EBV体外转染人B淋巴细胞方法的优化及B淋巴母细胞样细胞系的体外建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B淋巴细胞是机体体液免疫的主要效应细胞,以表达和分泌免疫球蛋白为特征。从某种意义上讲,机体的体液免疫应答过程就是B细胞针对特异抗原而活化、增殖和分化过程。检测B细胞特性及免疫球蛋白,了解机体体液免疫状况,对于探讨各种疾病的免疫发病机理及药物治疗效应均有重要的临床意义;分析B细胞发育不同阶段的表面标记,了解B细胞发育和分化阶段的特性与疾病的关系,可为临床提供诊治相关疾病的有用资料。
     EB病毒(Epstein-Barr Virus,EBV)是一种γ亚科疱疹病毒,它与人类很多恶性疾病有关,特别是上皮和淋巴起源的肿瘤。EBV在体外能感染正常静止的B细胞,使它们变成永生化的淋巴细胞系(LCL)。由于EBV的这一特性,目前已被广泛应用于多种细胞的永生化,转化的细胞株染色体稳定,保留了原有的遗传性状。病毒转化后的B淋巴母细胞样细胞系(B-LCLs)依然保存了B细胞的分化特征和免疫表型,作为抗原提呈细胞,它可以摄取加工抗原,并将其载体部分表达于细胞表面,供T细胞受体识别;也可作为抗体基因的来源,将其与骨髓瘤细胞融合,制备分泌相应的单克隆抗体的杂交瘤细胞株。近年尤其值得关注的是,利用B-LCLs生物学特性作为人源化抗体的生产体系。
     CpG基序(motif)可以活化免疫细胞,激发机体产生Th1型为主的免疫应答。目前的研究已证明:CpG寡核苷酸能够活化人类B淋巴细胞,诱导多种细胞因子和细胞表面免疫相关分子的表达。B细胞上高表达重要的免疫分子CD40,CD40mAb与B细胞上的CD40分子发生交联,而使B细胞免于凋亡和增加生存能力。因此本实验旨在探讨CpG基序和CD40激发型抗体(5C11)对EBV转化的作用,从而优化B-LCLs建系的方法,对于体外利用和研究B淋巴细胞株具有重要的理论价值和潜在的运用意义。
     第一部分EBV体外转染人B细胞方法的优化
     目的探讨体外建立健康人外周血的B淋巴母细胞样细胞系(LCLs)的优化方法及其影响因素。方法用EB病毒感染健康人外周血中分离的单个核细胞(PBMC),加入CD40激发型抗体(5C11)、CpG DNA免疫调节基序以诱导B淋巴细胞增殖,环胞菌素A(CysA)抑制T淋巴细胞的活性。光学显微镜下观察LCLs的形态特征,利用流式细胞术分析LCLs膜表面分子CD19的表达水平。结果PBMC经EBV感染3周后转化成永生化B淋巴母细胞系。转化后的B淋巴母细胞体积增大积聚成团,可进一步分裂增殖并长期传代培养。CD40激发型抗体(5C11)及CpG免疫调节基序联合运用,明显地提高了EBV转化效率,转化后的LCLs保持了成熟B淋巴细胞的生物学特征。结论CD40信号激发和CpG免疫调节基序联合运用有效地促进EBV对人B淋巴细胞的转化及体外建系。
     第二部分人B淋巴母细胞系的体外建立及生物学活性鉴定
     目的体外建立健康人外周血的B淋巴母细胞样细胞系(LCLs)并鉴定其生物学活性。方法光学显微镜下观察,并做Giemsa染色,观察LCLs的形态特征;提取LCLs的总RNA,检测EB病毒潜伏膜蛋白基因LMP1的存在;利用流式细胞术分析LCLs膜表面分子CD19、CD40的表达水平。结果PBMC经EBV感染3周后转化成永生化B淋巴母细胞系。转化后的B淋巴母细胞体积增大积聚成团,可进一步分裂增殖并长期传代培养。转化后的LCLs含有LMP1基因,并保持了成熟B淋巴细胞的生物学特征。结论用EBV体外转染方法成功建立B淋巴母细胞样细胞系,转化后的B淋巴母细胞能持续分裂,并保持了成熟B淋巴细胞的生物学特性。
B cells are lymphocytes that play a critical role in the humoral immune response(HIR). In this case, the HIR is a process that B cells recognition of antigen undergo activation, proliferation and differentiation. The study of B cell characters and immunoglobulin secretion has significant clinical value for immune diseases pathogenesis and medical therapy. To detect the cell surface markers in different stages of B cell activation and proliferation, could be helpful for the comprehension of correlations between B cells and diseases and clinical treatments for deseases.
