IDO基因转染小鼠Lewis肺癌细胞诱导Treg细胞增殖的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     目前,肺癌已经成为威胁人类健康最重要的恶性肿瘤之一,非小细胞肺癌(non-small cell lung cancer,NSCLC)占肺癌所有病例的80%以上。尽管以手术、放疗、化疗等为主的治疗方式近年来发展迅速,但由于肺癌患者常发生远处转移,目前肺癌患者的5年生存率只有15%左右。近来研究表明,肺癌的发生、发展及免疫治疗效果不佳均与肺癌细胞的免疫耐受(immune tolerance)密切相关,但至今对免疫耐受发生的机制尚不完全清楚。吲哚胺-2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)是人类机体肝脏以外唯一的色氨酸代谢限速酶,其活性的强弱与免疫T细胞功能之间的关系极为密切。近来研究发现,在人类多种恶性肿瘤局部,该酶表达明显增强,严重影响肿瘤局部的免疫功能,是肿瘤细胞产生免疫逃逸的重要原因,但其作用机制尚不完全清楚。本研究首先观察IDO在NSCLC中的表达和调节性T细胞(Regulatory T cell,Treg)在NSCLC组织和转移淋巴结内的分布,探讨IDO表达与Treg细胞之间可能的相互关系;然后,将IDO基因转染到小鼠Lewis肺癌细胞,观察IDO基因表达对Lewis肺癌细胞生物学行为的影响,再与小鼠外周血T细胞共同培养,体外研究IDO基因表达对Treg细胞的诱导增殖作用以及对Lewis肺癌细胞迁移能力和侵袭能力的调控作用;最后,体内研究IDO基因转染对小鼠Treg细胞的诱导增殖作用及对Lewis肺癌细胞成瘤性、侵袭和转移能力的影响,最后,利用IDO抑制剂1-甲基色氨酸(1-MT)研究对Treg细胞诱导增殖逆转作用,并对其机制进行初步探讨。
     方法:
     收集在第三军医大学附属新桥医院和西南医院手术治疗的62例患者肺癌组织和瘤周正常肺组织、以及15例肺良性病变组织的新鲜标本和石蜡切片。采用免疫组织化学SP法和荧光半定量RT-PCR方法检测IDO蛋白和mRNA在肺癌组织、瘤周正常肺组织和肺良性病变组织中的表达,并利用免疫组化SP法检测Treg细胞在上述各种组织内的分布情况;之后,采用阳离子脂质体Lipofectmine2000,将含人全长IDO基因的pEGFP-IDO真核表达质粒转染到小鼠Lewis肺癌细胞,G418筛选获得Lewis-IDO细胞,同时设置空白对照组(Lewis细胞)及空质粒转染组(Lewis-EGFP细胞),利用transwell侵袭小室,检测三种细胞在形态学和侵袭力等生物学行为方面的区别;再将Lewis-IDO、Lewis-EGFP和Lewis肺癌细胞分别与小鼠T淋巴细胞混合培养,利用流式细胞技术分析三种细胞对Treg细胞的诱导增殖作用;最后将三种细胞分别种植到C57小鼠,检测小鼠外周血和种植瘤中Treg细胞的增殖、种植瘤和转移灶的形成,1-MT通过加入小鼠饮用水中的方式发挥作用,通过对小鼠种植瘤内IDO基因表达和Treg细胞增殖检测验证对肿瘤局部免疫耐受的调控作用。
     结果:
     1、肺癌组织、瘤周正常肺组织和肺良性病变组织中IDO表达阳性率分别为67.7% (42/62)、0和13.3% (2/15),前者与后二者比较有显著统计学差异(P <0.01),转移淋巴结内IDO表达阳性率为75.0%(15/20),荧光半定量RT-PCR结果与免疫组化基本一致;肺癌组织、转移淋巴结、瘤周正常肺组织和肺良性病变组织中Treg细胞阳性率分别为83.9%(52/62)、90.0%(18/20)、0和13.3%(2/15),前二者与后二者相互比较有非常显著统计学差异(P <0.01),前二者之间或后二者之间相比较差异无明显统计学意义(P >0.05),IDO阳性表达率与Treg细胞阳性率之间具有非常显著相关性(P <0.01)。
     2、IDO基因成功转染到小鼠Lewis肺癌细胞,与Lewis-EGFP细胞和Lewis细胞相比,Lewis-IDO细胞贴壁比例增加,形态变为长梭形,伪足明显增多延长,前二者形态相似;Lewis-IDO细胞侵袭能力增强,破坏matrigel基质蛋白胶层进入下室内的细胞数明显增多,Lewis-IDO、Lewis-EGFP及Lewis细胞分别为237.4±22.1、166.0±14.2和185.6±19.5,前者与后二者比较具有显著统计学意义(P <0.05);Lewis-IDO细胞与小鼠T淋巴细胞共培养后,Treg细胞增殖明显,与Lewis-EGFP细胞(6.2±0.36)%vs(5.0±0.52)%,)及Lewis细胞(6.2±0.36)%vs(4.9±0.4)%相比统计学差异显著(P<0.05)。
     3、15只种植Lewis-IDO细胞的小鼠发生肝肺转移的小鼠数量及转移灶为12只和44个转移灶,种植Lewis-EGFP及Lewis细胞的小鼠分别为5只7个转移灶及4只7个转移灶,前者与后二者比较具有显著统计学意义(P=0.01);流式分析结果表明,种植Lewis-IDO细胞的小鼠外周血中Treg细胞比例明显高于Lewis-EGFP细胞组和Lewis细胞组,其比例分别为(13.7±4.5)%、(8.9±3.3)%和(9.2±3.4)%,前者与后二者比较具有显著统计学差异(P <0.05);从平均存活时间来看,种植Lewis-IDO、Lewis-EGFP和Lewis细胞的小鼠平均存活时间分别为(37.1±2.3)天、(45.1±2.6)天和(44.9±2.9)天,前者与后二者比较统计学差异显著(P <0.05),后二者之间无显著统计学差异(P >0.05);
     4、采用1-MT干预后,和种植Lewis-IDO细胞的未干预组小鼠比较,干预组IDO表达明显减弱,发生肝肺转移较Lewis-IDO未干预组明显减少,二者相比具有显著统计学意义(P =0.05);干预组小鼠外周血淋巴细胞中Treg细胞比例(9.7±4.0)%与Lewis-IDO未干预组(13.7±4.5)%比较明显减少(P <0.05),干预组小鼠平均存活时间为(42.0±2.3)天,与Lewis-IDO未干预组(37.1±2.3)天相比有增加的趋势,但没有显著统计学意义(P >0.05);
     结论:
     1、NSCLC组织内IDO基因表达明显增强,同时伴有Treg细胞在NSCLC组织和转移淋巴结内的增殖,且Treg细胞的分布与IDO表达呈正相关,提示IDO基因在NSCLC表达增强可能诱导Treg细胞在肿瘤局部的增殖,从而诱导NSCLC的免疫耐受。
     2、IDO基因转染Lewis肺癌细胞可以在体内外诱导Treg细胞增殖,同时可以增强Lewis肺癌细胞的侵袭和转移能力,提示IDO可以作为逆转NSCLC免疫耐受和抑制NSCLC侵袭转移新的治疗靶点。
     3、1-MT干预可以明显减少Lewis-IDO细胞的转移及Treg细胞的增殖,但不能完全抑制IDO基因的表达及延长实验小鼠的平均存活时间,故有必要寻找更有效更特异抑制IDO基因表达的方法;
Background and objective:
     Metastasis is one of the poor prognostic factors of non-small cell lung cancer(NSCLC). One of the most important causes is immune tolerance within the tumor microenvironment induced by many factors such as regulatory T cell populations,inhibitory ligands such as PD-L1,soluble factors such as TGFb,and the activity of nutrient-catabolizing enzymes such as indoleamine 2,3-dioxygenase (IDO). Increasing evidences are accumulating to indicate that IDO and regulatory T cell(Treg) play an important role in the induction of immune tolerance in tumor microenvironment.However the relationship between the expression of IDO and the