两种木霉菌对黄瓜枯萎病菌生防作用及根际土壤微生物影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜枯萎病(Fusarium oxysporium f. sp. cucumerinum)是设施蔬菜最常见且危害严重的一种土传真菌病害,它的有效防治已成为蔬菜生产中急待解决的难题。长柄木霉(Trichoderma longbrachiatum)2号菌株和柠檬绿木霉(Trichoderma citrinoviride)4号菌株是由中国农业微生物菌种中心筛选的对多种蔬菜具有促生抗病作用的木霉菌。本论文从这两种木霉菌对黄瓜枯萎病菌的拮抗机制、长柄木霉施用后对黄瓜植株抗病性的诱导作用以及对根际土壤酶活性和土壤微生物区系变化的影响等方面,研究木霉菌对黄瓜枯萎病的生防作用和根际土壤微生物影响。旨在为揭示这两种木霉菌对蔬菜病害的生防作用机制和为长柄木霉的有效利用奠定基础。研究结果如下:
     两种木霉菌与黄瓜枯萎病菌的对峙培养、显微观察和抑菌试验结果表明,这两种木霉菌对黄瓜枯萎病菌的拮抗机制中竞争、重寄生作用是重要的作用机制,同时也存在抗生作用。采用还原糖法对这两种木霉菌不同发酵时间几丁质酶和β-1, 3-葡聚糖酶活性进行测定,得出同一菌株在不同发酵时间两种酶活性大小的变化趋势大致相同。在相同发酵时间,木霉菌2号菌株的几丁质酶活性比木霉菌4号菌株的几丁质酶活性低,而木霉菌2号菌株的β-1, 3-葡聚糖酶活性比木霉菌4号菌株的β-1, 3-葡聚糖酶活性高。结合前期研究结果得知,菌株防治黄瓜枯萎病的能力与该菌株发酵产几丁质酶、β-1, 3-葡聚糖酶活性大小不存在简单的对应关系。
     对长柄木霉菌施用后黄瓜不同生长时期与诱导抗病性相关的酶活变化进行了检测,结果为:根茎部及叶部苯丙氨酸解氨酶(PAL)活性都明显增强,其中以苗期根茎部和花期叶部PAL活性的增强最为显著,处理比对照的酶活分别高出1.33个酶活单位和1.11个酶活单位。根茎部和叶部超氧化物歧化酶(SOD)活性都明显增强,其中以末期根茎部和果期叶部SOD活性增强最为显著,处理比对照的酶活分别高出10.32个酶活单位和18.81个酶活单位。而苗期过氧化物酶(POD)活性降低、过氧化氢酶(CAT)活性增强。结果表明,长柄木霉菌施用后诱导黄瓜植株产生了抗病性,增强了植物的抗病能力。
     对长柄木霉菌施用后黄瓜不同生长时期根际土壤中脲酶、过氧化氢酶、酸性磷酸酶等酶活性的变化进行了检测,结果为:苗期和末期处理的土壤脲酶活性高于对照,花期和果期处理的土壤脲酶活性低于对照。在黄瓜的不同生长时期,处理的土壤过氧化氢酶活性都高于对照;而处理的土壤酸性磷酸酶活性则低于对照,且在花期前后变化最为显著,最大降幅达20个酶活单位。
     结合平板计数、DGGE、Biolog等方法对长柄木霉菌施用后黄瓜根际土壤微生物区系进行分析,结果表明:黄瓜根际土中可培养细菌、放线菌及真菌数量均明显减少;非根际土中可培养放线菌及真菌数量减少,而细菌数量增加。黄瓜根际土中细菌群落多样性降低,而放线菌和真菌群落多样性逐渐增加。土壤微生物碳源利用的能力在苗期增强,在其余时期均降低。
Cucumber Fusarium wilt is one of the most common and serious soilborne fungal diseases of vegetables in greenhouse. Its effective control had become the difficult problem to be solved eagerly in vegetable production. The strain No.2 of Trichoderma longbrachiatum and strain No.4 of T. citrinoviride screened by Agricultural Culture Collection of China (ACCC) and have growth-promoting and disease resistance-inducing effects on a variety of vegetable. In this paper, the interaction between the two Trichoderma species and Fusarium oxysporium f. sp. cucumerinum was studied. The enzymes related to inducing disease resistance in cucumber plant were studied at different growth stages of cucumber. At the same time, the effects on soil microbe were studied after Trichoderma longbrachiatum was applied through detecting the rhizosphere soil enzymes activities and analysing rhizosphere soil microbial communities at different growth stages of cucumber. The results will clarify the biocontrol mechanisms of the two Trichoderma species and establish basis for effective utilization of Trichoderma longbrachiatum. The main research results are as follows:
     The results from dual culture, microscopic observation and inhibition tests showed that competition and mycoparasitism were the important mechanisms of the two Trichoderma species against pathogenic fungi, and antibiosis was also existed. The chitinase activity andβ-1, 3-glucanase activity of the two Trichoderma species were determined with the method of reducing sugar. The results indicated that the change tendency of the two enzymes activities of the same strain were roughly same at different fermentation time. At the same fermentation time, the chitinase activity of strain No.2 was lower than that of strain No.4, and theβ-1, 3-glucanase activity was reverse. Combining with the early research results, we could learn that there was no simple corresponding relation between the ability to biocontrol fungal diseases and the activities of chitinase andβ-1, 3-glucanase of the strains.