     Epstein-Barr virus (EBV), a prominent member ofγ-herpesviruses, causes many human malignant diseases, especially tumors derived from epithelial or lymphocytic origin. It could infect primary resting B lymphocytes and transform B cells into EBV-immortalized LCLs. As a result, EBV is thought to be an effective method for cell immortalization with stable chromosome and original genetic character. B-LCLs are convenient sources of antibody-secreting cells and antigen-presenting cells. In recent studies, scientists used B-LCLs as an important mean to produce humanized antibodies. CpG motifs could activate human immune cells and induce Th1 type immune response. It has been reported that CpG motif-containing oligodeoxynucleotides could activeate human B lymphocytes, lead to cytokine secretion and cell surface molecules expression. B cells can avoid apoptosis and improve its living ability for the important moleculear CD40 could binds with CD40mAb. We use CpG DNA motifs and agonist CD40mAb(5C11) to raise EBV transfection efficiency. Optimization of transfected human B lymphoblastoid cell lines by EBV makes great sense to study B cells and its application in vitro.
     The optimization of transfected human B lymphoblastoid cell lines by EBV in vitro
     AIM: Investigation of optimized methods and the influencing factors for the establishment of B lymphoblastoid cell lines (LCLs) derived from human PBMC in vitro. METHODS: The peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors and incubated with EB virus (EBV) while agonist CD40mAb(5C11), CpG DNA motifs for stimulating B lymphocytes and cyclospofin A (CyA) for inhibiting T lymphocytes were added at the same time. Morphological characteristics of immortalized B-lymphocytes were observed under optical microscope. Flow cytometry analysis was used to identify the expression of surface molecule CD19 on LCLs. RESULTS: PBMC incubated with EBV for 3 weeks were transformed into immortalized B lymphoblastoid cell lines. These immortalized cells accumulated into groups and were able to be cultured in the long term proliferation. The agonist CD40mAb and CpG DNA motifs markedly promoted the EBV transformation process. EBV-immortalized LCLs maintained the biological features of mature B lymphocytes. CONCLUSION: The combination of CD40 signal activation and CpG DNA motifs could effectively promote the EB virus transformation into human B lymphocytes and cell line establishment.
     The establishment of human B lymphoblastoid cell lines in vitro and its biological function
     AIM: Establish B lymphoblastoid cell lines (LCLs) derived from healthy human PBMC in vitro and study its biological function. METHODS: Optical microscope was used to observe B lymphoblastoid cells stained by Giemsa technique. We extracted total RNA from LCLs and detected the expression of EpsteinBarr virus (EBV) encoded latent membrane protein 1(LMP1) gene. Flow cytometry analysis identified the expression of surface molecule CD19 and CD40 on LCLs. RESULTS: PBMC incubated with EBV for 3 weeks were transformed into immortalized B lymphoblastoid cell lines. These immortalized cells accumulated into groups and were able to be cultured in the long term proliferation. EBV-immortalized LCLs expressing LMP1 maintained the biological features of mature B lymphocytes. CONCLUSION: LCLs was successfully established by EBV transformation method. The transfected B lymphoblastoid cells not only continue to proliferate but also keep the biological features as mature B cells.
引文
1.司徒镇强,吴军正主编.细胞培养[M].西安:世界图书出版公司,1996:332-345.
    2. Yamashita Y,Tsurumi T,Mori N,et al.Immortalization of Epstein-Barr virus- negative human B lymphocytes with minimal chromosomal instability [J].Pathol Int.2006,56(11):659-667.
    3. Niedobitek G, Meru N, Delecluse HJ. Epstein-Barr virus infection and human malignancies[J]. Viruses and Cancer,2001,82:149-170.
