用户名: 密码: 验证码:
发展中地区流域污染综合治理模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域治污是世界性难题。为治理流域污染,发达国家经历了数百年艰难而漫长的历程。迄今为止,发达国家流域污染问题都是在较高的经济、社会发展水平下逐步解决的。发展中地区多处于工业化、城镇化快速推进的历史阶段,产业结构偏重,经济实力不足,群众生活水平较低。经济社会背景决定了发展中地区不可能简单照搬发达国家的流域治污经验。如何既解决流域污染问题,又保证经济较快发展和社会稳定,是发展中地区必须破解的难题。
     2003年以来,南水北调东线南四湖流域污染治理历经十余年实践,在流域经济快速增长的背景下,实现了流域水环境质量连续十一年持续改善,走出了一条发展中地区流域治污的新路子。本论文通过对比研究发达国家流域治污经验与南四湖流域污染综合治理实践,构建了适用于发展中地区的“治用保”(Treatment、Recycle、Restoration,简记为TRR)流域治污新模式,为发展中地区在工业化、城镇化快速推进阶段基本解决流域污染问题提供科学依据。
     论文取得的主要研究成果如下:
     1.提出了TRR流域污染综合治理模式。TRR模式通过“污染治理”(T)促使污染物排放达到水环境基本接纳的水平,通过“循环利用”(R)最大化减少废水排放,通过“生态保护”(R)提升水环境承载力。该模式通过将TRR模式三部分有机衔接形成了环环相扣的流域治污体系,有助于化解发展中地区的流域治污压力,使发展中地区在工业化、城镇化快速推进阶段基本解决流域污染问题成为可能。
     2.构建了分阶段逐步加严的流域性水污染物排放标准体系。针对发展中地区突出的结构性污染问题,在不能简单取缔和保护落后的前提下,转而通过分阶段逐步加严的环境标准引导和推动产业结构调整和布局优化。通过从行业性标准向流域性标准逐步过渡,即行业性标准→过渡性标准→流域性标准,最终从实质上取消了高污染行业的排污特权。流域性水污染物排放标准体系通过环境保护倒逼高污染行业主动“转方式、调结构”,为发展中地区的结构性污染治理找到了一条可操作性较强的路径。
     3.针对发展中地区区域再生水排放标准与区域水体环境质量标准之间的矛盾,以再生水生产、再生水需求、人工湿地接纳能力、调蓄容量、水文条件等为边界条件,建立了区域再生水循环利用体系的统筹构建方法。提出了边界条件统筹平衡模型,为区域再生水截蓄导用工程体系的建设提供了理论指导。区域再生水循环利用体系通过进一步削减污染负荷,在降低流域污染治理压力的同时,也有效缓解了我国北方地区的缺水压力,提升了流域环境生态功能。
     4.提出了TRR模式中规模化人工湿地的构建方法。通过研发规模化多级串联表面流人工湿地、微量充氧潜流人工湿地等技术,在进一步降低污染负荷的同时有效提升了流域水环境承载力。对南四湖流域TRR模式的总量削减过程进行了分析和评估。流域内“污染治理”(T)、“循环利用”(R)、“生态保护”(R)三个环节对于COD的削减比例分别为22%、31%、47%,氨氮削减比例分别为10%、28%、62%。
     5.以某小型流域为载体,对TRR模式进行了验证。地埋式生物处理系统出水通过潜流人工湿地和表流人工湿地对污染物进一步降解,实现了主要污染物地表水Ⅲ类水质稳定达标,通过区域内再生水回用实现了水污染物“零排放”。对该小型流域TRR模式的总量削减过程进行了评估。流域内“污染治理”(T)、“循环利用”(R)、“生态保护”(R)三个环节对于总氮的削减比例分别为52%、41%和7%。该研究积累了大量可靠数据,有利于TRR模式进一步推广应用。
Basin pollution control is a great challenge worldwide. It cost developed countries hundreds of years to tackle basin pollution problem. So far, the basin pollution problem of developed countries is gradually solved under high levels of economic and social development. However, most developing regions are undertaking fast-paced industrialization and urbanization, with heavy industrial structure, low level of economic development and low standard of living. It determines the developing regions are simply unable to adopt the same pollution-management methods undertaken by the developed countries. How to tackle basin pollution problem while maintain rapid economic and social development, is the problem which must be solved in developing regions.