     The activities of enzymes related to inducing plant disease resistance were determined at different cucumber growth stages after Trichoderma longbrachiatum was applied. The results were that the phenylalanine ammonia-lyase (PAL) activity significantly increased, and the PAL activity of rootstock at seedling stage and that of leaf at flowering stage increased most distinctly. The enzyme activities of the treatment were 1.33 units and 1.11 units higher than those of CK respectively. The superoxide dismutase (SOD) activity of rootstock and leaf significantly increased, and the SOD activity of rootstock at final stage and that of leaf at fruiting stage increased most distinctly. The enzyme activities of the treatment were 10.32 units and 18.81 units higher than those of CK respectively. The activities of peroxidase decreased and the activities of catalase increased at seedling stage. The results showed that the disease resistance was induced and the ability of disease resistance was enhanced after Trichoderma longbrachiatum was applied.
     The activities of urease, catalase and acid phosphatase in rhizosphere soil were determined at different cucumber growth stages after Trichoderma longbrachiatum was applied. The results were that the urease activity of treatment was higher than that of CK at seedling stage and final stage. And the urease activity of treatment was lower than that of CK at flowering stage and fruiting stage. The catalase activity of treatment was higher than that of CK at all growth stages. The acid phosphatase activity of treatment was lower than that of CK at all growth stages. And the acid phosphatase activity changed significantly at flowering stage, the maximum decrease up to 20 enzyme activity units.
     The rhizosphere soil microbial communities were analysed by plate count, DGGE and Biolog methods. The results showed that the numbers of bacteria, actinomyces and fungi were all lower than that of CK in rhizosphere soil; In non-rhizosphere soil, the numbers of actinomycetes and fungi were lower than that of CK while the number of bacteria was higher than that of CK; the diversity of bacteria decreased slightly, while that of actinomycetes and fungi increased gradually in the cucumber rhizosphere soil; the ability to utilize carbon sources of soil microorganisms increased at seedling stage and decreased at the other stages after Trichoderma longbrachiatum was applied.
引文
1.蔡燕飞.土壤微生物生态学研究方法进展.土壤与环境,2002,11(2):167~171.
    2.陈文瑞,李能芳,文成敬.木霉培养物防治温床蕃茄幼苗猝倒病研究.植物保护,1990,16(6):26.
    3.高克祥,刘晓光,郭润芳,淮稳霞,张敏.木霉菌对杨树树皮溃疡病菌拮抗作用的研究.林业科学,2001,37(5):82~88.
    4.关松荫.土壤酶及其研究法.北京:农业出版社,1986:1~376.