distribution of Tregs in NSCLC has not been completely elucidated. The present study aimed to investigate the IDO expression in NSCLC and the distribution of Tregs in NSCLC tissues and the metastastic lymph nodes,and the potential relationships between them.Besides that,we investigate the effects of mouse Lewis lung cancer cell line transfected with IDO gene on the induction of the proliferation of Treg cell in vitro and in vivo and the effects of IDO(+) lung cancer cell on the invasion and metastasis of mouse Lewis lung cancer cell,thereby exploring its possible mechanisms.1-Methyl tryptophan(1-MT), the IDO competitive inhibitor, was tried to reverse the proliferation of Treg cell.
     Methods:
     Sixty two patients with NSCLC and fifteen patients with benign lung disease from Xinqiao hospital and Southwest hospital were involved in the present study. The IDO expression in lung cancer, the peritumorous normal lung tissues and the benign control tissues was detected by streptavidin-peroxidase(SP) immunohistochemistry (IHC) and fluorescent semi-quantitative RT-PCR. The distribution of Treg cell was detected by SP IHC as well. With the use of the cationic liposome Lipofectamine 2000,the eukaryotic expression plasmid vectors pEGFP-N1 carrying human IDO cDNA was transfected into mouse Lewis lung cancer cell line(named Lewis-IDO) and then co-cultured with T lymphocytes from the peripheral blood of C57 mouse.The parental Lewis cells and Lewis cells transfected with blank plasmid pEGFP-N1(named Lewis-EGFP) was used as control groups.After co-culture,the Treg cells were sorted using fluorescence-activated cell sorting (FACS). The capability of invasion and metastasis in vitro was studied by using of transwell experiment. To evaluate the tumorgenicity and metastastic ability of IDO gene on cancer cell,the Lewis-IDO, Lewis-EGFP and Lewis cells were transplanted in C57 mouse respectively. The Tregs in the peripheral blood(PB) and cancer mass were detected by FACS. 1-MT was used in the drinking water of mouse with a concentration of 5mg/ml.
     Results:
     1. The positive IDO expression rates in lung cancer cell, corresponding normal lung tissues and benign disease tissues were 67.7% (42/62)、0 and 13.3% (2/15) , respectively.There were significant differences between cancer mass and benign disease tissues, peritumorous normal lung tissues(P<0.01).The positive IDO expression rate in metastastic lymph node was 75.0%(15/20). The results of fluorescent semi-quantitative RT-PCR were consistent with the results of IHC. The percentage of Treg cells in lung cancer tissues, metastastic lymph node, peritumorous normal lung tissues and benign disease tissues were 83.9%(52/62)、90.0%(18/20)、0 and 13.3%(2/15), respectively. Significant differences were also seen between the former two and the latter two(P <0.01),but there was no significant differences between the two formers or the two latters(P >0.05). The spearman rank correlation analysis revealed the distribution of Treg cells is correlated with the expression of IDO(R=0.448,P <0.01).
     2. The IDO gene was transfected into Lewis cell successfully. Compared with the Lewis-EGFP and Lewis cells,Lewis-IDO cells became longer and had more filopodia.By transwell chamber system,the invasion capability of Lewis-IDO cells was significantly increased. The quantity of the Lewis-IDO cells breaking through the matrigel increased significantly(P<0.05). The Lewis-IDO cells could induce the proliferation of Treg cells.There was significant differences between the Lewis-IDO cells and Lewis-EGFP cells(6.2±0.36% vs 5.0±0.52%,P<0.05) and between the Lewis-IDO cells and Lewis cells(6.2±1.6% vs 4.9±0.4%,P<0.05).
