明永冰川低温微生物多样性初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川是较为独特的生态系统,由于其低温、寡营养的环境为生命和生命大分子物质的保存提供了较为理想的环境,因此被认为是研究宇宙生命进化和地球环境演化等重大问题的“活化石”,而且也是一个天然的微生物“贮藏库”。因而我们对这一特殊生态系统中微生物的研究可以为古气候的模拟提供信息,采集地球生命和寒区环境协同变化的信息,研究生命的进化以及极端环境下的生物学特性,发掘对人类有用的特殊基因和嗜冷微生物及其分泌产物。本项研究以云南省低纬度、低海拔的明永冰川样品为实验材料,利用分离培养的手段,对该地区低温微生物多样性进行了初步研究。
     从来自冰川低温环境中的样品中共筛选分离出可培养的微生物菌株29株,其中细菌22株,真菌7株。7株真菌均能在4~25℃生长,不能在37℃生长;通过菌落形态和显微形态对比分析,对7株低温真菌进行了初步分类鉴定,具体为:2株属于青霉属(Penicillium),2株属于无孢菌群(Mycellia sterilia),1株属于枝孢属(Cladosporium),1株属曲霉属(Aspergillus),另1株属于亚黑团孢属(Periconiella)。利用形态观察技术、生理生化鉴定技术、16S rRNA基因系统发育分析技术对22株细菌进行了鉴定。结果表明:菌株MY14011能在4~13℃生长,25℃不生长,菌株MY1402能在4~37℃生长,42℃不生长,其余20株细菌均能在4~25℃生长,37℃不生长,推测菌株MY14011为嗜冷菌(Psychrophilies),菌株MY1402和其余20株菌均为耐冷菌(Psychrotrophs);大多数菌株为杆状,革兰氏阴性,抗性和产酶情况区别较大,大多数生理生化特性接近或相同;16S rRNA基因系统发育分析表明:1株菌属于色杆菌属(Chromobacterium),1株菌属于黄杆菌属(Flavobacterium),2株菌属于节杆菌属(Arthrobacter),其余18株菌均属于假单胞菌属(Pseudomonas)。
     本次对明永冰川低温微生物多样性的初步研究获得了一批重要的菌种资源,了解了该地区微生物多样性的特点,为进一步的深入了解菌群多样性提供了科学依据。但通过纯培养分离地方法对多样性了解尚不够全面,今后应进一步增加研究方法,更客观地反映明永冰川地区微生物多样性的信息,不断提高冰川微生物的研究水平。
Glacier is a special ecosystem. Because of low temperature and scant nutrition, it has been considered as an important area for conservation of organisms and biological molecules (DNA, RNA and proteins). It provides us a "live fossil" in study of coevolution of life and environment. The glaciers are huge natural storage of microorganism. The study on microbial ecology of glacier and permafrost has very important value on the simulation of paleoclimate, collection of the information of coevolution between lives and cold-environment, study of biological evolution clock and exploration of valuable metabolic end-products. In this paper, the diversity of microorganism in Mingyong Glacier, which was located in Yunnan province and famous for its low altitude and low latitude in the world was studied.
     Total of twenty-nine cold-adapted microorganisms were isolated from Mingyong glacier area. Among them, twenty-two strains belong to bacteria and seven strains belong to fungi. All fungi can grow at 4~25℃. According to their morphological and physiological characteristics, fungi were identified as one member of Cladosporium genus, one member of Aspergillus genus, one member of Periconiella genus, two members of Penicillium genus and two members of Mycelia Sterilia genus, respectively.
     Based on morphological, physiological characteristics and 16S rRNA gene analysis, all isolated bacteria were identified. According to the growth range of isolates, only MY14011 can be defined as psychrophile, all others belong to psychrophic. Most isolates showed rod-shaped cell and stained as Gram negative. The biochemical characteristics of isolates, such as sensitivety towards antibiotics and hydrolysis ability for casein, starch and olive oil were studied and showed difference each other. According to physiological and biochemical characteristics and phylogenetic analysis of 16S rRNA gene, one isolate was identified as Chromobacterium genus, one was Flavobacterium genus, two were Arthrobacter genus and all others were Pseudomonas genus.
