不同类型冰川雪中微生物多样性及其与环境关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川作为占据地球陆地总面积10%的生态环境,因其长期的低温、强辐射和寡营养,对生存于其中的生物具有极大的挑战,是极端环境的一个重要代表。近年来,冰雪微生物作为极端低温环境中的主要生命形式已成为生命现象多样性和气候环境变化等基础研究领域所关注的热点之一。然而,由于冰川分布于不同区域,各个研究者大多着眼于自己所研究区域,对不同气候环境条件下,不同类型冰川冰雪微生物多样性的对比性研究尚少。而且,相对于深冰芯微生物研究而言,对同样具有重要意义的表面雪层中的微生物研究更少。
     本研究以海洋性冰川区的玉龙雪山和大陆性冰川区的东天山的冰川雪为材料,利用分子标记手段变性梯度凝胶电泳(DGGE)技术,DAPI荧光显微计数技术、恢复培养技术、16S rDNA和18S rDNA基因克隆技术等,通过对雪样中微生物数量和群落结构的研究,分析了不同类型、不同深度冰川雪中微生物多样性的差异及其与气候环境因子的关系,主要结果如下:
     1.大陆性的东天山冰川雪中细菌数量高于海洋性的玉龙雪山。东天山雪样细菌总数在1.03×10~4~1.74×10~4cells/ml(mean±standard error,1.36×10~4±0.21×10~4cells/ml,n=3)之间,玉龙山冰川雪中细菌在1.4×10~3~3.13×10~3cells/ml(mean±standard error,2.1×10~3±0.53×10~3 cells/ml,n=3)之间。细菌总数和可培养细菌数与气候环境替代指标Ca~(2+),Mg~(2+)和Na~+等离子浓度变化趋势一致,提示微生物是随粉尘颗粒进入冰川雪坑中。但是,除粉尘之外还有其它因素影响着冰雪微生物的含量。
     2.恢复培养以及变性梯度凝胶电泳(DGGE)的结果显示,东天山雪样中细菌种类多于玉龙雪山的样品。从东天山冰川雪样中检测到的细菌分别属于α-,β-,γ-proteobacteria,CFB,HGC和LGC 6个系统发育群;从玉龙山雪样中检测到5个系统发育群的细菌,分别为α-Proteobacteria,β-proteobacteria、HGC、LGC和CFB类。由于水汽和尘埃的源区及传输途径不同,致使冰川雪中细菌的种类与玉龙山冰川有很大的差别。通过恢复培养和DGGE手段得到的细菌种类不同,在可培养菌株中占优势的革兰氏阳性菌在DGGE检测到的细菌类群中比例较少。因而需要将分子方法与传统的培养技术相结合,才能更充分、更全面地研究冰川微生物。
     3.东天山冰川和玉龙山冰川雪样中的真核微生物组成显著不同,通过DGGE方法检测到玉龙山雪坑中真核微生物主要为Fungi和Cercozoan;东天山雪坑中真核微生物分属于Viridiplantae、Fungi、Cercozoan、Alveolata和Metazoa等五大类。冰川中的真核微生物群落结构的不同,说明气候环境变化对冰川真核微生物的分布也有重要影响。
     4.玉龙雪山不同深度雪样中的细菌和真核微生物变化不明显,但东天山不同深度雪中细菌和真核微生物的结构组成有明显变化,且细菌变化与离子浓度关系密切,而不同的真核微生物的变化与细菌类群和离子浓度的关系不同。随雪深度增加,真核微生物的优势种群从表面的藻类转化为后生动物,是一种从简单到复杂的过程,提示雪中微生物有其独自的、动态的生态系统和营养循环。
     以上研究结果表明,大陆性冰川和海洋性冰川微生物的数量及组成显著不同,气候环境变化、人类活动及微生物种群之间的相互作用都会影响微生物的结构组成。
The glacier environment represents 10%of terrestrial soil ecosystems,is considered extreme because microorganisms must survive prolonged exposure to subzero temperatures and background radiation for geological time scales in a habitat with seriously lack of nutrition.In recent years,microorganisms in glacier attracted high attention of both studies on diversity of life and environment change on earth. However,due to different study regions,little comparative studies of the bacterial diversity in different environment.In addition,much less study is focus on microorganisms in snow,though study on snow has important meaning as on ice core.