     3. The time of tumor formation was different among the three groups but there were no significant differences.The capability of metastasis to lung and liver of Lewis-IDO cell was significantly higher than that of Lewis-EGFP cells or Lewis cells(P =0.01) The Treg cells in PB of the mouse transplanted with Lewis-IDO cells were statistically higher than that from the mouse transplanted with Lewis-EGFP cells or Lewis cells(P <0.05),the values are (13.7±4.5)%, (8.9±3.3)% and (9.2±3.4)% respectively.The mean survival time of Lewis-IDO(37.1±2.3 days) group was significantly longer than Lewis-EGFP group(45.1±2.6 days) or Lewis group(44.9±2.9 days) (P <0.05).
     4. After the treatment with 1-MT, the IDO expression was inhibited by IHC.The proliferation of Treg cell was significantly reduced than untreated group( (9.7±4.0) % vs (13.7±4.5)%,P <0.05). The metastasis to lung and liver was significantly reduced than untreated Lewis-IDO group(P <0.05).The mean survival time(42.0±2.3 days) of C57 mouse was longer than that of Lewis-IDO group(37.1±2.3 days) but there was no significant difference(P >0.05).
     Conclusions:
     1. The overexpression of IDO is a common molecular abnormality both in lung cancer and in metastasic lymph node and is associated with the proliferation of Treg cell in tumor microenvironment of NSCLC.It implicates that the IDO(+) cancer cell might be concerned with the tumor immune tolerance by inducing the proliferation of Treg cells in tumor microenvironment and suggests that strategies to regulate the IDO activity may be beneficial in the immunotherapy of human NSCLC.
     2. The tranfection of IDO gene into Lewis lung cancinoma cell can induce the proliferation of Treg cells and increase the Lewis cell’s capability of invasion and metastasis both in vitro and in vivo which implicate that IDO is a new treatment target for reverse the immune tolerance of NSCLC and inhibit the invasion and metastasis of NSCLC.
     3. 1-MT treatment can significantly reduce the metastasis of NSCLC and the proliferation of Treg, but can not completely inhibits the IDO expression and significantly prolong the mean survival time of mouse.It is necessary to investigate more effective and specific methods to inbibit IDO-mediated immune tolerance..
引文
1. Lam WK,Watkins DN.Lung cancer: future directions. Respirology. 2007 ,12(4): 471-477.
    2. Board R-E,Thatcher N,Lorigan P,et al.Novel therapies for the treatment of small-cell lung cancer: a time for cautious optimism? Drugs. 2006,66(15): 1919-1931.
    3.王俊,高玉堂,王学励,刘恩菊,张玉兰,袁剑敏上海市区男性吸烟与恶性肿瘤死亡的前瞻性研究中华流行病学杂志。2004,25(10):837-840
    4.刘恩菊,项永兵,金凡等.高玉堂上海市区恶性肿瘤发病趋势分析(1972~1999年).肿瘤.2004,25(1):11-15
    5. O'Mahony D,Kummar S,Gutierrez ME,et al. Non-small-cell lung cancer vaccine therapy: a concise review. J-Clin-Oncol. 2005,23(35): 9022-9028.
    6. Rossi A,Maione P,Colantuoni G, et al.The role of new targeted therapies in small-cell lung cancer. Crit-Rev-Oncol-Hematol. 2004 ,51(1): 45-53.
    7. Keller SM. Adjuvant therapy for locally advanced non-small cell lung cancer. Lung-Cancer. 2003 ,42 Suppl 2: S29-34.
    8. Haura EB,Sotomayor E,Antonia SJ,et al.Gene therapy for lung cancer. Mol-Biotechnol. 2003 ,25(2): 139-148.
    9. Ruttinger D,Winter H,van-den-Engel NK, et al.Immunotherapy of lung cancer: an update. Onkologie. 2006 ,29(1-2): 33-8.
    10. Stinchcombe TE,Lee CB,Socinski MA, et al. Current approaches to advanced-stage non-small-cell lung cancer: first-line therapy in patients with a good functional status. Clin-Lung-Cancer. 2006 ,7 Suppl 4: S111-117.
    11. Caras I,Grigorescu A,Stavaru C, et al.Evidence for immune defects in breast and lung cancer patients. Cancer-Immunol-Immunother. 2004 ,53(12): 1146-1152.
    12. Kikuchi E,Yamazaki K,Torigoe T, et al.HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer-Sci. 2007, 98(9): 1424-1430
    13. Ishibashi Y,Tanaka S,Tajima K,et al.Expression of Foxp3 in non-small cell lung cancerpatients is significantly higher in tumor tissues than in normal tissues, especially in tumors smaller than 30 mm. Oncol-Rep. 2006 ,15(5): 1315-9.
    14. Cho HJ,Caballero OL,Gnjatic S,et al.Physical interaction of two cancer-testis antigens, MAGE-C1 (CT7) and NY-ESO-1 (CT6). Cancer-Immun. 2006,6: 12.
    15. Tajima K,Obata Y,Tamaki H, et al.Expression of cancer/testis (CT) antigens in lung cancer. Lung-Cancer. 2003 ,42(1): 23-33.
    16. Melloni G,Ferreri AJ,Russo V, et al.Prognostic significance of cancer-testis gene expression in resected non-small cell lung cancer patients. Oncol-Rep. 2004 ,12(1): 145-151.
    17. Watanabe Y,LePage S,Elliott M,et al.Characterization of preexisting humoral immunity specific for two cancer-testis antigens overexpressed at the mRNA level in non-small cell lung cancer. Cancer Immun.2006.6:3
    18. Semino C,Martini L,Queirolo P, et al.Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer-Res. 1999 ,19(6C): 5645-5649
    19. Schroecksnadel K,Winkler C,Fuith LC,et al. Tryptophan degradation in patients with gynecological cancer correlates with immune activation.Cancer Lett.2005.223:323-329.
    20. Catherine U,Luc P,Ivan T,et al.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase.Nature Medicine.2003.9:1269-1274.