     We isolated many valuable cold-adapted microorganisms from Mingyong Glacier. This is the first report of microbial diversity in Mingyong Glacier area, Yunnan province, China. Further study will focus on developing more methods in studying microbial diverity in this area.
引文
[1]Madigan MT,Marrs BL.Extremophiles.Scientific American April,1997,82-87.
    [2]Gerday C,Aittaleb M,Bentahir M,et al.Cold-adapted enzymes:from fundamentals to biotechnology.Trends Biotechnol,2000,18(3):103-107.
    [3]Morita RY.Psychrophilic bacteria.Bacteriol Rev,1975,39(2):144-167.
    [4]唐兵,唐晓峰,彭珍荣.嗜冷菌研究进展.微生物学杂志,2002,22(1):51-53.
    [5]王建龙.微生物脂酶及其在环境生物技术领域中的应用.生命的化学,2000,20(2):93-94.
    [6]曾胤新,蔡明宏,俞勇.微生物低温酶适冷机制研究进展.中国生物工程杂志,2003.10:52-56.
    [7]Margesin R,Schinner F.Properties of cold-adapted microorganisms and their potential,role in biotechnology.Journal of Biotechnology,t994,33:1-14.
    [8]Feller G.Molecular adaptations to cold in psychrophilic enzymes.Ceil Mol Life Sci,2003,60(4):648-662.
    [9]曹卫军,沈萍,李朝阳.嗜极微生物.武汉大学出版社,2004.
    [10]Gounot AM,.Russell NJ.Physiology of cold-adapted microorganism.In:Margesin R and Schinner F(Ed).Cold-adapted organisms:ecology,physiology,enzymology,and molecular biology.Berlin,Springer,1999,33-35.
    [11]曾胤新,俞勇,蔡明宏.低温微生物及其酶类的研究概况.微生物学杂志,2004,24(5):83-87.
    [12]辛明秀,周培瑾.低温微生物研究进展.微生物学报,1998,38(5):400-403.
    [13]Russell NJ.Cold adaptation of microorganisms.Philos Trans R Soc Lond B Biol Sci,1990,326(1237):595-608,discussion 608-511.
    [14]Mavromatis K,Tsigos I,Tzanodaskalaki M,et al.Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase.Eur J Biochem,2002,269(9):2330-2335.
    [15]Feller G,Arpigny JL,Nminx E.Molecular adaptations of enzymes from psychrophilic organisms.Elsevier Science,1997,118(3):495-499.
    [16]Turkiewicz M,Kur J,Bialkowska A,et al.Antarctic marine bacterium Pseudoalteromonas sp.22b as a source of cold-adapted beta-galactosidase.Biomol Eng,2003,20(4-6):317-324.
    [17]Friedmann EI.Endolithic microorganisms in the Antarctic cold desert,science,1982,215:1045-1053.
    [18]Christner BC,Mosley-Thompson E,Thompson LG,et al.Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice.Environ Microbiol,2001,3(9):570-577.
    [19]Rivkina EM,Friedmann EI,McKay CP,et al.Metabolic activity of permafrost bacteria below the freezing point.Appl Environ Microbiol,2000,66(8):3230-3233.
    [20]Ingraham JL.Growth of psychrophilic bacteria.Cryobiology,1969(2):19-21.
    [21]Yunlin Wei,Kurihara T.,Suzuki T.,et al.A novel esterase from a psychrotrophic bacterium,Acinetobacter sp.Strian No.6.J.Mol.Catal.B Enzym,2003,23:357-365.
    [22]林学政,边际,何培青.极地微生物低温适应性的分子机制.极地研究,2003,15(1):75-82.
    [23]Yunlin Wei,.Matsuno M.,Hayashi M.,et al.Construction of a protein expression system using a cold-adapted bacterium,Acinetobacter sp.DWC6(strian no.6).Nippon Seikagaku,2003,75(8):1091.
    [24]Nash CH,Grant WD.Therma stability of ribosomes from a psychrophilic yeast.Can J Microbiol,1969,15:1116-1118.