    4. Wiech T, Nikolopoulos E, Lassman S, et al. Cyclin D1 expression is induced by viral BARF1 and is overexpressed in EBV-associated gastric cancer[J]. Virchows Arch,2008 ,452(6):621-617.
    5.金奇主编.医学分子病毒学[M],北京:科学出版社,2001.
    6. Delecluse HJ,Hammerschmidt W. The genetic approach to the Epstein-Barr virus: from basic virology to gene therapy[J]. J Clin Pathol Mol Pathal,2000, 53:270- 279.
    7.梁贤明.EB病毒潜伏膜蛋白和肿瘤的关系[J].国际检验医学杂志,2007,28(1):54-56.
    8. Chow KP, Wu CC, Chang HY,et al.A simplified tumour model established via Epstein-Barr virus-encoded, nasopharyngeal carcinoma-derived oncogene latent membrane protein 1 in immunocompetent mice[J].Lab Anim,2008,42(2):193-203.
    9. Diduk SV, Smirnova KV, Pavlish OA,et al.Functionally significant mutations in the Epstein-Barr virus LMP1 gene and their role in activation of cell signaling pathways[J].Biochemistry (Mosc).2008,73(10):1134-1139.
    10. Lee DY, Sugden B.The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy[J].Oncogene. 2008,27(20):2833-2842.
    11. Imadome K, Shimizu N, Yajima M,et al.CD40 signaling activated by Epstein-Barr virus promotes cell survival and proliferation in gastric carcinoma-derived humanepithelial cells[J].Microbes Infect.2009,11(3):429- 433.
    12. Thornburg NJ, Kulwichit W, Edwards RH,et al.LMP1 signaling and activation of NF-kappaB in LMP1 transgenic mice[J].Oncogene.2006,25(2):288-297.
    13. Nicholas J.Human gammaherpesvirus cytokines and chemokine receptors[J].J Interferon Cytokine Res.2005,25(7):373-383.
    14. Lambert SL, Martinez OM.Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10[J].J Immunol. 2007,179(12):8225-8234.
    15. Jeon JP, Kim JW, Park B,et al.Identification of tumor necrosis factor signaling-related proteins during Epstein-Barr virus-induced B cell transfor- mation[J].Acta Virol.2008,52(3):151-159.
    16. Middeldorp JM, Pegtel DM.Multiple roles of LMP1 in Epstein-Barr virus induced immune escape[J].Semin Cancer Biol.2008,18(6):388-396.
    17. Nakano S, Morimoto S, Suzuki J,et al. Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus[J]. Rheumatology (Oxford). 2008,47(2):145-149.
    18. Sugimoto M, Ide T, Furuichi Y.Mechanism of immortalization and tumorigenesis by EBV: overturn of the established theory[J]. Tanpakushitsu Kakusan Koso. 2005,50(3):283-288.
    19. Chen W, Cooper TK, Zahnow CA,et al.Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis[J].Cancer Cell. 2004,6(4):387-398.
    20. Pokrovskaja K, Ehlin-Henriksson B, Kiss C ,et al.CD40 ligation downregulates EBNA-2 and LMP-1 expression in EBV-transformed lymphoblastoid cell lines[J].Int J Cancer. 2002,10;99(5):705-712.
    21. Faumont N, Durand-Panteix S, Schlee M,et al.c-Myc and Rel/NF-kappaB are the two master transcriptional systems activated in the latency III program of Epstein-Barr virus-immortalized B cells[J].J Virol.2009,83(10):5014-5027.
    22. Mochida A, Gotoh E, Senpuku H,et al.Telomere size and telomerase activity in Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt's lymphoma cell lines[J].Arch Virol.2005,150(10):2139-2150.
    23. Okubo M, Tsurukubo Y, Higaki T ,et al.Clonal chromosomal aberrations accompanied by strong telomerase activity in immortalization of human B-lymphoblastoid cell lines transformed by Epstein-Barr virus[J].Cancer Genet Cytogenet.2001,129(1):30-34.
    24. Sugimoto M, Tahara H, Okubo M,et al. WRN gene and other genetic factors affecting immortalization of human B-lymphoblastoid cell lines transformed by Epstein-Barr virus[J].Cancer Genet Cytogenet.2004,152(2):95-100.