     After ten years of successful practice from2003, Nansi Lake basin pollution control in the east route of South-North Water Transfer Project developed a new road for basin pollution control in developing regions, while achieved synchronous development of rapidly improved water quality and rapid economic growth in the rapid development stage. This article develops "Treatment, Recycle and "Restoration"(TRR) basin pollution control mode and its theoretical system for developing regions, through in-depth study of the basin pollution control mode in developed countries and Nansi Lake basin pollution control practice. The aim of the study is to provide scientific basis for developing regions to tackle basin pollution in the fast-paced industrialization and urbanization stage.
     The main results in this article include:
     1. The article develops TRR basin pollution control mode for developing regions. By "Treatment", the total amount of pollutants are reduced to below the acceptance level of water environmental capacity; by "Recycle" and "Restoration", the pollution load is further reduced and environmental capacity is improved. The three parts of TRR mode link up to form a interlocking water pollution control system. TRR mode effectively releases the pressure caused by the basin pollution, and makes it possible to solve basin pollution problem while maintaining a high speed of industrialization and urbanization.
     2. Phased tightening of basin pollutant discharge standard system is established in developing regions. According to the structural pollution problems in developing regions, instead of ban and protection, phased tightening of basin pollutant discharge standard is proposed to guide and promote industrial structure adjustment and optimization. The promoting strategy of the basin standard establishment, industry standards development→The transition from industry standards to basin standard→basin standards development, is proposed to remove the privileges of some highly polluting industries gradually. TRR mode finds a new road with great maneuverability to tackle basin pollution problem in developing regions.
     3. The theory methods of regional reclaimed water resources cycle utilization system is put forward to overcome the contradiction between water pollution discharge standard and the water environmental quality standards. Coordinating theory is developed after boundary conditions of the regional reclaimed water resources cycle utilization system are identified, including reclaimed water production and demand, treatment scale of wetland, storage capacity as well as hydrological conditions. Coordinating theory model of boundary conditions is established to supply scientific basis for the construction of the regional reclaimed water resources cycle utilization system. Regional reclaimed water resources cycle utilization system alleviates the pollution control pressure and water stress in northern China, and enhances the ecological functions of river basin.
     4. The method of applying large-scale constructed wetlands for improving the water environment capacity of TRR mode is presented. The construction concept of large-scale constructed wetlands including intermittently aerated subsurface flow constructed wetlands, multi-stage constructed wetlands in series is developed to improve the water environment capacity. The control process of total pollutant quantity of Nansi Lake basin is evaluated. The proportion of the "Treatment" for CODCr and NH3-N removal is22%and10%, the proportion of the "Recycle" for CODCr and NH3-N removal is31%and28%, and the proportion of the "Restoration" for CODCr and NH3-N removal is47%and62%.
     5. With the guidance of TRR mode concept, the application study of TRR pollution control is carried out in a small basin. The effluent of buried biological reaction system further achieves national surface water quality standard III after the purification by surface flow constructed wetlands and surface flow constructed wetlands. The main pollutants in the basin achieved national surface water quality standard III stably and "zero emissions" is achieved in the small basin by regional reclaimed water resources cycle utilization. The control process of total pollutant quantity of the small basin is evaluated. The proportion of the "Treatment" for TN removal is52%, the proportion of the "Recycle" for TN removal is41%, and the proportion of the "Restoration" for TN removal is7%.
引文
[1]Grossman, G. M. and Krueger, A. B. Economic Growth and the Environment [J]. The Quarterly Journal of Economics,1995,11(2):352-377.
    [2]Agras, J. and Chapman, D.1999. A dynamic approach to the environmental Kuznets curve hypothesis [J]. Ecological Economics,28:267-277.
    [3]Andreoni, James and Levinson, Arik.2001. The simple analytics of the environmental Kuznets curve [J]. Journal of Public Economics:269-286.
    [4]中华人民共和国环境保护部.2012年中国环境状况公报[R].北京:国家环境保护部,2013.
    [5]张璐.发达国家生态发展道路的比较与透视[J].云南地理环境研究,2011,23(3):1-6.
    [6]胡熠,陈瑞莲.发达国家的流域水污染公共治理机制及其启示[J].天津行政学院学报,2006,8(1):37-40.
    [7]梅雪芹.工业革命以来西方主要国家环境污染与治理的历史考察[J].世界历史,2000(6):20-28.
    [8]高珊,黄贤金.发达国家城市水污染治理的比较与启示[J].城市问题,2011(188):91-94.
    [9]叶亚妮,施宏伟.国外流域水资源管理模式演进及对我国的借鉴意义[J].西安石油大学学报(社会科学版),2007,16(2):11-16.