    5.郭润芳,刘晓光,高克样,高宝嘉,史宝胜,甄志先.拮抗木霉菌在生物防治中的应用与研究进展.中国生物防治,2002,18(4):l80~184.
    6.洪剑明,邱泽生,柴晓清.植物的诱导抗病性.植物学通报,1997,14(2):23~29.
    7.胡东维,王源超,徐颖.木霉对辣椒疫霉菌抑制作用的超微结构与细胞化学.菌物系统,2003,22(1):95~100.
    8.胡元森,吴坤,李翠香,贾新成.黄瓜连作对土壤微生物区系影响Ⅱ:基于DGGE方法对微生物种群的变化分析.中国农业科学,2007,40(10):2267~2273.
    9.胡元森,吴坤,刘亚峰,窦会娟,贾新成.黄瓜连作土壤微生物区系变化研究.土壤通报,2006,37(1):126~129.
    10.黄艳青,庄敬华,高增贵,徐韶,陈捷.木霉菌诱导甜瓜抗枯萎病相关防御反应酶系的研究.沈阳农业大学学报,2005,36(5):546~549.
    11.惠有为,孙勇,潘亚妮,赵亚玲.木霉在植物病害防治上的应用.西北农业学报,2003,12(3):96~99.
    12.焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展.土壤通报,2004,35(6):789~792.
    13.康金花,王林霞.瓜类枯萎镰刀拮抗菌筛选的初步研究.干旱区研究,1997,14(2):76~78.
    14.孔维栋,朱永官,傅伯杰,陈保冬,童依平.农业土壤微生物基因与群落多样性研究进展.生态学报,2004,24(12):2894~2900.
    15.李红叶,曹若彬.果蔬产生病害生物防治研究进展.生物防治通报,1993,4:176~180.
    16.李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,1991, 21(4):277~282.
    17.李娟.长期不同施肥制度土壤微生物学特性及其季节变化.博士学位论文,中国农业科学院,2008.
    18.李世贵,张晓霞,姜瑞波.固体生物肥防治黄瓜枯萎、青椒疫病的田间应用效果评价.中国土壤与肥料,2006,26(6):51~53.
    19.林植芳,李双顺,林桂株.水稻叶片的衰老与超氧化物歧化酶及膜脂过氧化作用的关系.植物学报,1984,26(6):605~615.
    20.刘士旺.生防绿色木霉工程菌的构建及其诱导植物抗病性研究.博士学位论文,浙江大学,2003.
    21.刘新春,吴成强,张昱,杨敏,李红岩. PCR-DGGE用于活性污泥系统中微生物群落结构变化的解析.生态学报,2005,25(4):842~847.
    22.刘亚峰,孙富林,周毅,贾新成.黄瓜连作对土壤微生物区系影响Ⅰ:基于可培养微生物种群的数量分析.中国蔬菜,2006,(7):4~7.
    23.刘邮洲,陈志谊,刘永锋.南京地区蔬菜枯萎病菌拮抗细菌的筛选与评价.江苏农业学报,2004,20(1):18~22.
    24.刘志培,杨惠芳.微生物分子生态学进展.应用与环境生物学报,1999,5(增刊):43~48.
    25.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000:1~638.
    26.马悦欣,Holmstrm C,Webb J,Kjelleberg S.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报,2003,23(8):1561~1569.
    27.马峙英,刘叔倩,王省芬,张桂寅,孙济中,刘金兰.过氧化物酶同工酶与棉花黄萎病抗性的相关研究.作物学报,2000,26(40):431~437.
    28.马艳,常志州,赵江涛,王小妹,黄红英,叶小梅,张建英.黄瓜种子发芽期微生物代谢的群落特性研究.植物营养与肥料学报,2006,12(1):109~114.
    29.潘汝谦,黄旭明.活性氧清除酶类在黄瓜感染霜霉病过程中的活性变化.植物病理学报,1999,29(3):287~288.