     In order to understand spatial and temporal variations of the bacterial community in snow cover of different type glaciers in China,sampling from maritime glacier Mt. Yulong and inland glacier Mt.Tianshan has been carried out.This work is the first report of the bacterial community in surface snow from these two different types' glaciers.Here,total bacteria counts were established by 4',6'-diamino-2-phenylindole(DAPI) in the snow pack,cultivation-dependent and cultivation-independent approaches,denaturing gradient gel electrophoresis(DGGE), were used to reveal the microbial community structure and diversity.Snow physical, chemical and other environmental variables are measured as well to have a better understanding of the relationship between the bacterial community structure and the environment.The results obtained here were summarized as follows:
     1.The concentrations of bacteria in snow samples collected from Yulong Mountain were 1.4×10~3~3.13×10~3 cells/ml(mean±standard error,2.1×10~3±0.53×10~3 cells/ml, n=3),lower than the Tianshan Mountain what were 1.03×10~4~1.74×10~4 cells/ml (mean±standard error,1.36×10~4±0.21×10~4 cells/ml,n=3).The total bacterial abundance and cultured bacterial amount have a significant,positive correlation with the concentrations of ions in all snow samples.It suggested that the microorganisms were deposited episodically in glacier with the dust particle.But the particle concentration just is one important factor controlling bacterial abundance,bacteria abundance also influence by other environment factors, including the effect of meltwater washout,UV radiation and temperature and so on.So,lower bacterial amount in some snow samples which have higher concentration of most mineral particles.
     2.No matter use cultivation-dependent and cultivation-independent approaches, bacterial diversity in Mt.Tianshan snow samples were higher than in Mt.Yulong. The 16S rDNA gene both of cultured bacteria and DGGE band sequenced from Mt.Tianshan belong to following groups:α,β-,γ-proteobacteria, Cytophaga-Flavobacterium-Bacteroides(CFB),High GC and Low GC.In Mt. Yulong,the 16S rDNA genes belong toα-,β-proteobacteria,CFB,High GC and Low GC.The bacterial diversity was influenced by the source and transport of moisture and dust.Bacteria carried by westerlies in winter were distinct from those transported by monsoon in summer.
     3.The eucaryotic microbial community structures have obvious difference between Yulong mountain snow and East Tianshan mountain snow.The 18S rDNA gene of DGGE band from Yulong mountain snow belongs to Fungi and Cercozoan. But the 18S rDNA gene of DGGE band from East Tianshan mountain snow belonging to the following groups:Viridiplantae、Fungi、Cercozoan、Alveolata and Metazoa.Among these,Viridiplantae and Fungi are dominant groups.And link chemical parameter analysis the relationship between the bacterial community structure and the environment.
     4.In Mt.Yulong,the bacterial and eucaryotic microbial structure appeared to be similar in snow samples of all depths.But in snow samples of different depths from Mt.Tianshan,microbial structure changed obviously.Bacteria have relationship with ions,and eucaryotic microorganisms have different correlation with ions and bacteria.As snow depth increase,the dominant group changed from Viridiplantae to Metazoa,which is a process from simple to complex.It suggested that the microbial ecosystem in glacier is a particular,dynamic system. Above all,the microbial abundance and diversity in snow of inland glacier were higher than in maritime glacier.The results show that besides environment change, anthropogenic activity and microbial interaction also have a large impact on the snow microbial structure.
引文
何元庆,庞洪喜,卢爱刚,章典,张忠林,宁宝英,宋波,赵井东,院玲玲(2006)中国西部不同类型冰川区积雪及其融水径流中稳定同位素比率的时空变化及其气候效应.冰川冻土28(1):22-28.
    何元庆,张忠林,姚檀栋,陈拓,庞洪喜,章典(2003)中国季风温冰川区近代气候变化与冰川动态.地理学报58(4):550-558.
    何元庆和姚檀栋(2000)玉龙山温冰川浅冰芯记录现代指示意义.冰川冻土.22:235-241.
    康世昌,秦大河,姚檀栋,谢树成,段克勤(2001)现代环境事件的冰芯记录.环境科学学报21(3):301-306.
    康世昌,秦大河,任贾文(1998)北极Svalbard群岛Longyearbyen地区雪坑主要阴、阳离子特征研究.极地研究10(3):172-180.
    李吉均和苏珍(1996)横断山冰川.北京:科学出版社.