    [10]许卓,刘剑,朱光灿.国外典型水环境综合整治案例分析与启示[J].环境科技,2008,21(2):71-74.
    [11]荣丽颖,国外流域环境管理实践及对中国的启示[J].商业经济,2008(10):107-111.
    [12]姜彤.莱茵河流域水环境管理的经验对长江中下游综合治理的启示[J].水资源保护,2002(3):45-49.
    [13]汪松年.欧洲的水污染治理[J].城市问题,2002(2):71-73.
    [14]欧洲和美国水资源管理的经验:从部门向综合管理模式的转变[R].世界银行政策分析和建议项目(中国:解决水资源短缺背景文章系列).2006.
    [15]郭培章.中外流域综合治理开发案例分析[M].北京:中国计划出版社,2001.
    [16]江秀丽.国外典型河流湖泊水污染治理概述[J].水利电力科技,2010,31(1):14-23.
    [17]汤建中,宋韬,江心英,方玉梅,周蓉,孙建军,陈自昭,杨大庆,李涛.城市河流污染治理的国际经验[J].世界地理研究,1998,7(2):114-119.
    [18]周素文,简介《欧盟水框架指令》及其成功经验[J].科技信息,2010(36):395-396.
    [19]石秋池.欧盟水框架指令及其执行情况[J].中国水利,2005(22):65-67.
    [20]THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION. DIRECTIVE 2000/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL [J]. Official Journal of the European Communities, 2000(327):1-72.
    [21]羽仪.20世纪60-70年代美国环保运动史述评[J].湖南社会科学,2009(1):177-180.
    [22]U.S. Environmental Protection Agency. Great Lakes Report [M/OL]. http://www. epa. gov/greatlakes/rpteong.
    [23]U.S. Government Printing Office. Great Lakes Restoration [R/OL]. http://www.house.gov/seienee.
    [24]王卓妮,胡涛,马中.美国跨界水污染管理的经验与教训[J].环境保护,2010(1):73-75.
    [25]陈洁敏,赵九洲,柳根水,孔翔.北美五大湖流域综合管理的经验与启示[J].湿地科学,2010,8(2):189-192.
    [26]窦明,马军霞,胡彩虹.北美五大湖水环境保护经验分析[J].气象与环境科学,2007,30(2):20-22.
    [27]金立新.美国和加拿大五大湖的水污染防治与管理[J].水资源保护,1998(4):7-9.
    [28]于铭.美国联邦水污染控制法研究—以中美法律比较为视角[D].青岛:中国海洋大学,2009.
    [29]范兆轶,刘莉.国外流域水环境综合治理经验及启示[J].环境与持续发展,2003(1):81-84.
    [30]日本水资源管理的经验:体制和政策.世界银行政策分析和建议项目(中国:解决水资源短缺背景文章系列).2006.
    [31]姜亦华.日本的水资源管理及启示[J].经济研究导刊,2008(18):180-183.
    [32]陈静.日本琵琶湖环境保护与治理经验[J].环境科学导刊,2008,2(1):37-39.
    [33]汪易森.日本琵琶湖保护治理的基本思路评析[J].水利水电科技进展,2004,24(6):1-5.
    [34]王秋静,耿晓娜,林栋.日本琵琶湖治理的工程措施对太湖的启示[J].水利经济.2005,23(5):41-44.
    [35]汪易森.评日本琵琶湖保护治理的基本思路[J].水利规划设计,2002(2):6-9.
    [36]大沼克弘,室山中直.滋贺县琵琶湖保护措施[J].日本国国土交通省国土技术政策综合研究、环境研究部河川环境研究,2004(2):28-29.
    [37]张兴奇,秋吉康弘,黄贤金.日本琵琶湖的保护管理模式及对江苏省湖泊保护管理的启示[J].资源科学,2006,28(6):39-45.
    [38]俞瑞堂,日本的河川管理[J].水利水电科技进展,2000,20(3):57-60.
    [39]林家彬,日本水资源管理体系考察及借鉴[J].水资源保护,2002(4):55-59.
    [40]山崎凉子,杜纲.日本的河流水管理[J].中国给水排水,2007,23(22):103-106.
    [41]姜亦华.日本的水资源管理及借鉴[J].生态环境,2010(12):178-181.
    [42]高琪.论日本河川法中的居民参与[C].水资源可持续利用与水生态环境保护的法律问题研究——2008年全国环境资源法学研讨会(年会)论文集,2008.
