. J Immunol,2005,174(11):6592-6597.
    174 Naik SH, Sathe P, Park HY, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo[J]. Nat Immunol,2007,8(11):1217-1226.
    175 Nakano H, Yanagita M, Gunn MD. Cd11c+B220+Gr-1+cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells[J]. J Exp Med,2001,194(8):1171-1178.
    176 Nathan C. Secretory products of macrophages:twenty-five years on[J]. J Clin Invest,2012,122(4):1189-1190.
    177 Nathan CF. Secretory products of macrophages[J]. J Clin Invest,1987,79(2): 319-326.
    178 Ngo VN, Tang HL, Cyster JG. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells[J]. J Exp Med,1998,188(1):181-191.
    179 Nguyen KQ, Tsou WI, Kotenko S, et al. TAM receptors in apoptotic cell clearance, autoimmunity, and cancer[J]. Autoimmunity,2013,46(5):294-297.
    180 Oganesyan G, Saha SK, Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response[J]. Nature,2006, 439(7073):208-211.
    181 Onai N, Obata-Onai A, Schmid MA, et al. Flt3 in regulation of type I interferon-producing cell and dendritic cell development[J]. Ann N Y Acad Sci, 2007a,1106:253-261.
    182 Onai N, Obata-Onai A, Schmid MA, et al. Identification of clonogenic common Flt3+M-CSFR+plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow[J]. Nat Immunol,2007b,8(11):1207-1216.
    183 O'Brien J, Lyons T, Monks J, et al. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species[J]. Am J Pathol,2010,176(3):1241-1255.
    184 O'Neill LAJ, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signaling[J]. Nat Rev Immunol,2007,7(5):353-364.
    185 O'Neill LAJ, Fitzgerald KA, Bowie AG. The Toll-IL-1 receptor adaptor family grows to five members[J]. Trends Immunol,2003,24(6):286-290.
    186 O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors-redefining innate immunity[J]. Nat Rev Immunol,2013,13(6):453-460.
    187 Palucka KA, Taquet N, Sanchez-Chapuis F, et al. Dendritic cells as the terminal stage of monocyte differentiation[J]. J Immunol,1998,160(9):4587-4595.
    188 Pantel A, Teixeira A, Haddad E, et al. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation[J]. PLoS Biol,2014,12(1):e1001759.
    189 Peiser L, Gough PJ, Kodama T, et al. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli:role of cell heterogeneity, microbial strain, and culture conditions in vitro[J]. Infect Immun,2000.68(4): 1953-1963.
    190 Peiser L, Gordon S. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation[J]. Microbes Infect, 2001,3(2):149-159.
    191 Perussia B, Fanning V, Trinchieri G. A leukocyte subset bearing HLA-DR antigens is responsible for in vitro a interferon production in response to viruses[J]. Nat Immun Cell Growth Regul,1985,4(3):120-137.
    192 Pierre P, Turley SJ, Gatti E, et al. Developmental regulation of MHC class II transport in mouse dendritic cells[J]. Nature,1997,388(6644):787-792.
    193 Pifer R, Benson A, Sturge CR, et al. UNC93B1 is essential for TLR11 activation and IL-12-dependent host resistance to Toxoplasma gondii[J]. J Biol Chem, 2011,286(5):3307-3314.
    194 Pirhonen J, Sareneva T, Kurimoto M, et al. Virus infection activates 1L-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway[J]. J Immunol,1999,162(12):7322-7329.
    195 Pleschka S, Stein M, Schoop R, et al. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV)[J]. Virol J,2009, 6:197-205.
    196 Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase[J]. EMBO J, 1999,18(23):6694-6704.
    197 Proietto AI, vanDommelen S, Zhou P, et al. Dendritic cells in the thymus contribute to T-regulatory cell induction[J]. Proc Nat] Acad Sci USA,2008, 105(50):19869-19874.
    198 Rae F, Woods K, Sasmono T, et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csflr-EGFP transgene reporter[J]. Dev Biol,2007,308(1):232-246.