    25. Takahashi T, Kawabe T, Okazaki Y,et al.In vitro establishment of tumorigenic human B-lymphoblastoid cell lines transformed by Epstein-Barr virus[J].DNA Cell Biol.2003,22(11):727-735.
    26. Carman TA, Afshari CA, Barrett JC.Cellular senescence in telomerase- expressing Syrian hamster embryo cells[J].Exp Cell Res.1998, 244(1):33-42.
    27. Gao J,Luo X,Tang K,et al. Epstein-Barr virus integrates frequently into chromosome 4q, 2q, 1q and 7q of Burkitt's lymphoma cell line (Raji) [J]. J Virol Methods. 2006 ,136(1-2):193-199.
    28. Banchereau J, Bazan F, Blanchard D, et al. The CD40 antigen and its ligand[J]. Annu Rev Immunol. 1994; 12:881-922
    29. Hostager B.S., Hsing Y., Harms D.E., et al. Different CD40-mediated signaling events require distinct CD40 structural features[J]. J Immunol. 1996; 157(3): 1047-1053.
    30. Goldstein M.D.and Watts T.H.,Identification of distinct domains in CD40 involved in B7-1 induction or growth inhibition[J].J Immunol. 1996;157(7): 2837-2843.
    31. Bradley J.R. and Pober J.S., Tumor necrosis factor receptor-associated factors (TRAFs) [J]. Oncogene. 2001; 20(44): 6482-6491.
    32. Lee N.K., Lee S.Y., Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs) [J]. J Biochem Mol Biol. 2002;35(1):61-66.
    33. Pullen S.S., Dang T.T., Crute J.J., et al .CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs[J].J Biol Chem. 1999; 274 (20):14246-14254.
    34. Pype S, Declercq W, Ibrahimi A, et al. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor- associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation[J]. J Biol Chem. 2000 ; 275(24): 18586-18593.
    35. Hostager B.S., Catlett I.M., Bishop G.A., et al. Recruitment of CD40 and tumor necrosis factor receptor-associated factors 2 and 3 to membrane microdomains during CD40 signaling[J]. J Biol Chem. 2000;275(20):15392-15398.
    36. Pullen S.S., Labadia M.E., Ingraham R.H., et al. High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization[J]. Biochemistry. 1999; 38(31):10168-10177.
    37. Lu L.F., Ahonen C.L., Lind E.F.,et al. The in vivo function of a non-canonical TRAR-2 binding domain in the C-terminus of CD40 in driving B cell growth and diffentiation[J], Blood. 2007 Mar 14; [Epub ahead of print]
    38. Hollenbaugh D., Grosmaire L.S., Kullas C.D., et al. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity[J]. EMBO J. 1992; 11 (12): 4313-4321.
    39. Gauchat J.F., Aubry J.P., Mazzei G., et al. Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production[J]. FEBS Lett. 1993;315(3):259-266.
    40. Grammer A.C., Bergman M.C., Miura Y., et al. The CD40 ligand expressed by human B cells costimulates B cells responses[J].J Immunol. 1995; 154(10): 4996-5010.
    41. Henn V., Slupsky J.R., Grafe M., et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells[J].Nature.1998;391(6667):591-594.
    42. Pinchuk L.M., Klaus S.J., Magaletti D.M., et al. Functional CD40 ligand expressed by human blood dendritic cells is up-regulated by CD40 ligation[J]. J. Immunol. 1996; 157 (10): 4363-4370.
    43. Mach F., Schonbeck U., Sukhova G.K., et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis[J]. Proc. Natl. Acad. Sci.1997;94(5):1931-1936.
    44. Grewal L.S. and Flavell R.A. CD40 and CD154 in cell-mediated immunity[J]. Annu Rev Immunol. 1998; 16:111-135.
    45. Kooten C and Banchereau J. CD40-CD40 ligand[J].J Leuk Biol.2000; 67(1):2-17.
    46. Ludewig B, Henn V, Schroder J.M., et al. Induction, regulation, and function of soluble TRAP (CD40 ligand) during interaction of primary CD4+CD45RA+ T cell with dendritic cells[J]. Eur J Immunol. 1996; 26:3137-3142.