    [43]邢乃春,陈捍华.TMDL计划的背景、发展进程及组成框架[J].水利科技与经济,2005,11(9):534-537.
    [44]李瑞萍,王高尚,王安建,骆建华,耿诺.典型工业化国家SO2排放影响因素分析及其对中国的启示[J].2010,31(5):749-758.
    [45]韩铁.环境保护在美国法院所遭遇的挑战—“绿色反弹”中的重大法律之争[J].美国研究.2005(3):60-81.
    [46]孟伟.流域水污染物总量控制技术与示范[M].北京:中国环境科学出版社,2008.
    [47]刘赣明.最大日负荷总量(TMDL)模式下的污染负荷分配研究[D].广州:中 山大学,2005.
    [48]U.S. Environmental Protection Agency.1999. Protocol for Developing Nutrient TMDLs. EPA 841-B-99-007. Office of Water (4503F), United States Environmental Protection Agency, Washington DC.
    [49]National Research Council.2001. Assessing the TMDL Approach to Water Quality Management. National AcademyPress, Washington DC.
    [50]梁博,王晓燕,曹利平.最大日负荷总量计划在非点源污染控制管理中的应用[J].2004(4):37-42.
    [51]倪晓.TMDL计划在流域水污染物总量控制中的应用[J].绿色科技,2012(10):122-124.
    [52]杨龙,王晓燕,孟庆义.美国TMDL计划的研究现状及其发展趋势[J].环境科学与技术,2008,31(9):72-76.
    [53]孟伟,王海燕,王业耀.流域水质目标管理技术研究(Ⅳ)—控制单元的水污染物排放限值与削减技术评估[J].2008,21(2):1-9.
    [54]胡春力.促进产业结构升级是加强环境保护的根本[J].宏观经济研究,2009(2):35-39.
    [55]冯杰.中美两国用水比较分析[J].水资源管理,2010(1):41-44.
    [56]中华人民共和国环境保护部.2012年中国环境统计年报[R].北京:国家环境保护部,2013.
    [57]中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部.第一次全国污染源普查公报[R].北京,2010.
    [58]刘淑琪.我国引进外资过程中的污染转移问题研究[J].山东财政学院学报.2001(1):46-47.
    [59]Muthuktmlara Mani and David Wheder, In Scarch of Pollution Havens? Dirty industry in the world economy,1960-1995. World Bank Discussion Paper. NO. 402.
    [60]Wheeler, D.. Racing to the Bottom? Foreign Investment and Air Polliation in Development Countries [R]. Development Research Group,World Bank,2000.
    [61]OECD. Foreign direct investment and the environment:an overview of literature [R],1997.
    [62]Antweiler, W., Copeland, B. R. Is free trade good for the environment? American Economic Review [J],2001,91(3):877-908.
    [63]Copeland, B. R., Taylor, M. S. Trade and transboundary pollution [J]. American Economic Review,1995(85):716-737.
    [64]Low, P., Yeates, A. Do'dirty'Industries Migrate [J]. In Low, P(ed). International Trade and the Environment. World Bank Discussion Paper,1992(159):89-104.
    [65]罗丹,国际贸易中污染转移问题研究[D].贵阳:贵州大学,2008.
    [66]曾凡银,冯宗宪,贸易、环境与发展中国家的经济发展研究[J].安徽大学学报,2000(10):96-101.
    [67]赵贺.发达国家高污染产业转移及我国的对策[J].中州学刊,2001,5(125):30-31.
    [68]张镝.防止境外污染转移的法律对策研究[D].哈尔滨:东北林业大学,2006.
    [69]舒基元,杨峥.环境安全的新挑战:经济全球化下环境污染转移[J].中国人口.资源与环境,2003,13(3):49-50.
    [70]靳乐山.环境污染的国际转移与城乡转移[J].中国环境科学,1997,17(4):335-339.
    [71]夏友富.外商投资污染密集产业现状、后果及其对策研究[J].管理世界,1999(3):19-21.
    [72]陈愈,吴建伟,对我国招商引资中污染产业转移问题应予关注[J].商业研究,2003(19):1-3.
    [73]陈军,张颖.我国防止国外污染转移的现状与对策[J].安庆师范学院(社会科学版).2003,22(5):20-21.
    [74]邹志鹏.市场经济下我国环保投资现状分析[J].民营科技.2009(10):59-60.
    [75]朱建华,逯元堂,吴舜泽.中国与欧盟环境保护投资统计的比较研究[J].2013,35(3):105-110.