    刘时银,丁永建,李晶,上官冬辉,张勇(2006)中国西部冰川对近期气候变暖的响应.第四纪研究26:762-771.
    刘亚平,侯书贵,任贾文,王叶堂,耿志新(2006)东天山庙儿沟平顶冰川钻孔温度分布特征.冰川冻土.28:668-671.
    刘勇勤,姚檀栋,康世昌,焦念志,曾永辉,史扬,骆庭伟,井哲帆,黄思军(2006)珠穆朗玛峰地区东绒布冰川冰雪微生物群落及其季节变化.科学通报51(11):1287-1296.
    施雅风和谢自楚.(1964)中国现代冰川的基本特征.地理学报,30:183-208.
    苏珍,宋国平,曹真堂(1996)贡嘎山海螺沟冰川的海洋性特征.冰川冻土18(增刊):51.59.
    苏珍和蒲建辰(1996)横断山冰川发育条件,数量及形态特征.北京:科学出版社:1-25.
    汪君霞,姚檀栋,徐柏青,邬光剑,向述荣(2004)慕士塔格冰芯中的甲酸、乙酸记录及其变化特征49(15):1542-1546.
    王宁练,Thompson,L.G.,Davis,M.E.(2006)近1000年来青藏高原南部和北部大气尘埃载荷变化的冰芯记录.第四纪研究26(5):752-761.
    向述荣,姚檀栋,安黎哲,李真,邬光剑,王有清,徐伯青,汪君霞(2004)马兰冰芯细菌菌群结构变化与气候环境的关系.科学通报49:1762-1769.
    向述荣,姚檀栋,邬光剑,陈勇,尚天翠,蒲玲玲,安黎哲(2006)慕士塔格冰芯记录的细菌菌群的沉积特征.第四纪研究26:185-191.
    向述荣,姚檀栋,邬光剑,徐柏青,马晓军,李真,汪君霞,余武生(2005)慕士塔格冰芯可培养细菌的数量分布和主要菌群结构随深度的变化.中国科学:D辑35:252-262.
    姚檀栋,邬光剑,蒲建辰,焦克勤和皇翠兰(2004)古里雅冰芯中钙离子与大气粉尘变化关系.科学通报49:888-892.
    姚檀栋和向述荣.(2003)马兰和普若岗日冰芯记录的微生物学特征.第四纪研究.23(2):193-199.
    张淑红,侯书贵,秦翔,王叶堂和杜文涛(2007a)青藏高原冰川雪细菌与气候环境的关系.环境科学研究.20(5):39-44.
    张淑红,侯书贵和秦大河(2007b)青藏高原冰川雪冰微生物研究进展.应用与环境生物学报13(4):592-596.
    张哓君,马晓军,姚檀栋和章高森(2003)马兰冰芯16S rDNA的多样性与影响冰芯中微生物的环境因素.科学通报48:947-951.
    张晓君,姚檀栋,马晓军和王宁练(2001)马兰冰川:一支深冰芯中微生物特征的分析.中国科学:D辑31:295-299.
    张晓君.(2002)博士论文:青藏高原冰芯微生物与DNA多样性及其环境效应.中国科学院寒区旱区环境与工程研究所兰州.
    张新芳(2006)博士论文:普若岗日冰芯微生物多样性及其与环境关系的研究.中国科学院寒区旱区环境与工程研究所兰州.
    章申,于维新(1975)珠穆朗玛峰地区冰化学特征:珠穆朗玛峰地区科学考察报告,1966-1968(自然地理学).北京:科学出版社102-123.
    Abyzov SS,Barkov NI,Bobin NE,Koudryashov BB,Lipenkov VY,Mitskevich IN,Pashkevich VM,Poglazova MN(1998a)The ice sheet of central Antarctica as an object of study of past ecological events on the earth Izv Akad Nauk USSR Ser Biol 5:610-616.
    Abyzov SS,Bobin NE,Koudryashov BB(1982)Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers. Biol Bull Acad Sci USSR 9:558 - 564
    Abyzov SS, Poglazova MN, Mitskevich IN, Ivanov MV (2005) Common features of microorganisms in ancient layers of the Antarctic ice sheet. In: Castello,J.D., Rogers,S.O. eds. Life in ancient ice. Princeton University Press, Princeton, 240 -250.