    47. von Bergwelt Baildon M.S., Vonderheide R.H., Maecker B, et al. Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen presenting cells: potential for clinical application[J].Blood. 2002; 99:3319-332.
    48. Yi AK, Peckham DW, Ashman RF,et al.CpG DNA rescues B cells from apoptosis by activating NFkappaB and preventing mitochondrial membrane potential disruption via a chloroquinesensitive pathway[J]. Int Immunol,1999,11: 2015- 2024.
    49.陈颖,项黎新,邵建忠.CpG DNA激活的受体信号转导及其反馈调控[J].细胞生物学杂志,2006,28:556-560.
    50. Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxyn- ucleotides as TLR9 agonists for immune modulation[J]. BioDrugs, 2007,21: 387-401.
    51.王沂蒙,刘艳,窦新红,等.CpG寡聚核苷酸的免疫激活机理及生物学活性[J].家禽科学,2007,1:43-46.
    52.陈慰峰,主编.医学免疫学第四版[M],北京:人民卫生出版社,2005.
    1.黄小义,刘岸,于 ,等.中国l0个民族永生细胞系的建立与保存[J].遗传HEREDITAS(Beijing),2002,24:643-645.
    2. Moosmann A,Khan N,Cobbold M,et a1.B cells immortalized by a mini- Epstein-Barr virus encoding a foreign antigen efficiently reactivate specific cytotoxic T cells[J].Blood,2002,100(5):1755-1764.
    3.肖自力,唐伟峰,朱自严等. B淋巴细胞的永生化及初步筛选[J].上海铁道大学学报, 1999,20(9):4-6.
    4.李宝民,纪志武,刘振声等. Epstein - Barr病毒诱导永生化人上皮细胞恶性转化[J].病毒学报,1998,14(2):133-137.
    5.鄂征.组织培养技术及其在医学研究中的应用[M].中国协和医科大学出版社,2004:366.
    6. Aman P, Gordon J, Lewin N, et a1. Surface marker characterization of EBV target cells in normal blood and tonsil B lymphocyte populations[J].J Immunol,1985,135:2362-2367.
    7.宋玫,高建华,严欣,等.瘢痕疙瘩家系外周血永生细胞库的建立[J].中华整形外科杂志,2006,22:445-447.
    8. Aman P,Ehlin-Henriksson B,Klein G.Epstein-Barr virus susceptibility of normal human B lymphocyte populations[J].J Exp Med,1984,159:208-220.
    9. Ring CJ.The B cell-immortalizing functions of Epstein-Barr virus[J]. J Gen Virol,1994,75:1-13.
    10. Blake N,Lee S,Redchenko I,et al.Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing[J].Immunity,1997,7(6):791-802.
    11. Maruo S,Yang L,Takada K.Roles of Epstein-Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells[J].J Gen Virol,2001;82(l0):2373-2383.
    12. Martin DR,Marlowe RL,Ahearn JM.Determination of the role for CD21 during Epstein-Barr virus infection of B-lymphoblastoid cells[J].J Virol,1994,68(8):4716-4126.
    13. Kurth J,Spieker T,Wustrow J,et al,EBV-infected B cellsin infectious mononucleosis:viral strategies for spreading inthe B cell compartment and establishing latency [J].Immunity,2000,13(4):485-495.
    14. Klaus GG,Holman M,Johnson Leger C,et al.Interaction of B cells with activated T cells reduces the threshold for CD40-mediated B cell activation [J].Int Immunol,1999,11(1):71-79.
    15. Moghaddam A,Koch J,Annis B,et a1.Infection of human B lymphocytes with lymphocryptoviruses related to Epstein-Barr virus [J].J Virol,1998,72(4):3205-3212.
    16.刘勇,吴超,陈军浩等.CpG对HBV感染者B细胞及Th1型细胞因子的活化作用[J].世界华人消化杂志,2008,16(14):1573-1576.
    17. Oxenius A,Martinio MM,Hengartner H,et al.CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines [J].J Virol,1999,73(5):4120-4126.