    199 Randall R E, Goodbourn S. Interferons and virus:an interplay between induction, signalling, antiviral responses and virus countermeasures[J]. J Gen Virol,2008, 89(Pt 1):1-47.
    200 Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels[J]. Nat Rev Immunol,2005,5(8):617-628.
    201 Randolph GJ, Beaulieu S, Lebecque S, et al. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking[J]. Science,1998, 282(5388):480-483.
    202 Randolph RK, Gellenbeck K, Stonebrook K, et al. Regulation of human immune gene expression as influenced by a commercial blended Echinacea product: preliminary studies[J]. Exp Biol Med,2003,228(9):1051-1056.
    203 Reichling J, Bucher S, Saller R, et al. Echinacea powder:treatment for canine chronic and seasonal upper respiratory tract infections [J]. Schweiz Arch Tierheilkd,2003,145(5):223-231.
    204 Reizis B, Colonna M, Trinchieri G, et al. Plasmacytoid dendritic cells:one-trick ponies or workhorses of the immune system?[J]. Nat Rev Immunol,2011,11(8): 558-565.
    205 Rininger JA, Kickner S, Chigurupati P, et al. Immunopharmacological activity of Echinacea preparations following stimulated digestion of murine macrophages and human peripheral blood mononuclear cells[J]. J Leukoc Biol, 2000,68(4):503-510.
    206 Robbins CS, Swirski FK. The multiple roles of monocyte subsets in steady state and inflammation[J]. Cell Mol Life Sci,2010,67(16):2685-2693.
    207 Robinson WE Jr. L-Chicoric acid, an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase, improves on the in vitro anti-HIV-1 effect of Zidovudine plus aprotease inhibitor (AG1350)[J]. Antiviral Res,1998,39(2): 101-111.
    208 Roesler J, Steinmuller C, Kiderlen A, et al. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to mice mediates protection against systemic infections with Listeria monocytogenes and Candida albicans[J]. Int J Immunopharmacol,1991,13(1):27-37.
    209 Ryan JL, Glode LM, Rosenstreich DL. Lack of responsiveness of C3H/HeJ macrophages to lipopolysaccharide:the cellular basis of LPS-stimulated metabolism[J]. J Immunol,1979,122(3):932-935.
    210 Ryzhakov G, Randow F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK[J]. EMBO J, 2007,26(13):3180-3190.
    211 R&D Systems. Dendritic Cell Maturation[EB/OL]. Minneapolis:R&D Systems, 2002. http://www.rndsystems.com/mini_review_detail_objectname_MR02_DendriticCellMat.aspx.
    212 Saeki H, Moore AM, Brown MJ, et al. Cutting edge:secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes[J]. J Immunol,1999,162(5):2472-2475.
    213 Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a[J]. J Exp Med,1994,179(4):1109-1118.
    214 Sallusto F, Cella M, Danieli C, et al. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class Ⅱ compartment:downregulation by cytokines and bacterial products[J]. J Exp Med,1995,182(2):389-400.
    215 Sapoznikov A, Fischer JA, Zaft T, et al. Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells[J]. J Exp Med, 2007,204(8):1923-1933.
    216 Sasai M, Oshiumi H, Matsumoto M, et al. Cutting edge:NF-KB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation[J]. J Immunol,2005,174(1):27-30.
    217 Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses[J]. Nature Immunology,2005,6(11): 1087-1095.
    218 Sato S, Sugiyama M, Yamamoto M, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-p (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling [J]. J Immunol,2003,171(8):4304-4310.
    219 Satpathy AT, Wu X, Albring JC, et al. Re(de)fining the dendritic cell lineage[J]. Nat Immunol,2012,13(12):1145-1154.
    220 Savill J, Dransfield I, Gregory C, et al. A blast from the past:clearance of apoptotic cells regulates immune responses[J]. Nat Rev Immunol,2002,2(12): 965-975.
    221 Savill J, Hogg N. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis[J]. J Clin Invest,1992,90(4):1513-1522.
    222 Sawyer RT, Strausbauch PH, Volkman A. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89[J]. Lab Invest,1982,46(2): 165-170.