    Abyzov, S.S., Bobin, N.E., and Kudriashov, B.B. (1979) Microbiological analysis of glacial series of central Antarctica. Biol. Bull. Acad. SO i. USSR. 6:828-836.
    Abyzov, S.S., Mitskevich, LN., and Poglazova, M.N. (1998b) Microflora of the deep glacier horizons of central Antarctica. Microbiology. 67: 66-73.
    Abyzoy S.S. (1993) Microrganisms in the Antarctic ice. In: Friedman E I ed. Antarctic Microbiology. John Wiley& Sons, lnc. New York, 634.
    Aitchison C. W. (2001) the effect of snow cover on small animals. In: Jones H G, Pomeroy JW , W alkerD A, et al. eds. Snow Ecology . Cambridge: Cambridge University Press, 229-265.
    Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.M., Barbante, C., Boutron ,C, Ferrari, C. (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59(2):255-64.
    Bodhaine, B.A., Deluisi, J.J., Harris, J.M., Houmere, P., and Bauman, S. (1986) Aerosol measurements at the South Pole. Tellus.38B: 223-235.
    Buzzini, P., Turchetti, B., Diolaiuti, G., D'Agata, C., Martini, A., and Smiraglia, C. (2005) Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps. Annals of Glaciology 40: 119-122.
    Campen,K.R., Sowers, T. and Alley,R.B.(2003) Evidence for microbial consortia metabolizing within a low latitude mountain glacier. Geology 31:231-234.
    Cano,R.J.,Borucki,M.K. Revival and identification of bacterial spores in 25-to 40-million-year-old Dominican amber. Science 1995;268(5213):1060.
    Carpenter, E.J., Lin, S., and Capone, D.G. (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66: 4514-4517.
    Castello, J.D., and Rogers, S.O. (2005) Life in ancient ice: Princeton University Press, Princeton, NJ.300
    Castello, J.D., Lakshman, D.K., Tavantzis, S.M., Rogers, S.O., Bachand, G.D., Jagels, R. Carlisle, J., and Liu, Y. (1995) Detection of infectious tomato mosaic tobamovirus in fog and clouds. In: American Phytopathological Society, pp. 1409-1412.
    Castello, J.D., Rogers, S.O., Starmer, W.T., Catranis, C.M., Ma, L., Bachand, G.D. Zhao,Y. and Smith J.E. (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. In: Springer, pp. 207-212.
    Catranis, C. and Starmer, W. T. (1991) Microorganisms entrapped in glacial ice. Antarctic Journal of the United States, 26: 234-236.
    Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at -15℃. Appl Environ Microbiol 68:6435-6438.
    Christner, B.C., Mosley-Thompson, E., Thompson, L.G., and Reeve, J.N. (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology 3: 570-577.
    Christner, B.C., Mosley-Thompson, E., Thompson, L.G., and Reeve, J.N. (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177-183.
    Christner, B.C., Mosley-Thompson, E., Thompson, L.G., Zagorodnov, V., Sandman, K., and Reeve, J.N. (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144: 479-485.
    Ciapini, A., Dei, R., Sacco, C., Ventura, S., Viti, C., and Giovannetti, L. (2002) Phenotypic and genotypic characterisation of Aeromonas isolates. Annals of Microbiology 52: 339-352.
    Cunde, X., Shichang, K., Dahe, Q., Tandong, Y., and Jiawen, R. (2002) Transport of atmospheric impurities over the Qinghai-Xizang (Tibetan) Plateau as shown by snow chemistry. Asian Earth Sci. 2002, 20: 231 -239.
    Diez, B., Pedros-Alio, C., Marsh, T.L., and Massana, R. (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67: 2942-2951.
    Ellis, R.J., Morgan, P., Weightman, A.J., and Fry, J.C. (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69: 3223-3230.
    Felsenstein,J.(1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.
    Foght, J., Aislabie, J., Turner, S., Brown, C.E., Ryburn, J., Saul, D.J., and Lawson, W. (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47: 329-340.
    Gajda, R.T. (1958) Cryoconite phenomena on the Greenland ice cap in the Thule area. The Canadian Geographer, 12:35-44.
    Goodman,D. (1971) Ecological investigations of ice worms on Casement Glacier, Southeastern Alaska. The Ohio State University Research Foundation, Institute of Polar Studies Report, 39: 59.