    21. Mellor A.Indoleamine 2,3 dioxygenase and regulation of T cell immunity. Biochem Biophys Res Commun.2005.338(1):20-24.
    22. Hiroaki Y,Katsuji T,Rytaro Y,et al.Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase:Its possible occurrence in cancer patients.Proc Nad Acad Sci.1986.83: 6622-6626.
    23. Bauer TM, Jiga LP, Chuang JJ,et al.Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo.Transpl Int.2005.18(1):95-100.
    24. Hiroaki Y,Katsuji T,Rytaro Y,et al.Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase:Its possible occurrence in cancerpatients[J].Proc Nad Acad Sci.1986,83:6622-6626.
    25. Catherine U,Luc P,Ivan T,et al.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase[J].Nature Medicine.2003.9:1269-1274.
    26. Fallarino, F. Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells[J].Int. Immunol. 2002,14, 65–68.
    27. Munn, DH. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase[J].Science.2002,297:1867–1870.
    28. Hiroaki Y,Katsuji T,Rytaro Y,et al.Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase:Its possible occurrence in cancer patients[J].Proc Nad Acad Sci.1986,83:6622-6626.
    29. Uyttenhove C,Pilotte L,Theate I, et al.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat-Med. 2003 ,9(10): 1269-1274.
    30. Matlack R,Yeh K,Rosini L,et al. Peritoneal macrophages suppress T-cell activation by amino acid catabolism.Immunology. 2006.117(3):386-395.
    31. J Plumas, L Chaperot, MJ Richard,et al.Mesenchymal stem cells induce apoptosis of activated T cells.Leukemia,2005.19:1597?1604.
    32. Wang HY,Lee DA,Peng G, et al.Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity. 2004 ,20(1): 107-118.
    33. Porter S-B,Liu B,Rogosheske J, et al.Suppressor function of umbilical cord blood-derived CD4+CD25+ T-regulatory cells exposed to graft-versus-host disease drugs. Transplantation. 2006,82(1): 23-29.
    34. Mjosberg J,Berg G,Ernerudh J, et al.CD4+ CD25+ regulatory T cells in human pregnancy: development of a Treg-MLC-ELISPOT suppression assay and indications of paternal specific Tregs. Immunology. 2007 ,120(4): 456-466
    35. Fallarino F, Grohmann U,You S,et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006,176(11):6752–6761.
    36. Orabona C, Puccetti P,Vacca C, et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood. 2006,107(7):2846–2854.
    37. Munn DH,Sharma MD,Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol. 2004,172(7):4100–4110.
    38. Fallarino F,Grohmann U,Hwang KW,et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol.2003,4(12):1206–1212.
    39. Friberg M, Jennings R, Alsarraj M, et al.Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection[J]. Int J Cancer. 2002,101(2):151-155.
    40. Muller AJ,Prendergast GC.Marrying immunotherapy with chemotherapy: why say IDO[J]?Cancer Res. 2004,65(18):8065-8068.
    41. Muller AJ, DuHadaway JB, Donover PS,et al.Prendergast GC.Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy[J].Nat Med. 2005;11(3):312-319.
    42. Gaspari P, Banerjee T, Malachowski WP,et al.Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors[J].J Med Chem. 2006,49(2):684-692.
    43. Turk MJ,Wolchok JD,Guevara-Patino JA, et al.Multiple pathways to tumor immunity and concomitant autoimmunity. Immunol-Rev. 2002 ,188: 122-35.
    44. Wood KJ,Sawitzki B.Interferon gamma: a crucial role in the function of induced regulatory T cells in vivo[J].Trends Immunol.2006,27(4):183-187.
    45. Barnett B,Kryczek I,Cheng P, et al.Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am-J-Reprod-Immunol. 2005 ,54(6): 369-77.
    46. Wolf D,Rumpold H,Wolf AM Regulatory T cells in cancer biology: a possible new target for biochemical therapies. Mini-Rev-Med-Chem. 2006,6(5): 509-513.
    47. Viguier M,Lemaitre F,Verola O, et al.Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J-Immunol. 2004 ,173(2): 1444-1453.
    48. Wang HY,Wang RF.Regulatory T cells and cancer. Curr-Opin-Immunol. 2007 ,19(2):217-223.
    49. Peng G,Guo Z,Kiniwa Y, et al.Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science. 2005 ,309(5739): 1380-1384.
    50. Muller AJ, Prendergast GC.Indoleamine 2,3-dioxygenase in immune suppression and cancer.Curr Cancer Drug Targets. 2007,7(1):31-40.
    51. Thomas F. Gajewski, Yuru Meng,et al.Immune Suppression in the Tumor Microenvironment.J Immunother.2006, 29(3):233-240.
    52. David HM,Andrew LM.IDO and tolerance to tumors.TRENDS in Molecular Medicine.2004,10(1):15-18.
    53. Andrew M.Indoleamine 2,3 dioxygenase and regulation of T cell immunity. BBRC. 2005,338(1):20-24.
    54. Munn DH,Sharma MD,Lee JR,et al.Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002,297(5588):1867-1870.
    55. Hiroaki Y,Katsuji T,Rytaro Y,et al.Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase:Its possible occurrence in cancer patients.Proc Nad Acad Sci.1986,83(4):6622-6626.
    56. Schroecksnadel K,Winkler C,Fuith LC,et al.Tryptophan degradation in patients with gynecological cancer correlates with immune activation.Cancer Letters,2005,223 (2) :323–329.
    57. Brandacher G, Perathoner A, Ladurner R,et al.Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006,12(4):1144-1151.
    58. Ino K, Yoshida N, Kajiyama H, et al.Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer.Br J Cancer. 2006,95(11):1555-1561.
    59. Nakamura T, Shima T, Saeki A,et al.Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci.2007
    60. David H. Munn, Madhav D. Sharma,et al.Potential Regulatory Function of Human Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. Science, 2002(297):1867-1870
    61. Wierda WG,Kipps TJ, et al.Gene therapy and active immune therapy of hematologic malignancies. Best-Pract-Res-Clin-Haematol. 2007,20(3): 557-68.