    [76]环境保护部.2010年全国城市环境管理和综合整治年度报告,2011.
    [77]胡占阳.中国水资源贫乏与水资源浪费的矛盾分析[J].辽宁工程技术大学学报(社会科学版),2013,15(1):74-77.
    [78]张伟丽,阚燕.我国水资源短缺评价进展综述[J].吉林水利,2011(7):36-39.
    [79]陈志恺.中国水资源的可持续利用问题[J].水文,2003,23(1):1-5.
    [80]陈佐忠.满怀热情实事求是普及生态科学[J].资源环境与发展,2007(2): 1-7.
    [81]曾贤刚,孙承泳,韩威.湿地经济价值的研究[J].前沿论坛,2002(9):51-54.
    [82]刘子刚.促进湿地保护和恢复的经济手段[J].生态经济,2008(12):126-128.
    [83]中华人民共和国林业局.全国湿地保护工程实施规划(2005-2010)[R].北京,2005.
    [84]国家环保总局环境规划院,中国环境科学研究院,水利部淮河水利委员会,水利部海河水利委员会,国家城市给水排水工程技术研究中心.南水北调东线工程治污规划,2001.
    [85]彭利民,闫中月,邵波,赵建建.南四湖流域不同产业发展的水污染影响效应分析[J].山东科学,2012,25(2):33-37.
    [86]陈磊,裴海燕,解军.改善南四湖水质的关键问题分析[J].中国给水排水,2007,23(20):6-10.
    [87]武周虎,张晓波,张芳园.南四湖入湖重点污染河流筛选与水环境问题分析[J].长江流域资源与环境,2001,20(4):475-481.
    [88]张祖陆,孙庆义,彭利民,牛振国,吴爱民.南四湖地区水环境问题探析[J].湖泊科学,1993,11(1):86-90.
    [89]辛良杰.南四湖湖泊湿地生态环境需水量初步研究[D].济南:山东师范大学,2005.
    [90]张祖,梁春玲,管延波.南四湖湖泊湿地生态健康评价[J].中国人口资源与环境,2008,18(1):180-184.
    [91]孙栋,段平,段登选,王志忠,陈述江,陈金萍,刘红彩,巩俊霞,马荣棣.南四湖渔业生态环境监测与质量评价[J].水生态学杂志,2009,2(4):35-39.
    [92]山东省人民政府.南水北调东线工程山东段水污染防治总体规划,2003.
    [93]冯金鹏,吴洪寿,赵帆.水环境污染总量控制回顾、现状及发展探讨[J].南水北调与水利科技.2004,2(1):44-47.
    [94]梁博,王晓燕.我国水环境污染物总量控制研究的现状与展望[J].首都师范大学学报(自然科学版).2005,26(3):93-98.
    [95]孟伟,张远,郑丙辉等.水环境质量基准、标准与流域水污染物总量控制策略[J].环境科学研究.2006,19(3):1-6.
    [96]孟伟,张楠,张远,郑丙辉.流域水质目标管理技术研究—控制单元的总量 控制技术[J].环境科学研究.2007,20(4):1-8.
    [97]倪晓.南四湖流域水污染总量控制及水质综合改善方案研究[D].济南,山东师范大学.
    [98]《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [99]中华人民共和国国家统计局,2012年国民经济和社会发展统计公报,2012.
    [100]孟伟,苏一兵,郑丙辉.中国流域水污染现状与控制策略的探讨[J].中国水利水电科学研究院学报,2004,2(4):242-246.
    [101]杨波,尚秀莉.日本环境保护立法及污染物排放标准的启示[J].环境污染与防治,2010,32(6):94-97.
    [102]U. S. Clear Water Act.1977.
    [103]胡必彬,陈蕊,刘新会,杨志峰.欧盟水环境标准体系研究[J].2004,26(6):468-472.
    [104]孟伟,王海燕,王业耀.流域水质目标管理技术研究(Ⅳ)—控制单元的水污染物排放限值与削减技术评估[J].环境科学研究,2008,21(2):1-9.
    [105]刘琰,郑丙辉.欧盟流域水环境监测与评价及对我国的启示[J].中国环境监测,2013,29(4):162-168.
    [106]江西省袁河流域水污染物排放标准(DB36/418-2003)[S],2003.
    [107]福建省九龙江流域水污染物排放总量控制标准(DB35/424-2001)[S],2001.
    [108]福建省闽江水污染物排放总量控制标准(DB35/21-2001)[S],2001.