    30.秦华,林先贵,陈瑞蕊,尹睿.DEHP对土壤脱氢酶活性及微生物功能多样性的影响.土壤学报,2005,42(5):829~834.
    31.孙勇.绿色木霉的拮抗机理、发酵条件、生物防治的研究.硕士学位论文,西北大学,2003.
    32.谭兆赞,林捷,刘可星,廖宗文.复合微生物菌剂对番茄青枯病和土壤微生物多样性的影响.华南农业大学学报,2007,28(1):45~49.
    33.滕应,骆永明,赵祥伟,李振高,宋静,吴龙华.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析.土壤学报,2004,41(3):343~347.
    34.田连声,王伟华,石万龙,李书生,史延茂,崔慧霄.利用木霉防治大棚草莓灰霉病.植物保护,2000,26(2):47~48.
    35.田向敏,林雨霖,周峰.分子生态学(第二卷).武汉:湖北科学技术出版社,2001:5~170.
    36.王重庆,李云兰,李德昌.高级生物化学实验教程.北京:北京大学出版社,1994:1~202.
    37.王冬梅,王春枝,韩晓日,等.长期施肥对棕壤主要酶活性的影响.土壤通报,2006,37 (2): 263~267.
    38.王辉,赵春燕,李宝明.石油污染土壤中细菌的分离筛选.土壤通报,2005,36(2):237~239.
    39.王敬文,薛应龙.植物苯丙氨酸解氨酶研究.植物生理学报,1982,8(3):237~244.
    40.王玮.3,5—二硝基水杨酸法测定还原糖.见:李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,197~199.
    41.王艳丽,沈瑛,徐同.哈茨木霉防治水稻纹枯病的研究.植物保护学报,2000,27(2):97~101.
    42.席劲瑛,胡洪营,姜健,钱易.生物过滤塔中微生物群落的代谢特性.环境科学,2005,26(4):165~170.
    43.徐朗莱.过氧化物酶及其同工酶与小麦抗赤霉病性的关系.植物病理学报,1991,21(4): 285~289.
    44.徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用.植物病理学报,2002,32(2): 99~102.
    45.徐同,钟静萍.木霉对土传病原真菌的拮抗作用.植物病理学报,1993,23(1):63~67.
    46.薛宝娣,李娟,陈永萱.木霉菌(TR-5 )对病原真菌的拮抗机制和防病效果研究.南京农业大学学报,1995,18(1):31~36.
    47.燕嗣皇,吴石平,陆德清,陈小均.木霉生防菌对根际微生物的影响与互作.西南农业学报,2005,18(1):40~47.
    48.杨合同,黄玉杰,郭勇,李纪顺.木霉菌的几丁质酶与植病生防.山东科学,2003,16(1):1~8.
    49.杨合同,唐文华,Ryder M.木霉菌与植物病害的生物防治.山东科学,1999,12(4):7~15.
    50.杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响.微生物学杂志,2000,20(2):23~25.
    51.杨玉盛,邱仁辉,俞新妥,黄宝龙.杉木连栽土壤微生物及生化特性的研究.生物多样性,1999,7(1):1~7.
    52.姚斌,汪海珍,徐建民,张超兰.除草剂对水稻土微生物的影响.环境科学学报,2004,24(2): 349~359.
    53.章家恩,蔡燕飞,高爱霞.土壤微生物多样性实验研究方法概述.土壤,2004,36(4): 346~350.
    54.张惠文,张倩茹,周启星,张成刚.分子微生物生态学及其研究进展.应用生态学报,2003,14(2):286~292.
    55.张瑞福,曹慧,崔中利,李顺鹏,樊奔.土壤微生物总DNA的提取和纯化.微生物学报,2003,43(2):276~282.
    56.张小磊,安春华,马建华,等.长期施肥对城市边缘区不同作物土壤酶活性的影响.土壤通报,2007,38(4):667~671.
    57.赵国其,林福呈,陈卫良.绿色木霉对西瓜枯萎病苗期的控制作用.浙江农业学报,1998,10(4):206~209
    58.朱天辉,邱德勋.Trichoderma harzianum对Rhizoctonia solani的抗生现象.四川农业大学学报,1994,12(1):11~15.