    [25]D'Amico S,Claverie P,Collins T,et al.Molecular basis of cold adaptation.Philos Trans R Soc Lond B Biol Sci,2002,357(1423):917-925.
    [26]聂凌鸿,宁正祥.海藻糖的生物保护作用.生命的化学,2001,21(3):206-209.
    [27]封德顺.海藻糖的生物学功能简介.生物学通报,1999,34(2):13-14.
    [28]Diniz-Mendes L,Bernardes E,de Araujo PS,et al.Preservation of frozen yeast cells by trehalose.Biotechnol Bioeng,1999,65(5):572-578.
    [29]Weinstein RN,Montiel PO,Johnstone K.Influence of growth temperature on lipid and solubale carbohydrate synthesis by fungi isolated from fellfield in the maritime Antarctic.Mycologia,2000,92(2):222-229.
    [30]Peter G,Marahiel MA.Some like ti cold:response of microorganisms to cold shock.Arch Microbiol,1996,166:293-300.
    [31]Julseth CR,Inniss WE.Induction of protein synthesis to cold shock in the psychrotrophic yeast Trichaspron pullulans.Can J Microbiol,1990,36:519-524.
    [32]陈秀兰,张玉忠,高培基.对深海低温菌Pseudomonas sp.SM9915分泌不同低温蛋白酶的研究.海洋与湖沼,2003,34(2):155-160.
    [33]Jonsdottir G,Bjarnason JB,Gudmundsdottir A.Recombinant cold-adapted trypsin Ⅰfrom Atlantic cod-expression,purification,and identification.Protein Expr Purif,2004,33(1):110-122.
    [34]陈熹兮,李堃宝,李道棠.低温微生物及其在生物修复领域中的应用.自然杂志,2001,23(3):163-167.
    [35]Feller G,Thiry M,Arpigny JL et al.Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144.Gene,t99t,102(1):11,1-115.
    [36]Egorowa AA.Uber Bakterien in fossilen Eis.Arktis,1931(4):5-12.
    [37]Sattler B,Puxbaum H,.Psenner R.Bacterial growth in supercooled cloud droplets.Geophysical Research Letters,2001,28(2):239-242.
    [38]Castello JD,Rogers SO,Starmer WT,et al.Detection of tomato mosaic tobamovirus RNA in ancient glacial ice.Polar Biology,1999,22(3):207-212.
    [39]Kohshima S.Glacial biology and biotic communities,p.77-92.In Kawano S.,J.H.Connell,and T.Hidaka(ed.),Evolution and coadaptation in biotic communities.University of Tokyo Press,Tokyo,Japan.,1987.
    [40]Kohshima S.Glaciological impotrance of micro-organisms in the surface mud-like materials and dirt layer particles of the Chongce Ice Cap and Gozha glacier,West Kunlun Mountain,Chaina.Bulletin of Glacier Research,1989(7):59-66.
    [41]Hoham RW,Duval B.Microbial ecology of snow and freshwater ice with emphasis on snow algae.In Jones,H.G.,Pomeroy J.W.,Walker D.A.and Hoham R.W.,eds.Snow ecology:an interdisciplinary examination of snow-covered ecosystems.Cambridge,Cambridge University Press.2001,168-228.
    [42]Kol E,Eurola S.Red snow algae from Spitsbergen.Astarte,1974(7):61-66.
    [43] Carpenter EJ, Lin S, Capone DG. Bacterial activity in South Pole snow. Appl Environ Microbiol, 2000, 66(10): 4514-4517.
    [44] Segawa T, Miyamoto K, Ushida K, et al. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol, 2005, 71(1): 123-130.
    [45] Takeuchi N, Kohshima S, Seko K. Structure, formation, darkening process of albedo reducing material(cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research, 2001(33): 115-122.
    [46] LaPara TM, Zakharova T, Nakatsu CH, et al. Functional and Structural Adaptations of Bacterial Communities Growing on Particulate Substrates under Stringent Nutrient Limitation. Microbial Ecology, 2001(44): 317-326.