    62. Lim DS,Kim JH,Lee DS, et al.DC immunotherapy is highly effective for the inhibition of tumor metastasis or recurrence, although it is not efficient for the eradication of established solid tumors. Cancer-Immunol-Immunother. 2007 ,56(11): 1817-1829.
    63. Asano R,Watanabe Y,Kawaguchi H, et al.Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells. J-Biol-Chem. 2007,282(38): 27659-27665.
    64. Zitvogel L,Tesniere A,Kroemer G,et al.Cancer despite immunosurveillance: immunoselection and immunosubversion.Nat Rev Immunol.2006,6(10): 715-727.
    65. Anti-tumor immunity and autoimmunity: a balancing act of regulatory T cells. Wei W-Z,Morris G-P,Kong Y-C Cancer-Immunol-Immunother. 2004 ,53(2): 73-8.
    66. Nomura T,Sakaguchi S.Naturally arising CD25+CD4+ regulatory T cells in tumor immunity.Curr Top Microbiol Immunol.2005,293(2):287-302.
    67. Nicholl M,Lodge A,Brown I,Sugg SL.Restored immune response to an MHC-II-Restricted antigen in tumor-bearing hosts after elimination of regulatory T cells.J Pediatr Surg.2004,39(6): 941-946.
    68. Wei WZ, Morris GP,Kong YC,et al. Anti-tumor immunity and autoimmunity: a balancing act of regulatory T cells Cancer Immunol Immunother.2004, 53(2): 73-78.
    69. David H. M,Andrew LM.Indoleamine 2,3-dioxygenase and tumor-induced tolerance.J Clin Inves,2007117(5):1147-1154.
    70. Munn DH.Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter regulation. Curr Opin Immunol.2006, 18(2):220-225.
    71. Nakamura T, Shima T, Saeki A,et al.Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci.2007,98(6):874-881.
    72. Liyanage UK,Goedegebuure PS,Moore TT,et al.Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma.J Immunother.2006,29(4):416-424.
    73. Curti A, Aluigi M, Pandolfi S,et al.Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase.Leukemia. 2007,21(2):353-355.
    74. Ptok H,Meyer F,Steinert R, et al.No prognostic impact of isolated lymphovascular invasion after radical resection of rectal cancer--results of a multicenter observational study. Int-J-Colorectal-Dis. 2007 ,22(7): 749-756.
    75. Tsao A-S,He D,Saigal B, et al.Inhibition of c-Src expression and activation in malignant pleural mesothelioma tissues leads to apoptosis, cell cycle arrest, and decreased migration and invasion. Mol-Cancer-Ther. 2007 ,6(7): 1962-1972.
    76. Patel BP,Shah SV,Shukla SN, et al.Clinical significance of MMP-2 and MMP-9 in patients with oral cancer. Head-Neck. 2007,29(6): 564-572.
    77. Mendes O,Kim H-T,Lungu G, et al.MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin-Exp-Metastasis. 2007,24(5): 341-351.
    78. Loberg R-D,Ying C,Craig M, et al.CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 2007 ,9(7): 556-562.
    79. Hajime M,Shuichi Y,Makoto N, et al.Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. Int-J-Cancer. 2007,120(12): 2704-2709.
    80. Han JY,Kim HS,Lee SH, et al. Immunohistochemical expression of integrins and extracellular matrix proteins in non-small cell lung cancer: correlation with lymph node metastasis.Lung-Cancer. 2003 ,41(1): 65-70.
    81. Han G,Lu S-L,Li AG,et al.Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J-Clin-Invest. 2005 ,115(7): 1714-1723.
    82. Wicki A,Lehembre F, Wick N.et al.Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actincytoskeleton..Cancer Cell.2006,9(4): 261-272.
    83.谢启超,王玲俐,陈正堂.IDO与肿瘤免疫逃逸.重庆医学.2007,36(13):1327-1329.
    84. Tyler JC.Tregs and rethinking cancer immunotherapy.The Journal of Clinical Investigation.2007,117(15):1167-1184.
    85. Beswick EJ,Pinchuk IV,Das S,et al.Expression of the programmed death ligand 1, B7-H1, on gastric epithelial cells after Helicobacter pylori exposure promotes development of CD4+ CD25+ FoxP3+ regulatory T cells. Infect-Immun. 2007,75(9): 4334-4341.
    86. Mahnke K,Ring S,Johnson TS,et al.Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation. Eur-J-Immunol. 2007 ,37(8): 2117-2126.
    87. Agaugue S,Perrin-Cocon L,Coutant F,et al.1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J-Immunol. 2006,177(4): 2061-2071.
    88. Hill M,Pereira V,Chauveau C,et a.Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB-J. 2005 ,19(14): 1957-1968.
    89. Suh H-S,Zhao M-L,Rivieccio M,et al.Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response. J-Virol. 2007,81(18): 9838-9850.
    1.付尚志.肿瘤的免疫功能研究现况.临床军医杂志.2002,30(5):95-97.
    2. Muller AJ,Prendergast GC. Indoleamine 2,3-dioxygenase in immune suppression and cancer Curr Cancer Drug Targets. 2007,7(1):31-40.
    3. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance.J Clin Invest. 2007,117(5):1147-1154.
    4. Gajewski TF, Meng Y, Harlin H,et al. Immune suppression in the tumor microenvironment. J Immunother. 2006,29(3):233-240.
    5. CD4+CD25+调节性T细胞和感染免疫.医学研究生学报.2006,19(8):741-744.
    6. Hiroaki Y,Katsuji T,Rytaro Y,et al.Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase:Its possible occurrence in cancer patients.Proc Nad Acad Sci.1986,83(9):6622-6626.
    7. Uyttenhove C; Pilotte L;Theate I,et al.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase.Nat Med.2003.9(10):1269-1274.