    Gordon, D.A. (2000) Origin and Phylogeny of Microbes Living in Permanent Antarctic Lake Ice. Microb Ecol.39: 197-202.
    Grongaard, A., Pugh, P.J.A., and McInnes, S.J. (1999) Tardigrades, and other cryoconite biota, on the Greenland Ice Sheet. Zoologlseher Anzeiger. 238: 211-214.
    He, Y., Yao, T., Theakstone, W.H., Cheng, G., Yang, M., Chen, T.(2002) Recent climatic significance of chemical signals in a shallow firn core from an alpine glacier in the South-Asia monsoon region. Journal of Asian Earth Sciences 20 : 289-296.
    Hoham, R.W., and Duval, B. (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Cambridge University Press, pp. 168-228.
    Hoham, R.W., Mullet, J.E., and Roemer, S.C. (1983) The life history and ecology of the snow alga Chloromonas polyptera comb. nov.(Chlorophyta, Volvocales). Canadian Journal of Botany. 61: 2416-2429.
    Hoham, R.W., Roemer, S.C.Mullet, J.E. (1979) The life history and ecology of the snow algae Chloromonas brevispina comb.Nov.(Chlorophyta, Volvocales).Phycologia. 18: 55-70.
    Hoham, R.W., Yatsko, C.P., Germain, L., and Jones, H.G. (1989) Recent discoveries of snow algae in upstate New York and Quebec Province and preliminary reports on related snow chemistry. Proceedings of the Forty-sixth Annual Eastern Snow Conferenc. 196-200.
    Jones HG (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Process 13:2135-2147
    Jouzel, J., Petit, J.R., Souchez, R., Barkov, N.I., Lipenkov, V.Y., Raynaud, D. Stievenard, M., Vassiliev, N.I., Verbeke, V. and Vimeux, F. (1999) More than 200 Meters of Lake Ice Above Subglacial Lake Vostok, Antarctica. Science 286 (5447): 2138-2144.
    Jukes,T.H., Cantor,C.R. (1969) Evolution of protein molecules, In: Munro eds. Mammalian protein metabolism. Academic Press, New York 21-132
    Junge, K., Eicken, H. andDeming, J.W. (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl. Environ. Microbiol.69:4282-4284.
    Junge, K., Eicken, H., and Deming, J.W. (2004) Bacterial Activity at-2 to-20℃ in Arctic Wintertime Sea Ice. Applied and Environmental Microbiology 70: 550-557.
    Junge, K., Krembs, C., Deming, A. (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304-310.
    Karl, D.M., Bird, D.F., Bjorkman, K., Houlihan, T., Shackelford, R., and Tupas, L. (1999) Microorganisms in the Accreted Ice of Lake Vostok, Antarctica. Science, 286(10): 2144-2 146.
    Kikuchi,Y. (1994) Glaciella, a new genus of freshwater Canthocampyidae (Copepoda Harpacticoida) from a glacier in Nepal, Himalayas. Hydrobiologia 292: 59-66.
    Kohshima, S. (1989) Glaciological importance of microorganisms in the surface mud-like materials and dirt layer particles of the Chongce Ice Cap and Gozha Glacier, West Kunlun Mountains, China. Bull Glacier Res 7:59-65.
    Kohshima, S., Seko, K., and Yoshimura, Y. (1993) Biotic acceleration of glacier melting in Yala Glacier, Langtang region, Nepal Himalaya. International Association of Hydrological Science Publication 218: 309-316.
    Kohshima,S. (1984) A novel cold-tolerant insect found in a Himalayan glacier. Nature 310: 225-227.
    Kohshima,S. (1987)Glacial biology and biotic communities. In: Kawano S, Connell J H, and Hidaka Ted. Evolution and Coadaptation in Biotic Communities. Kyoto: Faculty of Science, Kyoto University 77-92.
    Kohshima,S. Patagonian glaciers as insect habitats. In: Nakajima K ed. Glaciological studies in Patagonia Northern lccefield 1982-1984. Kyoto: Data Center for Glacier Research. Japanese Society of Snow and lee 1985. 94-99.
    Kol, E., and Flint, E.A. (1968) Algae in green ice from the Balleny Islands, Antarctica. Antarctica. New Zeal. J. Bot. 6: 249-261.