    [109]山东省南水北调流域水污染物排放标准(DB37/599-2006)[S],2006.
    [110]史会剑,蔡燕,谢刚.山东省流域水污染物综合排放标准[J].中国环境管理干部学院学报,2011,21(3):1-4.
    [111]李波,樊启学,杨凯等.慢性氨氮胁迫对黄颡鱼摄食、生长及血液指标的影响[J].应用于环境生物学报,2011,17(6):824-829.
    [112]刘娥.草幼鱼对氨氮胁迫的形态及生理学影响[D].济南:山东大学,2013.
    [113]国家环境保护部,总量控制技术手册[M].北京市:中国环境科学出版社,1990.
    [114]张晓东,慕金波等.山东省河流水环境容量研究[M].济南市:山东大学出版社,2007.
    [115]单铎.北运河氨氮降解系数测算研究[D].北京:首都师范大学,2013.
    [116]任芝花,黎明琴,张纬敏.小型蒸发器对E-601B蒸发器的折算系数[J].应用气象学报,2002,13(4):508-512.
    [117]米鸿燕,宰建,蒋兴华.静库容计算方法的比较分析[J].地矿测绘,2007,23(2):1-4.
    [118]《农田灌溉水质标准》(GB5084-2005,).国家环境保护部,2005.
    [119]《城市污水再生利用农田灌溉用水水质》(GB20922-2007).
    [120]《城市污水再生利用 工业用水水质》(GB/T 19923-2005).
    [121]《城市污水再生利用 景观环境用水水质》(GB/T 18921-2002).
    [122]《城市污水再生利用 城市杂用水水质》(GB/T 18920-2002).
    [123]史淑艳.基于水体功能达标的区域再生水资源调配及循环利用边界条件研究[D].济南:山东大学,2012.
    [124]《火力发电厂取水定额》,2005.
    [125]张建,张波,靖玉明,康兴生,张成禄.南水北调东线南四湖新薛河入湖口人工湿地工程设计[J].中国给水排水,2008,24(2):49-51.
    [126]邱晨,侯端环,任敬朋,孔维健.南四湖人工湿地建设示范工程[J].湿地科学与管理,2012,8(4):34-36.
    [127]张金勇.南四湖表面流人工湿地中试研究及规模化工程示范[D].济南:山东大学,2011.
    [128]Fan Jinlin, Zhang Bo, Zhang Jian, et al. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. Bioresource Technology,2013(141),117-122.
    [129]Fan Jinlin, Liang Shuang, Zhang Jian, et al. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. Environmental Science and Pollution Research,2013,20(4):2448-2455.
    [130]Fan Jinlin, Zhang Bo, Zhang Jian, et al. Nitrogen removal in intermittently aerated vertical flow constructed wetlands:Impact of influent COD/N ratios. Bioresource Technology,2013(143),461-466.
    [131]黎明,蔡哗,刘德启等.国内城市河道水体生态修复技术研究进展[J].环境与健康,2009,26(9):837-839.
    [132]Wu Haiming, ZhangJian, Li Cong, et al. Pathways of phosphorus removal and influencing factors in surface constructed wetlands treating polluted river Water. Clean Soil, Air, Water,2013, doi:10.1002/clen.2012.00.408.
    [133]Wu Haiming, ZhangJian, Wei Rong, et al. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes. Environmental Rcience and Pollution Research,2013, 20(1):443-451
    [134]张金勇,张建,刘建等.水深对表面流人工湿地污染河水处理系统运行效果的影响.环境工程学报,2012,6(3):354-358.
    [135]Xu Jingtao, Li Cong, Yang Fang, et al. Typha angustifolia stress tolerance to wastewater with different levels of chemical oxygen demand. Desalination, 2011,280(1-3):58-62.
    [136]Jia Wenlin, Zhang Jian, Wu Juan, et al. Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands:a microcosm experiment. Desalination,2010,262(1-3):202-208.
    [137]Xu Jingtao, Zhang Jian, Xie Huijun, et al. Physiological responses of phragmites australis to wastewater with different chemical oxygen demands. Ecological Engineering,2010,36(10):1341-1347.
    [138]Zhang Jian, Meng Fei, Lu Yifeng, et al. Ecological assessment of lakeshore wetland rehabilitation on eastern route of south-to-north water transfer project. Frontiers of Environmental Science & Engineering in China,2008,2(3): 306-310.
    [139]Fan Jinlin, Zhang Jian, Zhang Chenglu, et al. Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination,2011(267),139-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700