    59.朱友林,刘纪麟.受玉米大斑病菌侵染后玉米抗感近等基因系SOD的动态变化的研究.植物病理学报,1996,26(2):133~137.
    60. Ahamd J S, Baker R. Rhizosphere conpetence of Trichodema hamatum. Phytopathology, 1987, 77: 182~189.
    61. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Review, 1995, 59 (1): 143~169.
    62. Aon M A, Cabello M N, Sarena D E, Colaneri A C, Franco M G, Burgos J L, et al. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl. Soil Ecol., 2001, 18: 239~254.
    63. Baker R, Elad Y. A possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology, 1985, 75: 458~462.
    64. Baker R, Lifishitz R. Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp.. Phytopathology, 1986, 76: 720~725.
    65. Bandick A K, Dick R P. Field management effects on soil enzymic activities. Soil Biol. Biochem., 1999, 31: 1471~1479.
    66. Bergstrom D W, Claassens A S, Wehner F C. Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation. Biology and Fertility of Soils, 2002, 35(6): 420~427.
    67. Bhuyan S A. Antagonistic effective of Trichoderma viride, T. harzianum and Asperigillus terreus on Rhizoctonia solani causing sheath blight of rice. Journal of the Agricultural Science Society of Northeast India, 1994, 7(1): 125~127.
    68. Brock T D. The study of microorganisms in situ: progress and problems. Symposium Society of Genetic Microbiology, 1987, 41:1~17.
    69. Burgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soils. Journal of Microbiological Methods, 2001, 45: 7~20.
    70. Chen Y C, Hseu R S, Cheng K J. The genetic similarity of different generations of Neocallimastix frontalis SK. FEMS Microbiological Letter, 2003, 221: 227~231.
    71. Cherif M, Benhamou N. Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma spp. on Fusarium oxysporum f. sp. radicislycoperici. Phytopathology, 1990, 80: 1406~1412.
    72. Chet I. Trichoderma-application, mode of action, and potential as a biological agent of soilbome plant pathogenic fungi. In: Chet I. Innovative approaches to plant disease control. New York: Jone Wiley & Sons, 1987, 137~160.
    73. Choi K H, Dobbs F C. Comparison of two kinds of biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiological Methods, 1999, 36(3): 203~213.
    74. Curtis T P, Craine N G. The comparison of the diversity of activated sludge plants. Water Science and Technology, 1998, 37: 71~78.
    75. Danielson R M. Carbon and nitrogen nutrition in Trichoderma viride. Soil Biol. Biochem., 1998, 5: 508~516.
    76. Dari K, Bechet M, Blondeau R. Isolation of soil streptomyces strains capable of degrading humic acids and analysis of their peroxidase activity. FEMS Microbiol. Ecol., 1995, 16: 115~122.
    77. Deacon C, Berry L A. Mode of action of mycoparasites in relation to biocontrol of soilborne plant pathogens. Biological Control of Plant Disease, 1992: 157~167.
    78. De Caire G Z, de Cano M S, Palma R M, Mule C Z. Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biology and Biochemistry, 2000, 32(13): 1985~1987.
    79. De Fede K L, Sexstone A J. Differential response of size fractionated soil bacteria in Biolog (R) microtitre plates. Soil Biology and Biochemistry. 2001, 33(11):1547~1554.
    80. Deng S P, Tabatabai M A. A tillage and residue management on enzyme activities in soils III: phosphatases and arysulphatases. Biology and Fertility of Soils, 1996, 22:208~213.
    81. Dennis C, Webster J. Antagonistic properties of species-groups of Trichoderma. Transaction of the British Mycological Society, 1971, 57: 363~369.
    82. Di Pietro, Lorito M, Hayes C K, Broadway R M, Harman G E. Endochitinase from Glicladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 1993, 83:308~313.