    8. Fallarino F, Vacca C,Orabona C,et al. Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells.Int Immunol. 2002,14(1):65–68.
    9. Orabona C,Puccetti P,Vacca C,et al.Toward the identification of a tolerogenic signature in IDO-competent dendritic cells.Blood.2006,107(1):2846–2854.
    10. Fallarino F, Asselin-Paturel C,Vacca C,et al.J-Immunol. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. 2004,173(6): 3748-3754.
    11. Astigiano S, Morandi B, Costa R, et al. Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer. Neoplasia.2005,7(4): 390-396.
    12. Odemuyiwa SO, Ghahary A, Li Y,et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J-Immunol. 2004,173(10): 5909-5913.
    13. Lee GK, Park HJ, Macleod M,et al.Tryptophan deprivation sensitizes activated T cellsto apoptosis prior to cell division[J].Immunology.2002,107(4):452-460.
    14. Brandacher G, Perathoner A, Ladurner R,et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006,12(4):1144-1451.
    15. Wood KJ,Sawitzki B.Interferon gamma: a crucial role in the function of induced regulatory T cells in vivo[J].Trends Immunol.2006,27(4):183-187.
    16. Bauer TM, Jiga LP, Chuang JJ,et al.Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo[J].Transpl Int.2005.18(1):95-100.
    17. David HM,Andrew LM IDO and tolerance to tumors[J].TRENDS in Molecular Medicine 2004,10(1):15-18.
    18. Andrew M.Indoleamine 2,3 dioxygenase and regulation of T cell immunity[J]. Biochemical and Biophysical Research Communications. 2005, 338(1):20-24.
    19. Bluestone JA. Regulatory T-cell therapy: is it ready for the clinic [J]? Nat. Rev. Immunol 2003,5(4):343-349.
    20. Mellor AL,Chandler P,Baban B,et al.Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase[J]. Int Immunol.2004,16(10):1391-1401.
    21. von BD,Bausinger H,Matz H,et al.Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase[J].J Invest Dermatol.2004, 123(2): 298-304.
    22. Fallarino F,Grohmann U,You S,et al. Tryptophan catabolism generates autoimmune- preventive regulatory T cells[J].Transplant Immunology. 2006,.17(1): 58-60
    23. Munn DH, Sharma MD,Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005,22(5):633–642.
    24. Fallarino F, Grohmann U,You S,et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006,176(11):6752–6761.
    25. Orabona C, Puccetti P,Vacca C, et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood. 2006,107(7):2846–2854.
    26. Munn DH,Sharma MD,Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol. 2004,172(7):4100–4110.
    27. Fallarino F,Grohmann U,Hwang KW,et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol.2003,4(12):1206–1212.
    28. Finger EB,Bluestone JA. When ligand becomes receptor-tolerance via B7 signaling on DCs. Nat Immunol. 2002,3(11):1056–1057.
    29. Liyanage UK,Goedegebuure PS,Moore TT,et al.Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma.J Immunother.2006,29(4): 416-424.
    30. Curti A, Aluigi M, Pandolfi S,et al.Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase.Leukemia. 2007,21(2): 353-355.
    31. Zheng XF, James K,Mu Li,et al. Reinstalling Antitumor Immunity by Inhibiting Tumor-Derived Immunosuppressive Molecule IDO through RNA Interference1[J].The Journal of Immunology. 2006, 177: 5639–5646.
    32. Friberg M, Jennings R, Alsarraj M, et al.Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection[J]. Int J Cancer. 2002,101(2):151-155.
    33. Muller AJ,Prendergast GC.Marrying immunotherapy with chemotherapy: why say IDO[J]?Cancer Res. 2004,65(18):8065-8068.
    34. Muller AJ, DuHadaway JB, Donover PS,et al.Prendergast GC.Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy[J].Nat Med. 2005;11(3):312-319.
    35. Gaspari P, Banerjee T, Malachowski WP,et al.Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors[J].J Med Chem. 2006,49(2): 684-692.
    1. Gajewski TF,Meng Y,Blank C,et al.Immune resistance orchestrated by the tumor microenvironment. Immunol Rev.2006,213:131-145.
    2. Alessandro P,Maria RZ.Mechanisms of tumor escape:role of tumor microenvironment in inducing apoptosis of cytolytic effector cells.Arch. Immunol. Ther Exp.2006,54:323-333.
    3. Nomura T,Sakaguchi S.Naturally arising CD25+CD4+ regulatory T cells in tumor immunity.Curr Top Microbiol Immunol.2005,293:287-302.
    4. Yang ZZ,Novak AJ,Stenson MJ,et al.Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T-cells in B-cell non-Hodgkin lymphoma.Blood.2006, 107:3639-3646.
    5. Nicholl M,Lodge A,Brown I,Sugg SL.Restored immune response to an MHC-II- Restricted antigen in tumor-bearing hosts after elimination of regulatory T cells.J Pediatr Surg.2004,39: 941-946.
    6. Turk MJ, Guevara-Patino JA, Rizzuto GA, et al.Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med. 2004,200:771-782.
    7. Viguier M,Lemaitre F,Verola O,et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 2004,173:1444-1453.
    8. Curiel TJ,Coukos G,Zou L,et al.Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004,10:942-949.
    9. Wang HY, Lee DA, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy.Immunity.2004,20:107-118.
    10. Peng G, Guo Z, Kiniwa Y, et al.Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function.Science.2005,309:1380-1384.
    11. Monach PA, Schreiber H, Rowley DA, et al.CD4+ and B lymphocytes in transplantationimmunity. II. Augmented rejection of tumor allografts by mice lacking B cells. Transplantation. 1993,55:1356-1361.
    12. Qin Z,Richter G,Schuler T,et al.B cells inhibit induction of T cell-dependent tumor immunity.Nat-Med. 1998,4:627-630.
    13. Byrne SN,Ahmed J,Halliday GM,et al. Ultraviolet B but not A radiation activates suppressor B cells in draining lymph nodes. Photochem-Photobiol. 2005 ,81:1366-1370.