    223 Schlecht G, Garcia S, Escriou N, et al. Murine plasmacytoid dendritic cells induce effector/memory CD8+T-cell responses in vivo after viral stimulation[J]. Blood,2004,104(6):1808-1815.
    224 Schmekel B, Karlsson SE, Linden M, et al. Myeloperoxidase in human lung lavage. I. A marker of local neutrophil activity[J]. Inflammation,1990,14(4): 447-454.
    225 Schmid MA, Kingston D, Boddupalli S, et al. Instructive cytokine signals in dendritic cell lineage commitment[J]. Immunol Rev,2010,234(1):32-44.
    226 Schuler G, Koch F, Heufler C, et al. Murine epidermal Langerhans cells as a model to study tissue dendritic cells[J]. Adv Exp Med Biol,1993,329:243-249.
    227 Schuler G, Romani N, Steinman RM. A comparison of murine epidermal
    228 Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro[J]. J Exp Med,1985,161(3): 526-546.
    229 Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells[J]. Science,2012,336(6077): 86-90.
    230 Servant MJ, Grandvaux N, Hiscott J. Multiple signaling pathways leading to the activation of interferon regulatory factor 3[J]. Biochem Pharmacol,2002, 64(5-6):985-992.
    231 Sharma M, Anderson SA, Schoop R, et al. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract [J]. Antiviral Res,2009,83(2): 165-170.
    232 Sharma M, Vohra S, Arnason JT, et al. Echinacea Extracts Contain Significant and Selective Activities Against Human Pathogenic Bacteria[J]. Pharm Biol, 2008,46(1-2):111-116.
    233 Sharma S, tenOever BR, Grandvaux N, et al. Triggering the interferon antiviral response through an IKK-related pathway[J]. Science,2003,300(5622): 1148-1151.
    234 Sharma SM, Anderson M, Schoop SR, et al. Bactericidal and anti-inflammatory properties of a standardized Echinacea extract (Echinaforce(?)):dual actions against respiratory bacteria[J]. Phytomedicine,2010,17(8-9):563-568.
    235 Shi Z, Cai Z, Sanchez A, et al. A novel Toll-like receptor that recognizes vesicular stomatitis virus[J]. J Biol Chem,2011,286(6):4517-4524.
    236 Shim JH, Xiao C, Paschal AE, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo[J]. Genes Dev,2005,19(22): 2668-2681.
    237 Shimauchi H, Ogawa T, Okuda K, et al. Autoregulatory effect of interleukin-10 on proinflammatory cytokine production by Porphyromonas gingivalis lipopolysaccharide-tolerant human monocytes[J]. Infect Immun,1999,67(5): 2153-2159.
    238 Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood[J]. Science,1999,284(5421): 1835-1837.
    239 Simmons DP, Wearsch PA, Canaday DH, et al. Type ⅠIFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing[J]. J Immunol,2012,188(7):3116-3126.
    240 Skwarek T, Tynecka Z, Glowniak K, et al Echinacea L.-Inducer of interferons[J]. Herba Pol,1996,42:110-117.
    241 Slack JL, Schooley K, Bonnert TP, et al. Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways[J]. J Biol Chem,2000,275(7):4670-4678.
    242 Sloley BD, Urichuck LJ, Tywin C, et al. Comparison of chemical components and antioxidant capacity of different Echinacea species[J]. J Pharm Pharmacol, 2001,53(8):849-857.
    243 Steinbrink K, Paragnik L, Jonuleit H, et al. Induction of dendritic cell maturation and modulation of dendritic cell-induced immune responses by prostaglandins[J]. Arch Dermatol Res,2000,292(9):437-445.
    244 Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells[J]. Annu Rev Immunol,2003,21:685-711.
    245 Steinmuller C, Roesler J, Grottrup E, et al. Polysaccharides isolated from plant cell cultures of Echinacea purpurea enhance the resistance of immunosuppressed mice against systemic infections with Candida albicans and Listeria monocytogenes[J].Int J Immunopharmacol,1993,15(5):605-614.