    83. Elad Y. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 2000, 19:709~714.
    84. Elad Y, Barak R, Chet I. Parasitism of Sclerotium rolfsii by Trichoderma harzianum. Soil Boil. Biochem., 1984, 16: 381~386.
    85. Elad Y, Chet I. Parasitism of Trichoderma sp. on Rhizoctonia solani and Sclerotium rolfsii scanning microscopy and fluorescence microscopy. Phytopathology, 1983, 73: 85~88.
    86. Elad Y, Kapat A. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol. 1999, 105: 177~189.
    87. Engelen B, Meinken K, Wintzingerode F, Heuer H, Malkomes H, Backhaus H. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Applied and Environmental Microbiology, 1998, 64(8): 2814~2821.
    88. Fischer S G, Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Nati. Acad. Sci. USA, 1983, 80:1579~1583.
    89. Friend J, Reynolds S B, Aveyard W A. Phenylalanine Ammonia Lyase, Chlorogenic acid and Lignin in potato tuber tissue inoculated with Phytophthora infestans. Physiol. Plant Pathol., 1973, 3(4): 495~507.
    90. Gall J G, Pardue M L. Formation of RNA-DNA hybrid molecules in cytogenetical preparations. Proceedings of the National Academy of Science of USA, 1969, 63: 378~383.
    91. Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon course utilization. Applied and Environmental Microbiology, 1991, 57 (5): 2351~2359.
    92. Gelsomino A, Keijzer-Wolters A C, Cacco G, van Elsas J D. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods, 1999, 38:1~15.
    93. Ghisalbert E L. Antifungal antibiotics produced by Trichoderma spp. Soil Biology and Biochem., 1991, 23(11): 1011~1020.
    94. Ghisalbert E L. Antifungal metabolite from Trichoderma harzianum. J. Natural Products, 1993, 56 (10):1769~1804.
    95. Glenn J K, Gold M H. Purification and characterization of an extracellular Mn (Ⅱ)-dependentperoxidase from the lignin-degrading basidiomycetes, Phancerochaete chrysosporium.Arch. Biochem. Biophys., 1985, 242: 329~341.
    96. Goncalves R B, Vaisanen M L, Martin Van S T J, Sundqvist G, Mouton C. Genetic relatedness between oral and intestinal isolates of Porphyromonas endodontalis by analysis of random amplified polymorphic DNA. Research of Microbiology, 1999, 150: 61~68.
    97. Green N E, Hadwiger L A, Graham S O. Phenylalanine Ammonia Lyase, Tyrosine Ammonia Lyase and Lignin in wheat inoculated with Etyslphe graminis f. sp. tritici. Phytopathology, 1975, 65 (10): 1071~1074.
    98. Griffiths R I, Whiteley A S, O’Donnell A G, Bailey M J. Physiological and community responses of established grassland bacterial populations to water stress. Applied and Environmental Microbiology, 2003, 69(12): 6961~6968.
    99. Hayashi K. SSCP-PCR: A simple and sensitive method for deletion of mutations in the genomic DNA. PCR Methods Appl., 1991, 1: 34~39.
    100. Harman G E, Howell C R, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2004, 2: 43~56.
    101. Harman G E, Latorre B. Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. Biological Control, 1996, 7:259~266.
    102. Head I M, Saunders J R, Pickup R W. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology, 1998, 35: 11~21.
    103. Heuer H, Krsek M, Baker P, Smalla K, Ellington W. Analysis of actinomycete communities by specific amplification ofgenes encoding l6S rDNA and gel-electrophoretic separation in denaturing gradients. Applied Environmental Microbiology, l997, 63: 3233~324l.
    104. Hodge M, Andrew C J. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Plant Physiol., 1996, 98: 685~692.
    105. Insam H. A new set of substrates proposed for community, characterization in environmental samples. In: Insam H, Rangger A. Microbial Communities. Springer-Verlag, Berlin, 1997, 259~260.
    106. Insam H, Amor K, Renner M, Crepaz G. Changes in functional abilities of the microbial community during composing of manure. Microbiological Ecology, 1996, 31: 77~87.