    14. Matsumura Y,Byrne SN,Nghiem DX,et al.A role for inflammatory mediators in the induction of immunoregulatory B cells. J Immunol. 2006,177:4810-4817.
    15. Huang B,Pan PY,Li Q,et al.Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host.Cancer Res.2006,66:1123-1131.
    16. Zea AH,Rodriguez PC,Atkins MB,et al.Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion.Cancer Res. 2005,65:3044-3048.
    17. Serafini P,De-Santo C,Marigo I,et al.Derangement of immune responses by myeloid suppressor cells.Cancer Immunol Immunother.2004,53:64-72.
    18. Yang L,DeBusk LM,Fukuda K,et al.Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis.Cancer Cell. 2004,6:409-421.
    19. Kruger-Krasagakes S, Krasagakis K, Garbe C, et al. Expression of interleukin 10 in human melanoma. Br J Cancer. 1994,70:1182-1185.
    20. Steinbrink K,Jonuleit H,Muller G,et al.Interleukin-10-treated human dendritic cells induce a melanoma-antigen- specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood.1999,93:1634-1642.
    21. Wittke F,Hoffmann R,Buer J,et al. Interleukin 10(IL-10):an immunosuppressive factor and independent predictor in patients with metastatic renal cell carcinoma.Br J Cancer. 1999,79:1182-1184.
    22. Gorelik L,Flavell RA.Immune-mediated eradication of tumors through the blockade oftransforming growth factor-beta signaling in T cells. Nat Med. 2001,7:1118-1122.
    23. Peng Y,Laouar Y,Li MO,et al. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA.2004,101:4572-4577.
    24. Takahashi A,Kono K,Itakura J,et al.Correlation of vascular endothelial growth factor-expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology. 2002,62:121-127.
    25. Jackson MW,Roberts JS,Heckford SE,et al.A potential autocrine role for vascular endothelial growth factor in prostate cancer.Cancer Res.2002,62:854-859.
    26. Bauer TM,Jiga LP,Chuang JJ,et al.Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo.Transpl Int.2005.18:95-100.
    27. Miwa N,Hayakawa S,Miyazaki S,et al.IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod.2005,11:865-70.
    28. Munn DH,Sharma MD,Lee JR,et al.Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase.Science.2002,297:1867-1870
    29. Rodriguez PC,Quiceno DG,Zabaleta J, et al. Arginase Iproduction in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res.2004,64:5839-5849.
    30. Rodriguez PC,Zea AH,Culotta KS,et al. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem.2002,277:21123-21129.
    31. Ensor CM, Holtsberg FW, Bomalaski JS,et al.Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res.2002,62:5443-5450.
    32. Zha Y,Blank C,Gajewski TF,et al.Negative regulation of T-cell function by PD-1. Crit Rev Immunol.2004,24:229-237.
    33. Salceda S,Tang T,Kmet M,et al.The immunomodulatory protein B7-H4 isoverexpressed in breast and ovarian cancers and promotes epithelial cell transformation.Exp Cell Res. 2005,306:128-141.
    34. Zang X,Loke P,Kim J,et al.B7x:a widely expressed B7 family member that inhibits T cell activation.Proc Natl Acad Sci U-S-A.2003,100:10388-10392.
    35. Hirano F,Kaneko K,Tamura H,et al.Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity.Cancer Res.2005,65:1089-1096.
    36. Sica GL,Choi IH,Zhu G,et al.B7-H4,a molecule of the B7 family,negatively regulates T cell immunity. Immunity.2003,18:849-861.
    37. Le QT,Shi G,Cao H,et al.Galectin-1:a link between tumor hypoxia and tumor immune privilege.J-Clin-Oncol.2005,23:8932-8941.
    38. Joon-Yun A,Bazar KA,Lee PY,et al.Tumors may modulate host immunity partly through hypoxia-induced sympathetic bias.Med Hypotheses.2004,63:352-356.
    39. Ohta A, Gorelik E, Prasad SJ,et al.A2A adenosine receptor protects tumors from antitumor T cells.Proc Natl Acad Sci U-S-A.2006,103:13132-13137.
    40. Uyttenhove C; Pilotte L;Theate I,et al.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase.Nat Med.2003.9(10):1269-1274.
    41. Fallarino F, Vacca C,Orabona C,et al. Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells.Int Immunol. 2002,14(1):65–68.
    42. Fallarino F, Asselin-Paturel C,Vacca C,et al.J-Immunol. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. 2004,173(6): 3748-3754.
    43. Mimura K; Kono K,Takahashi A,et al.Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2.Cancer-Immunol-Immunother. 2007,56(6): 761-770.
    44. Kikuchi K,Kusama K,Sano M,et al.Vascular endothelial growth factor and dendritic cells in human squamous cell carcinoma of the oral cavity. Anticancer-Res. 2006 26(3A): 1833-1848.
    45. Dikov MM,Ohm JE,Ray N,et al.Differential roles of vascular endothelial growth factorreceptors 1 and 2 in dendritic cell differentiation. J-Immunol. 2005,174(1): 215-222.
    46. Della-Porta M,Danova M,Rigolin GM,et al.Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology. 2005; 68(2-3): 276-284.
    47. Laxmanan S,Robertson,SW,Wang E,et al.Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem- Biophys- Res- Commun. 2005,334(1): 193-198.
    48. Takahashi A,Kono K,Ichihara F,et al.Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer-Immunol-Immunother. 2004,53(6): 543-550.
    1. Kammula.U.S, Marincola.F.M,Cancer immunotherapy: is there real progress at last? BioDrugs. 11(1999) 249-260.
    2. Yannelli.J.R, Wroblewski.J.M,On the road to a tumor cell vaccine: 20 years of cellular immunotherapy,Vaccine. 23(2004) 97-113.