    [47] Kohshima S. A novel cold-tolerant insect found in a Himalayan glacier. Nature, 1984, 3(10): 225-227.
    [48] Shain D, Mason T, Farrell A, et al. Distribution and behavior of ice worms(Mesenchytraeus solifugus) in south-central Alaska. Cana. J. Zool, 2001(79): 1813-1821.
    [49] Takeuchi N, Kohshima S. A snow algal community on Tyndall Glacier in the southern Patagonia Icefield, Chile. Arctic, Antarctic, and Alpine Research, 2004, 36(1): 92-99.
    [50] Priscu JC, Fritsen CH, Adams EE, et al. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 1998,280(5372): 2095-2098.
    [51] Gordon DA, Priscu J, Giovannoni S. Origin and Phylogeny of Microbes Living in Permanent Antarctic Lake Ice. Microb Ecol, 2000, 39(3): 197-202.
    [52] Brambilla E, Hippe H, Hagelstein A, et al. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles, 2001, 5(1): 23-33.
    [53] Petit JR, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 1999, 39(9): 429-436.
    [54] Christner BC, Thompson EM, Thompson LG, et al. Recovery and identification of viable bacteria immured in glacial ice. Icarus, 2000,14(4): 479-485.
    [55] Price BP. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci., 2000, 9(7): 1247-1251.
    [56] Priscu JC, Adams EE, Lyons WB, et al. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 1999,286(5447): 2141-2144.
    [57] Sheridan PP, Miteva VI, Brenchley JE. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a greenland glacier ice core. Appl Environ Microbiol, 2003, 69(4): 2153-2160.
    [58] Miteva VI, Sheridan PP, Brenchley JE. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core. Appl Environ Microbiol, 2004, 70(1): 202-213.
    [59] Castello JD, Rogers SO, Starmer WT. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biology, 1999,2(2): 207-212.
    [60] Thomas DN, Dieckmann GS. Antarctic Sea ice--a habitat for extremophiles. Science, 2002,295(5555): 641-644.
    [61] Staley JT, Gosink JJ. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol, 1999, 5(3): 189-215.
    [62] Brown MV, Bowman JP. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol, 2001,35(3): 267-275.
    [63] Brinkmeyer R, Knittel K, Jurgens J, et al. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol, 2003, 69(11): 6610-6619.
    [64] Bano N, Hollibaugh JT. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol, 2002,68(2): 505-518.
    [65] Bowman JP, McCammon SA, Brown MV, et al. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol, 1997, 63(8): 3068-3078.
    [66] Junge K, Imhoff F, Staley T, et al. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol, 2002, 43(3): 315-328.
    [67]谢冰,徐亚同.环境微生物的分子生物学研究方法.世界科技研究与发展,2003,25(2):48-53.
    [68]张晓君.博士论文:青藏高原冰芯微生物与DNA多样性及其环境效应.中国科学院寒区旱区环境与工程研究所兰州,2002.
    [69]Zhang X,Ma X,Yao T.Diversity of 16s rDNA and environmental factor influencing microorganism in MaLan ice core.Chinese science bulletin,2003,4(8):1146-1151.
    [70]Zhang X,Yao T,Ma X,et al.Analysis of the characteristics of microorganisms packed in the ice core of Malan Glacier,Tibet,China.Sci.China,2003,4(4):165-170.
    [71]向述荣.博士论文:青藏高原冰川细菌菌群的时空变化及其与气候环境的关系.中国科学院寒区旱区环境与工程研究所 兰州,2005.
    [72]Dancer S J,Shears P,Platt DJ.Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic.J Appl Microbiol,1997,82(5):597-609.
    [73]Yoshimura Y,Kohshima S,Ohtani S.A community of snow algae on a Himalayan glacier:change of algal biomass and community structure with.altiture.Arctic,Antarctic,and Alpine Research,1997,29:126-137.
    [74]Takeuchi.N,The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range).Hydrol.Process,2001,15:3447-3459.
    [75]Takeuchi N,Kohshima S,Segawa T.Effect of cryoconite and snow algal communities on surface albedo on maritime glaciers in south Alaska.Bulletin of Glaciological Research,2003,20:21-27.