    107. Iturbe-Ormaetxe I, Escuredo P R, Arrese-Igor C, Becana M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol., 1998, 116: 173~181.
    108. Johnsen K, Nielsen P. Diversity of pseudomonas strains isolated with King’s B and Gould’S1 agar determined by repetitive extragenic palindrome Polymerase chain reaction, 16S rDNA sequencing and fourier transform infrared spectroscopy characterization. FEMS Microbiological Letter, 1999, 173: 155~162.
    109. Joseph L M, Tan T K, Wong S M. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial growth of Pseudocercospora species. Canadian Joural of Botany, 1998, 76 (12): 2119~2124.
    110. Keith-Roach M J, Bryan N D, Bardgett R D, Livens F R. Seasonal changes in the microbial community of a salt marsh, measured by phospholipid fatty acid analysis. Biogeochemistry, 2002, 60: 77~96.
    111. Kelly J J, Haggblom M, Tate R L. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry, 1999, 31: 1455~1465.
    112. Kennydy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170: 75~86.
    113. Legendra L, Rueter S, Heinstein P F, Low P S. Characterization of the oligogalacturonide -induced oxidative burst in cultured soybean cells. Plant physiol., 1993, 102:33~240.
    114. Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistanse response. Cell, 1994, 79: 583~593.
    115. Lifsht Z R, Windham M T, Baker R. Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichodema spp.. Phytopathology, 1986, 76: 720~725.
    116. Liu W T, Marsh T L, Cheng H, Forney L J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 1997, 63: 4516~4522.
    117. Lorito M. Novel understanding of Trichoderma interaction mechanisms. Journal of Zhejiang University (Agric. & Life Sci.), 2004, 30(4): 387.
    118. Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson J K.In vivo study of Trichoderma–pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Environ. Microbiol., 2004, 70: 3073~3081.
    119. Lynch J M, Lumsden R D, Atkey P T, Ousley M A. Prospects for control of Pythium damping-off of lettuce with Trichoderma, Gliocladium, and Enterobacter spp.. Biology and Fertility of Soils, 1991, 12, 95~99.
    120. Magurran A E. Ecological diversity and its measurement. Princeton, N J: Princeton University Press, 1988, 141~162.
    121. Maguson M, Craford D L. Comparison of extracellular peroxidase and esterase-deficient mutants of Streptomyces viridosporus T7A. Applied Environmental Microbiology, 1992, 58: 1070~1072.
    122. Marra R, Ambrosino P, Carbone V. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr. Genet., 2006, 50: 307~32l.
    123. Marsh T L. Terminal restriction fragment length polymorphisms (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Current Opinion in Microbiology, 1999, 2: 323~327.
    124. Montalbini P, Buonaurio R. Effect of tobacco mosaic virus infection on leaves of soluble superoxide dismutase (SOD) in Nicotiana tabacum and Nicotiana glutinosa leaves. Plant Sci.,1986, 47: 135~143.
    125. Müller A K, Westergaard K. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbial Ecology, 2001, 36(1): 11~19.
    126. Müller A K, Westergaard K, Christensen S, S?rensen S J. The diversity and function of soil microbial communities exposed to different disturbances. Microbial Ecology, 2002, 44: 49~58.
    127. Myers R M, Fisher S G, Lerman L S, Maniatis T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research, 1985, 13 (9): 3131~3145.
    128. Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59: 695~700.
    129. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 1998, 73 (1): 127~141.
    130. Naseby D C, Pascual J A, Lynch J M. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Appl. Microbiol., 2000, 88: 161~169.
    131. Olsen R A, Bakken L R. Viability of soil bacteria: Optimization of plate counting technique and comparison between total counts and plate counts within different size groups. Microbiological Ecology, 1987, 13:59~74.
    132. Ralph H, Karl H K.Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei ). Molecular plant-microbe interactions, 1998, 11(4): 292~300.