    246 Stimpel M, Pmkseh A, Lohmann-Mathes ML, et al. Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea[J]. Infect Immun,1984,46(3):845-849.
    247 Stout RD, Suttles J. Functional plasticity of macrophages:Reversible adaptation to changing microenvironments[J]. J Leukocyte Biol,2004,76(3):509-513.
    248 Suganami T, Ogawa Y. Adipose tissue macrophages:their role in adipose tissue remodeling[J]. J Leukoc Biol,2010,88(1):33-39.
    249 Sugiura H, Nishida H, Inaba R, et al. Immunomodulation by 8-week voluntary exercise in mice[J]. Acta Physiol Scand,2000a,168(3):413-420.
    250 Sugiura H, Sugiura H, Ueya E. et al. Enhanced macrophage functions and cytokine production of lymphocytes after ingestion of bon narine in female BALB/c mice[J]. Life Sci,2000b,68(5):505-515.
    251 Sun LZY, Currier NL, Miller SC. The American Coneflower:A prophylactic role involving non-specific immunity[J]. J Altem complement Med,1999,5(5): 437-446.
    252 Suzuki N, Suzuki S, Duncan G, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4[J]. Nature,2002a, 416(6882):750-756.
    253 Suzuki K, Ha SA, Tsuji M, et al. Intestinal IgA synthesis:a primitive form of adaptive immunity that regulates microbial communities in the gut[J]. Semin Immunol 2007,19(2):127-135.
    254 Suzuki N, Suzuki S, Yeh WC. IRAK-4 as the central TIR signaling mediator in innate immunity[J]. Trends in Immunology,2002b,23(10):503-506.
    255 Takeda K, Kaisho T, Akira S. Toll-like receptors[J]. Annu Rev Immunol,2003, 21:335-376.
    256 Takemura R, Werb Z. Secretory products of macrophages and their physiological functions[J]. Am J Physiol Cell Physiol,1984,246(1):C1-C9.
    257 Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010; 140(6):805-820.
    258 Tan X, Chen F, Wu S, et al. Proteomic analysis of differentially expressed proteins in mice with concanavalin A-induced hepatitis. J Zhejiang Univ-SCI B (Biomedicine & Biotechnology),2010,11(3):221-226.
    259 Tan Y, Meng Y, Wang Z, et al. Maturation of morphology, phenotype and functions of murine bone marrow-derived dendritic cells (DCs) induced by polysaccharide Kureha (PSK) [J]. Hum Vaccin Immunother,2012,8(12): 1808-1816.
    260 Tarling JD, Lin HS, Hsu S. Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies[J]. J Leukoc Biol,1987,42(5): 443-446.
    261 Taylor PR, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition [J]. Annu Rev Immunol,2005,23:901-944.
    262 Theofilopoulos AN, Baccala R, Beutler B, et al. Type I interferons (alpha/beta) in immunity and autoimmunity[J]. Annu Rev Immunol,2005,23:307-336.
    263 Traver D, Akashi K, Manz M, et al. Development of CD8a-positive dendritic cells from a common myeloid progenitor[J]. Science,2000,290(5499): 2152-2154.
    264 Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence[J]. Nat Rev Immunol,2007,7(3):179-190.
    265 Tripathi S, Bruch D, Kittur DS. Ginger extract inhibits LPS induced macrophage activation and function[J]. BMC Complement Altern Med,2008,8:1.
    266 Tsolis RM, Kingsley RA, Townsend SM, et al. Of mice, calves, andmen. Comparison of the mouse typhoid model with other Salmonella infections [J]. Adv Exp Med Biol,1999,473:261-274.
    267 Tubaro A, Tragni E, Del Negro P, et al. Anti-inflammatory activity of a polysaccharidic fraction of Echinacea angustifolia[J]. Pharm Pharmacol,1987, 39(7):567-569.
    268 Unanue ER. Antigen-presenting function of the macrophage[J]. Annu Rev Immunol,1984,2:395-428.
    269 Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, et al. Classical and alternative activation of mononuclear phagocytes:Picking the best of both worlds for tumor promotion[J]. Immunobiology,2006,211(6-8):487-501.