    [76]Takeuchi N,Kohshima S,Seko K.Structure,formation,darkening process of albedo reducing material(cryoconite)on a Himalayan glacier:a granular algal mat growing on the glacier.Arctic,Antarctic,and Alpine Research,2001,33:115-122.
    [77]Yoshimura Y,Kohshima S,Takeuchi N,et al.Himalayan ice-core dating with snow algae.J.Glaciol,2000,46:335-340.
    [78]Yoshimura Y,Kohshima S,Takeuchi N,et al.Snow algae in a Himalayan ice core:new environmental markers for ice-core analyses and their correlation with summer mass balance Annals of Glaciology,2006,43:148-153.
    [79]Priscu JC,Christner BC.Earth's icy biosphere.In Bull,Alan T.(ed.),Microbial Diversity and Bioprospecting.American Society for Microbiology,Washington,D.C.,2004,130-145.
    [80]Christner BC,Mosley-Thompson E,Thompson LG,et al.Bacterial recovery from ancient glacial ice.Environ Microbiol,2003,5(5):433-436.
    [81]Fong NJ,Burgess ML,Barrow KD,et al.Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress.Appl Microbiol Biotechnol,2001,56(5-6):750-756.
    [82]Zhang XJ,Yao TD,Ma XJ,et al.Microorganisms in a high altitude glacier ice in Tibet.Folia Microbiol(Praha),2002,47(3):241-245.
    [83]张晓君,马晓军,章高森.马兰冰芯16S rDNA的多样性与影响冰芯中微生物环境因素.科学通报,2003,48:947-951.
    [84]Wilterslev E,Hansen AJ,Christensen B,et al.Diversity of Holocene life forms in fossil glacier ice.Proc Natl Acad Sci U S A,1999,96(14):8017-8021.
    [85]Christner BC,Mosley-Thomopson E.Recovery and identification of viable bacteria immured in glacial ice.Icarus,2000,14(4):479-485.
    [86]Horz HP,Barbrook A,Field CB,et al.Ammonia-oxidizing bacteria respond to multifactorial global change.Proc Natl Acad Sci U S A,2004,101(42):15136-15141.
    [87]Naoise N,James WM,James IP.Links between Plant and Rhizoplane Bacterial Communities in Grassland Soils,Characterized Using Molecular Techniques.Appl Environ Microbiol,2005,71:6784-6792.
    [88]Gillan DC,Danis B,Pernet P,et al.Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment.Appl Environ Microbiol,2005,71(2):679-690.
    [89]Boivin ME,Massieux B,Breure AM,et al.Functional recovery of biofilm bacterial communities after copper exposure.Environ Pollut,2006,140(2):239-246.
    [90](美)巴尼特HL,亨特BB.半知菌属图解.科学出版社,1977.
    [91]中国科学院微生物研究所《常见与常用真菌》编写组.常见与常用真菌.科学 技术出版社,1973,8.
    [92]魏景超.真菌鉴定手册.上海科学技术出版社,1979,9.
    [93]戴芳澜.真菌的形态和分类.科学出版社,1987,3.
    [94]Haselwandter K,Ebner MR.Microorganisms surviving for 5,300 years.FEMS Microbiology Letters,1994,116(2):189-193.
    [95]Ma LJ,Catharine MC,Starmer WT,et al.Revival and characterization of fungi from ancient polar ice.Mycologist,1999(13):70-73.
    [96]张晓君,姚檀栋,马晓军,et al.马兰冰川:一支深冰芯中微生物特征的分析.中国科学,2001,31(增刊).
    [97]潘园园,陈雯莉,黄巧云.一株抗重金属铜镉细菌的分离、鉴定及其16S rDNA 的序列分析.微生物学通报,2005,32(3):68-72.
    [98]萨姆布雷克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验.北京:科学出版社,第三版,1992,23.
    [99]Thompson JD,Gibson TJ,Plewniak F.The Clustal X windows interface:flexible strategies for multipe sequence alignment aided by quality analysis tools.Nucleic Acids Research,1997,24:4876-4882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700