    Krembs, C., Eicken, H. Junge, K. andDeming,J. W. (2002) High Concentrations of Exopolymetric Substances in Arctic Winter Sea Ice: Implications for the Polar Ocean Carbon Cycle and Cryoprotection of Diatoms, Deep-Sea Res., 49:2163-2181.
    Kuske, C.R., Ticknor, L.O., Miller, M.E., Dunbar, J.M., Davis, J.A., Barns, S.M., and Belnap, J. (2002) Comparison of Soil Bacterial Communities in Rhizospheres of Three Plant Species and the Interspaces in an Arid Grassland. Applied and Environmental Microbiology 68: 1854-1863.
    Li, X., Li, Z., Ding, Y., Liu. S., Zhao, Z., Luo, L., Pang,H., Li, C., Li,H., You, X., Wang, F. (2007) Seasonal variations of pH and electrical conductivity in a snow-firn pack on Glacier No. 1, eastern Tianshan, China. Cold Regions Science and Technology 48:55-63.
    Li, X., Qin, D., Jiang, W, Jiang, Q. (2005) Tropospheric pyrovate changes in the remote area of northwestern China. Chinese Journal Of Geochemistry 24 (3) : 201-207.
    Li, Z., Ross, Edwards, Mosley-Thompson, E., Wang, F., Dong, Z., You, X., Li, H., Li, Z.,Chuanjin, Y. (2006a) Seasonal variabilities of ionic concentration in surface snow and elution process in snow-firn packs at PGPI Site on Glacier No. 1 in Eastern Tianshan, China. Annals of Glaciology, 43A075.
    Li,Z., Yao,T., Tian,L., Xu,B., Wu,G. (2006b)Variations of δ~(18)O in precipitation from the Muztagata Glacier, East Pamirs. Sci China Ser D, 49(1): 36-42.
    Ling, H.U., and Seppelt, R.D. (1998) Snow algae of the Windmill Islands, continental Antarctica. Polar Biology. 20: 320-324.
    Ling,H.U. (1996)Snow algae of the Windmill lsland region, Antarctica. Hydmbiologla 336: 99-106.
    Liu, Y., Yao, T., Jiao, N., Kang, S., Zeng, Y., and Huang, S. (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Lett 265: 98-105.
    Lydolph, M.C., Jacobsen, J., Arctander, P., Gilbert, M.T.P., Gilichinsky, D.A., Hansen, A.J. Willerslev, E. and Lange, L. (2004) Beringian Paleoecology Inferred from Permafrost-Preserved Fungal DNA Supplemental material for this article may be found at http://aem. asm. org. Applied and Environmental Microbiology 71: 1012-1017.
    Ma L, Catranis,C, Starmer,W.T. and Rogers, S.O. (1999) Revival and characterization offungi from ancient polar ice. Mycologist, 13: 70-73.
    Ma, L J., Rogers, S.O., Catranis, C.M., and Starmer, W.T. (2000) Detection and Characterization of Ancient Fungi Entrapped in Glacial Ice. Mycologia 92: 286-295.
    Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Jr., Saxman, P.R., Farris, R.J., Garrity, G.M., Olsen, G.J., Schmidt, T.M., Tiedje, J.M. (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173-174.
    Marschner, P., Neumann, G., Kania, A., Weiskopf, L., and Lieberei, R. (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant and Soil 246: 167-174.
    Mataloni,G.Tesoh'n,G. (1997) A preliminary survey of cryobiontic algal communities from Cierva Point(Antarctic Peninsula). Antarctic Science 9: 250-258.
    Miteva, V.I., Sheridan, P.P., and Brenchley, J.E. (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core. Appl Environ Microbiol 70: 202-213.
    Miteva,V.I. (2008) Bacteria in snow and glacier ice. In: Margesin, R., Schinner, R, Marx, J. C and Gerday, C eds. Psychrophiles: from Biodiversity to Biotechnology. Springer Berlin Heidelberg. In press:31-50.
    Muyzer, G., de Waal, E. C.,Uitterlinden, A. G. (1993) Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.Appl Environ Microbiol 59(3):695-700.
    Omelon, C.R., Pollard, W.H., and Ferris, F.G. (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biology 30: 19-29.
    Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247-1251.
    Price, P.B., and Sowers, T. (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101: 4631-4636.