    18.周照华.CD40分子在B细胞发育分化中的作用[J].国外医学免疫学分册,2000,23(1):30-33.
    19. Rui L,Goodnow CC.Lymphoma and the control of B cell growth and differentiation[J].Curr Mol Med,2006,6(3):291-308.
    1.杨宝珍,魏军,王利新,等.脑海绵状血管瘤家系永生细胞株的建立[J].中华医学遗传学杂志,2007,24:107-108.
    2.王美亮,张全华,王九平,等. EB病毒转化B淋巴母细胞在汉滩病毒CTL表位研究中的应用[J].细胞与分子免疫学杂志,2009,25(1):20-22.
    3.陶怡,张学光. EB病毒编码潜伏性膜蛋白1的信号传导和生物学特性及与CD40的相关性[J].中国医学科学院学报,2004,26(5):585-590.
    4.李晓勇,何爱军.鼻咽癌CNE1细胞株中EB病毒LMP1cNDA的克隆及LMP1胞外段稳定性研究[J].军医进修学院学报,2007,28(6):442-444.
    5. Kieser A,Kaiser C,Hammerschmidt W,et al.LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2[J].EMBO J,1999,18(9):2511-2521.
    6. Kieser A,Kilger E,Gires O.Epstein-Barr virus latent membrane protein-l triggers AP-l activity via the c-Jun N-terminal kinase cascade[J].EMBO J,1997,16:6478-6485.
    7.黄克林,姜勇,董小平,等.分子病毒学(第一版)[M],北京:人民卫生出版社,2002,182-184.
    8. Roberts M L,Cooper N R.Activation of a Ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformation[J].Virology,1998,240(1):93.
    9.张蕾,浏鸿瑞,刘彤华,等.EB病毒基因LMP1和EBNA2对支气管上皮细胞的转化[J].中华病理学杂志,1999,28(4):277.
    10.梁贤明.EB病毒潜伏膜蛋白和肿瘤的关系[J].国际检验医学杂志,2007,28(1):54-56.
    11.陈家伦,陈家伟,陈璐路,等.磺脲类药物应用专家共识[J].国外医学(内分泌分册),2004,24(4):255-259.
    12.王佑民,张秀华,贾敬华.NIDDM患者继发性磺脲类失效发生机制的初步探讨[J].中国糖尿病杂志,1997,5(3):144-146.
    13.王佑民,杨明功,刘树琴.长期高血糖对继发磺脲类药物失效患者胰岛β细胞功能的影响[J].中华糖尿病杂志,2004,12(1):2-4.
    14. Cenuth S.Management of the adult onset diabetic with su1fonylurea drug failure [J].Endocrinol Metab Clin North Am,1992,21:351-370.
    15.罗毅平,陈慎仁,杨伟.CD80和CD86在食管癌组织中的表达[J].海南医学院学报,2006,12(3):204-206.
    16.姚亚成,闵志廉,朱有华,等. HCV感染对肾移植患者T细胞亚群及HLA-DR表达的影响[J].中华泌尿外科杂志,1999,20(12):724-726.
    1. Hayflick L,Moorhead IX3.The serial cultivation of human diploidcell strains[J].Exp Cell Res,1961,25:585.
    2. Cui W,Aslam S,Fletcher J,et a1.Stabilization of telomere length and karyotypic stability are directly correlated with the level of hTERT gene expression in primary fibroblasts[J]. JBiol Chem,2002,277(41):38531-38539.
    3. Stein GH,Namba M,Corsaro CM,et a1.Relationship of finiteproliferative lifespan,senescence,and quiescence in human cells[J].J Cell Physiol,1985,122(3):343.
    4. RohmeD.Evidencefor a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythcytes in vivo[J].Proc Natl Acad Sci USA,1981,78(8):5009.
    5.杨娜娜.细胞永生化的研究进展[J].中国畜牧兽医.2005,32(1):37-39.
    6.甄蕾.端粒,端粒酶与细胞永生化[J].口腔颌面外科杂志,2008,18(4):285-287.