    270 Varin A, Gordo S. Alternative activation of macrophages:immune function and cellular biology[J]. Immunobiology,2009,214(7):630-641.
    271 Varol C, Vallon-Eberhard A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions[J]. Immunity.2009,31(3): 502-512.
    272 Verschoor CP, Puchta A, Bowdish DME. The Macrophage[J]. Methods in Molecular Biology,2012,844:139-156.
    273 Wacker A, Hilbig W. Virushemmung mit Echinacea Purpurea (Virus-Inhibition by Echinacea purpurea)[J]. planta Med,1978,33(1):89-102.
    274 Wagner H. Search for new plant constituents with potential antiphlogistic and antiallergic activity[J]. Planta Med,1989,55(3):235-241.
    275 Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK[J]. Nature,2001,412(6844):346-351.
    276 Wang Y, Szretter KJ, VermiW, et al.IL-34 is a tissue-restricted ligand of CSFIR required for the development of Langerhans cells and microglia[J]. Nat Immunol,2012,13(8):753-760.
    277 Wang YC, Hu XB, He F, et al. Lipopolysaccharide-induced maturation of bone marrow-derived dendritic cells is regulated by notch signaling through the up-regulation of CXCR4[J]. J Biol Chem,2009,284(23):15993-16003.
    278 Wang YG, Kim KD, Wang J. et al. Stimulating lymphotoxin P receptor on the dendritic cells is critical for their homeostasis and expansion[J]. J Immunol, 2005,175(10):6997-7002.
    279 Weider E. Dendritic cells:a basic review[EB/OL]. Vancouver:International Society for Cellular Therapy,2003. http://cymcdn.com/sites/www. celltherapysociety.org/resource/resmgr/files/PDF/Resources/OnLine_Dendritic_Education_Brochure.pdf
    280 Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays[J]. Int J Pharm,2005,288(2):369-376.
    281 Wijffels JF, de Rover Z, Beelen RH, et al. Macrophage subpopulations in the mouse spleen renewed by local proliferation[J]. Immunobiology,1994,191(1): 52-64.
    282 Wikipedia. Cytokine[EB/OL]. San Francisc:Wikimedia Foundation, Inc.,2014a. http://en.wikipedia.org/wiki/Cytokine
    283 Wikipedia. Toll-like receptor[EB/OL]. San Francisc:Wikimedia Foundation, Inc.,2014b. http://en.wikipedia.org/wiki/Toll-like_receptor
    284 Winzler C, Rovere P, Rescigno M, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures[J]. J Exp Med,1997,185(2): 317-328.
    285 Xu X, Huang Q, Mao YL, et al. Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages[J]. Microbiology and Immunology, 2012,56(12):817-824.
    286 Xu Y, Zhan Y, Lew AM, et al. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking[J]. J Immunol,2007,179(11):7577-7584.
    287 Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction[J]. Science,1995,270(5244):2008-2011.
    288 Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways[J]. Gastroenterol Res Pract,2010,2010:240365.
    289 Yarovinsky F. Innate immunity to Toxoplasma gondii infection[J]. Nat Rev Immunol,2014,14(2):109-121.
    290 Yoneyama M, Suhara W, Fujita T. Control of IRF-3 activation by phosphorylation[J]. J Interferon Cytokine Res,2002,22:73-76.
    291 Zeyda M, Stulnig TM. Adipose tissue macrophages[J]. Immunol Lett,2007, 112(2):261-267.
    292 Zhai Z, Haney D, Wu L, et al. Alcohol extracts of Echinacea inhibit production of nitric oxide and tumor necrosis factor-alpha by macrophages in vitro[J]. Food Agric Immunol,2007a,18(3-4):221-236.
    293 Zhai Z, Liu Y, Wu L, et al. Enhancement of Innate and Adaptive Immune Functions by Multiple Echinacea Species[J]. J Med Food,2007b,10(3): 423-434.