    3. Paul.S, Calmels.B, Acres.R.B,Improvement of adoptive cellular immunotherapy of human cancer using ex-vivo gene transfer,Curr.Gene.Ther. 2(2002) 91-100.
    4. Thomas.F. Gajewski,Yuru.Meng,Immune Suppression in the Tumor Microenvi- ronment,J.Immunother. 29(2006) 233-240.
    5. Blansfield.J.A, Caragacianu.D, Alexander.H.R, Tangrea.M.A, Morita.S.Y, Lorang.D, Schafer .P, Muller.G, Stirling.D, Royal.R.E, Libutti.S.K,Combining Agents that Target the Tumor Microenvironment Improves the Efficacy of Anticancer Therapy, Clin.Cancer.Res. 14(2008):270-280.
    6. Trédan.O, Galmarini.C.M, Patel.K, Tannock.I.F,Drug resistance and the solid tumor microenvironment,J.Natl.Cancer.Inst.2007. (2007) 1441-1454.
    7. Schabowsky.R.H, Madireddi.S, Sharma.R, Yolcu.E.S, Shirwan.H,Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. Curr. Opin. Investig. Drugs. 8(2007) 1002-1008.
    8. Strauss.L, Bergmann.C, Szczepanski.M, Gooding.W, Johnson.J.T, Whiteside.T.L. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvir- onment,Clin.Cancer.Res. 13(2007) 4345-4354.
    9. López.M, Aguilera.R, Pérez.C, Mendoza.N.A, Pereda.C, Ramirez.M, Ferrada.C, Aguillón .J.C, Salazar-Onfray.F. The role of regulatory T lymphocytes in the induced immune response mediated by biological vaccines,Immunobiology.211(2006) 127-136.
    10. Wilczynski.J.R, Radwan.M, Kalinka.J,The characterization and role of regulatory T cells in immune reactions, Front.Biosci. 13(2008) 2266-2274.
    11. Chaput.N, Darrasse-Jèze.G, Bergot.A.S, Cordier.C, Ngo-Abdalla.S, Klatzmann.D, Azogui.O,Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites,J.Immunol. 179(2007) 4969-4978.
    12. Sharma.M.D, Baban.B, Chandler.P, Hou.D.Y, Singh.N, Yagita.H, Azuma.M, Blazar. B.R, Mellor.A.L, Munn.D.H,Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3- dioxyge- nase,J.Clin.Invest. 117(2007) 2570-2582.
    13. Munn.D.H, Mellor.A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance, J.Clin.Invest. 117(2007)1147–1154.
    14. Uyttenhove.C, Pilotte.L, Théate.I, Stroobant.V, Colau.D, Parmentier.N, Boon.T, Van den.Eynde.B.J,Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase,Nat.Med. 9(2003) 1269–1274.
    15. Carreras.J,Lopez-Guillermo.A,Fox.B.C,Colomo.L,Martinez.A,Roncador.G,Montserrat.E,Campo.E, Banham.A.H,High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma,Blood. 108(2006) 1957-1964.
    16. Shafer-Weaver.K, Anderson.M, Malyguine.A, Hurwitz.A.A,.T cell tolerance to tumors and cancer immunotherapy. Adv.Exp.Med.Biol. 601(2007)357-368.
    17. Horna.P, Sotomayor.E.M,Cellular and molecular mechanisms of tumor-induced T-cell tolerance. Curr.Cancer.Drug.Targets. 7(2007)41-53.
    18. Plumas.J,Chaperot.L,Richard.M.J,Molens.J.P,Bensa.J.C,Favrot.M.C,Mesenchymal stem cells induce apoptosis of activated T cells,Leukemia. 19(2005)1597?1604.
    19. Miwa.N,Hayakawa.S,Miyazaki.S,Myojo.S,Sasaki.Y,Sakai.M,Takikawa.O,Saito.S,IDO expression on decidual and peripheral blood dendritic cells and monocytes/ macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion,Mol.Hum.Reprod, 11(2005)865-70.
    20. Munn.D.H, Sharma.M.D, Lee.J.R, Jhaver.K.G, Johnson.T.S, Keskin.D.B, Marshall.B, Chandler.P, Antonia.S.J, Burgess.R, Slingluff.C.L.Jr, Mellor.A.L,Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase,Science. 297(2002)1867-1870.
    21. Gajewski.T.F, Meng.Y, Blank.C, Brown.I, Kacha.A, Kline.J, Harlin.H,Immune resistance orchestrated by the tumor microenvironment,Immunol.Rev. 213(2006) 131-145.
    22. Alessandro.P,Maria.R.Z,Mechanisms of tumor escape:role of tumor microenvironmentin inducing apoptosis of cytolytic effector cells,Arch.Immunol. Ther.Exp. 54(2006)323-333.
    23. Yu.Y,Lee.W,Liu.T,Krausz.A,Chong.H,Schreiber.Y,Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors,J.Exp.Med. 201(2005)779–791.
    24. Colombo.M.P, Piconese.S.Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy,Nat.Rev.Cancer. 7(2007)880-887.
    25. Mellor.A.L, Baban.B, Chandler.P, Marshall.B, Jhaver.K, Hansen.A, Koni.P.A, Iwashima.M, Munn.D.H,Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion,J. Immunol. 171(2003)1652–1655.
    26. Curti.A, Aluigi.M, Pandolfi.S, Ferri.E, Isidori.A, Salvestrini.V, Durelli.I, Horenstein.A.L, Fiore.F, Massaia.M, Piccioli.M, Pileri.S.A, Zavatto.E, D'Addio.A, Baccarani.M, Lemoli.R.M,Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase, Leukemia. 21(2007)353-355.
    27. Liyanage.U.K, Goedegebuure.P.S, Moore.T.T, Viehl.C.T, Moo-Young.T.A, Larson.J.W, Frey.D.M, Ehlers.J.P, Eberlein.T.J, Linehan.D.C,Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma,J.Immunother. 29(2006) 416-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700