    7. Lustig AJ.Crisis intervention:the role of telomerase[J].Proc Natl Acad Sci USA,1999,96(7):3339.
    8. Shay JW,Van Der Haegen BA,Ying Y,et a1.The frequency ofimmortalization of human fibroblasts and mammary epithelialcells transfected with sv40 large T- antigen[J],Exp Cell Res,l993,209(1):45.
    9. Bryan TM,Reddel RR.SV40-induced immortalization of humancells[J].Crit Rev Oncog,1994,5(4):331.
    10. Endo A,Kano Y,Kihara K,et a1.Alteration in the retinoblastomagene associated with immortalization of human fibroblasts treatedwith 6~Co gamma rays[J].J Cancer Res Clin oncol,1993,119(9):522.
    11. Counter CM,Avilion AA,LeFeuvre CE,et a1.Telomere shorten.ing associated with chromosome instability is arrested in immortalcells which express telomerase activity[J].EMBO J,1992,11(5):l92l.
    12. Harley CB,Futcher AB,Greider CW.Telomeres shorten duringageing of humanfibroblasts[J].Nature,1990,345(6274):458.
    13. Steinert S,Shay JW,Wright WE,et a1.Transient expression ofhuman telomerase extends the life span of normal human fibroblasts[J].Biochem hys Res Commun, 2000,273(3):1095.
    14. Pereira-Smith OM,Smith JR.Genetic analysis of indefinite division in human cells:identification of four complementation groups[J].Proc Natl Acad Sci USA, 1988,85(16):6042.
    15. Wynford-Thomas D.Guardian of cellular senescence.J Pathol[J],1996,80(2):118.
    16. Bond JA,Blaydes JP,Rowson J,et a1.Mutant p53 rescues humandiploid cells from senescence without inhibiting the induction of SDI1/WAF1[J]. CancerRes, 1995, 55(11):2404.
    17. Shay JW,Wright WE,Brasiskyte D,et a1.E6 of human papillomavirustype 16 can overcome the M1 stage of immortalization inhuman mammary epithelial cells but not in human fibroblasts[J].Oncogene,1993,8(6):1407.
    18. Srimvasan A,McClellan AJ,Brasiskyte D,et al.The aminoterminal transforming region of simian virus 40 lare T an d small t antigens functions as a J domain [J].Mol Cell,1997,17(8):4761.
    19. Tsuruga Y, Kiyono T, Matsushita M,et al.Establishment of immortalized human hepatocytes by introduction of HPV16 E6/E7 and hTERT as cell sources for liver cell-based therapy[J].Cell Transplant.2008;17(9):1083-1094.
    20. Sakaguchi M,Tsuji T,Inoue Y,et a1.Loss of nuclear localization of the S100C protein in immortalized human fibroblasts[J].Radiat Res,2001,155(1 Pt 2):208.
    21. Bekaert S,De Meyer T,van Oostveldt P[J].Telomere attritionas ageing biomarker. Anticancer Res,2005,25(4):3011.
    22. Takeuchi M,Takeuchi K,Kohara A,et al. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes[J]. In Vitro Cell Dev Biol Anim. 2007,43(3-4):129-138.
    23. Shay JW,Wright WE.Senescence and immortalization : roleof telomeres andtelomerase[J].Carcinogenesis,2005,26(5):867.
    24. Sharpless NE, DePinho RA.Telomeres,stem cells,senescence and cancer[J].J Clin Invest,2004,1 l 3(2):160-168.
    25. Liu C, Fang X, Ge Z,et al.The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3[J].Cancer Res.2007,67(6): 2626-2631.
    26. Masutomi K,Yu EY,Khurts S,et a1.Telomerase maintains telomere structure in normal human cells[J].Cell,2003,114(2):241-253.
    27. Wege H, Brümmendorf TH.Telomerase activation in liver regeneration and hepatocarcinogenesis: Dr. Jekyll or Mr. Hyde? [J] Curr Stem Cell Res Ther. 2007,2(1):31-38.
    28. Wege H, Le HT, Chui MS,et al.Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential[J].Gastroenterology. 2003,124(2):432-444.
    29. Pasha RP,Roohi A,Shokfi F.Establishment of human heterohybridoma and lymphoblastoid cell lines specific for the Rh D and C antigens[J].Transfus Med,2003,13(2):83-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700