    294 Zhai Z, Solco A, Wu L, et al. Cunnick Echinacea increases arginase activity and has anti-inflammatory properties in RAW264.7 macrophage cells, indicative of alternative macrophage activation[J]. J Ethnopharmacol,2009,122(1):76-85.
    295 Zhang JM, An J. Cytokines, inflammation, and pain[J]. Int Anesthesiol Clin, 2007,45(2):27-37.
    296 Zhang X, Mosser DM. Macrophage activation by endogenous danger signals[J]. J Pathol,2008,214(2):161-178.
    297曹鑫,张宇,彭岩,等.紫锥菊多酚植物化学物质对大鼠应激性胃溃疡的影响[J].大连医科大学学报,2009,31(4):283-286,290.
    298冯善祥.复方紫锥菊对鸡免疫增强作用试验[J].中国兽医杂志.2010a,46(9):27-28.
    299冯善祥.紫锥菊复合物对雏鸡人工感染传染性法氏囊病病毒的效果观察[J].中国畜牧兽医,2010b,37(4):188-191.
    300冯善祥.紫锥菊复合物对雏鸡人工感染新城疫病毒效果观察[J].中国畜牧兽医,2011,38(4):225-228.
    301贺奋义.沙门氏菌的研究进展[J].中国畜牧兽医,2006,33(11):91-95.
    302郝智慧,陈杖榴,邱梅,等.不同紫锥菊提取物对肉仔鸡免疫功能影响[J].中兽医医药杂志,2010,29(2):7-11.
    303李玮,郭腾,陈洪亮.紫锥菊研究进展及在动物保健上的应用展望[J].兽药与饲料添加剂,2006,11(3):28-30.
    304李晓曦,郭宁,曹雪涛.肿瘤相关巨噬细胞促进肿瘤生长与转移的研究现状[J].中国肿瘤生物治疗杂志,2008,15(1):78-81.
    305刘晓琳,仇微红,郭世宁,等.复方紫锥菊体外抗肉鸡新城疫病毒的试验[J].中国兽医杂志,2008a,44(11):20-22.
    306刘晓琳,郭世宁,石达友,等.复方紫锥菊对肉鸡部分血液生化指标的影响中兽医医药杂志,2008b,27(4):30-32.
    307陆英,王妍,丁浩,等.紫锥菊提取物抗氧化作用研究[J].湖南农业大学学报(自然科学版),2009,35(2):152-154.
    308倪耀娣,钟秀会,牛小飞,等.紫锥菊黄芪对传染性囊病疫苗免疫雏鸡淋巴细胞亚群和肿瘤坏死因子含量的影响[J].中国兽医杂志,2009,45(9):10-12.
    309牛小飞,史万玉,倪耀娣,等.紫锥菊对传染性法氏囊疫苗免疫效果的影响 [J].畜牧与兽医,2008,40(9):5-8.
    310孙雨,刘仁杰,丁姗姗,等.紫锥菊粉对大鼠亚慢性毒性试验[J].中兽医医药杂志,2010,4:51-54.
    311王树琴,郭世宁,胡烨丹,等.紫锥菊对肉鸡体液免疫及细胞免疫的影响[J].中国兽医杂志,2008,44(9):48-49.
    312吴华,Nardone A, Laceter N紫锥菊提取物对奶牛外周血单核细胞增殖的影响[J].安徽农业科学,2010,38(11):5660-5661,5766.
    313张世昌,王志祥.复方中草药添加剂对断奶仔猪生长性能、抗氧化和免疫器官指数的影响[J].畜牧与兽医,2010,42(10):56-59.
    314肖正中,邬苏晓.紫锥菊提取物对小鼠免疫功能的影响[J].江苏农业科学,2011,39(3):275-276.
    315赵丹,陈秀云,孙雨,等.紫锥菊提取物对小鼠骨髓细胞微核影响的试验研究[J].中国畜牧兽医,2010a,37(1):208-210.
    316赵丹,汤仁想,孙雨,等.紫锥菊粉对大鼠的致畸作用试验[J].中国兽医科学,2010b,40(5):523-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700