    133. Ramasoota P, Chansiripornchai N, Kallenius G, Hoffner S E, Svenson B S. Comparison of Mycobacterium avium complex (MAC) strains from pigs and humans in Sweden by random amplified polymorphic DNA (RAPD) using standardized reagents. Veterinary Microbiology, 2001, 78: 251~259.
    134. Ronald M, Richard B. Microbial Ecology: Fundamentals and Applications (4th edition). Benjamin Cummings, New York, 1997.
    135. Sarrocco S, Mikkelsen L, Vergara M, Jensen D F, Lubeck M, Vannacci G. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Mycol. Res., 2006, 110: l79~l87.
    136. Schwieger F, Tebbe C C. Effect of field inoculation with Sinorhizobium melilot-linking 16S rRNA gene based SSCP community profiles to the diversity of cultivated isolates. Applied Environmental Microbiology, 2000, 66 (8): 3556~3565.
    137. Sekiguchi Y, Kamagata Y, Ohashi A, Harada H. Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges. Water Science and Technology, 2002, 45 (10):19~25.
    138. Silyn-Roberts G, Lewis G. In situ analysis of Nitrosomonas spp. in waste water treatment biofilms. Water Res., 2001(35)11: 2731~2739.
    139. Simoes D C M, McNeil D, Kristiansen B, Mattey M. Purification and partial characterization of a 1.57 kDa therm ostable esterase from Bacillus stearothermophilus. FEMS Microbiol. Lett., 1997, 147: 151~156.
    140. Sivan A. The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology, 1989, 79(2): 198~203.
    141. Smalla K, Wachtendorf U, Heuer H, Liu W, Forney L. Analysis of Biology GN substrate utilization patterns by microbial communities. Applied and Environmental Microbiology, 1998, 64: 1220~1225.
    142. Smit E, Leeflang P, Wernars K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology, 1997, 23:249~261.
    143. Suhadolc M, Schroll R, Gattinger A, Schloter M, Munch J C, Lestan D. Effects of modified Pb2+, Zn2+, and Cd2+ availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biology and Biochemistry, 2004, 36: 1943~1954.
    144. Taylor J P, Wilson B, Mills M S, Burns R G. Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques. Soil Biol. Biochem., 2002, 34: 387~401.
    145. Tsai Yu-Li, Olson Betty H. Rapid method for separation of bacteria DNA from humic substances in sediments for polymerase chain reaction. Applied and Environmental Microbiology, 1992, 58:2292~2295.
    146. Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G, Rigaud A, Soulas G. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology, 1997, 24: 279~285.
    147. Van Elsas J D, Duarte G F, Rosado A S, Smalla K. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. Journal of Microbiological Method, 1998, 32: 133~154.
    148. Viterbo A, Hare M, Horwitz, B A, Chet I, Mukherjee P K. Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Applied and Environmental Microbiology, 2005, 71:6241~6246.
    149. Weindling R. Studies on lethal principle effective in the parasitic action of Trichoderma hamatum on Rhizoctonia solani and other soil fungi. Phytopathology, 1932, 22: 837~845.
    150. White T J, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J. PCR protocols: a guide to methods and applications, Academic Press, New York, USA, 1990, 315~322.
    151. Williams J G, Kubelik A R, Livak K J. DNA polymerphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18: 6531~6535.
    152. Worden A Z, Chisholm S W, Binder B J. In situ hybridization of Prochlorococcus and Synechococcus spp. (Marine cyanobacteria) with rRNA-targeted peptide nucleic acid probes. Appl. Environ. Microbiol., 2000, 66: 284~289.
    153. Woese C R. Bacterial evolution. Microbiol. Rev., 1987, 51: 221~271.
    154. Yedidia I, Benhamou N, Chet I. Induction of defense responses in cucumber plants by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol., 1999, 65: 1061~1070.
    155. Zak M W, Moorhead D, Wildman H. Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry, 1994, 26: 1101~1108.
    156. Zimand G, Elacd Y. Effect of Trichoderma harzianum on Botrytis cinerea.Phytopathology, 1996, 86: 945~956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700