    Price,P.B. (2007) Microbial life in glacier ice and implications for a cold origin of life. FEMS Microbiol Ecol: 59:217-231
    Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M.A., Mogk, D.W., Brown, R.L., McKay, C.P., Takacs, C.D., Welch, K.A., Wolf, C.F, Kirschtein, J.D., and Avci,R. (1999) Geomicrobiology of Subglacial Ice Above Lake Vostok, Antarctica. Science 286: 2141-2144.
    Priscu, J.C., and Christner, B.C. (2004) Earth's Icy Biosphere. Microbial Diversity and Bioprospecting. 130-145.
    Priscu, J.C, Fritsen, C.H., Adams, E.E., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D., Pinckney, J.L. (1998) Perennial Antarctic Lake Ice: An Oasis for Life in a Polar Desert. Science, 280: 2095-2098.
    
    Richardson,S.G.Salisbury F B. Plant respo nses to the light penetrating snow. Ecology, 1977, 58: 1152-1158.
    Rivkin, R.B. and Legendre, L. (2001) Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291:2398-2400.
    Robinson, C.H. (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytologist 151:341-353.
    Saitou, N., Nei, M. (1987) The neighbor-joining method: a new method for reconstructting phylogenetic trees. Mol Biol Evol 4:406-425.
    Sattler, B., Puxbaum, H., and Psenner, R. (2001) Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett., 28(2), 239-242.
    Sawstrom,C, Mumford, P., Marshall, W., Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591-596.
    Segawa, T., Miyamoto, K., Ushida, K., Agata, K., Okada, N., and Kohshima, S. (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71: 123-130.
    Sharp,M., Parkes, J., Cragg,B., Fairchild, I.J., Lamb, H. and Tranter, M .Widespread bacterial populations at glacier beds an d their relationship to rock weathering an d carbon cycling. Geology 1999, 27: 107-110.
    Skidmore, M., Anderson, S.P., Sharp, M., Foght, J., and Lanoil, B.D. (2005) Comparison of Microbial Community Compositions of Two Subglacial Environments Reveals a Possible Role for Microbes in Chemical Weathering Processes. Applied and Environmental Microbiology 71: 6986-6997.
    Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S., and Wernars, K. (2001) Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. Applied and Environmental Microbiology. 67: 2284-2291.
    Smith, M.C., Bowman, J.P., Scott, F.J., and Line, M.A. (2004) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci. 12: 177-184.
    Sowers,T. (2001) The N_2O record spanning the penultimate deglaciation from the Vostok ice core.J Geophys Res 106:31903-31914.
    Suzuki, M.T., Rappe, M.S., Haimberger, Z.W., Winfield, H., Adair, N., Stroebel, J., and Giovannoni, S.J. (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Mivrobiol, 63 (3) :983-989.
    Takcuehi, N., Kohshima, S., F'ujita, K. (1998) Snow algae community on a Himalayan glacier, Glacier AX010 East Nepal: Relationship with glacier summer mass balance. Bulletin of Glacier Research, 16: 43-50.
    Takeuchi, N. (2001) The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrological Processes 15: 3447-3459.
    Takeuchi, N., and Kohshima, S. (2004) A snow algal community on Tyndall glacier in the southern Patagonia icefield, Chile. Arctic, Antarctic, and Alpine Research 36: 92-99.
    Takeuchi, N., Kohshima, S., and Segawa, T. (2003) Effect of cryoconite and snow algal communities on surface albedo on maritime glaciers in south Alaska. Bulletin of glaciological research 20: 21-27.
    Takeuchi, N., Kohshima, S., and Seko, K. (2001) Structure, Formation, and Darkening Process of Albedo-reducing Material (Cryoconite) on a Himalayan Glacier: A Granular Algal Mat Growing on the Glacier. Arct. Antarct. Alp. Res., 33(2):115-122.
    Takeuchi, N., Matsuda, Y., Sakai, A., and Fujita, K. (2005) A large amount of biogenic surface dust (Cryoconite) on a glacier in the Qilian Mountains, China. Bulletin of glaciological research 22: 1-8.
    Thomas, W. H., and Duval, B. (1995) Sierra Nevada, California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct. Alp. Res. 27:389-399.
    Thompson,J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876-4882.
    Uetake, J., Kohshima, S., Nakazawa, F., Suzuki, K., Kohno, M., Kameda, Arkhipov, S., Fujii, Y. (2006) Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai. Ann Glaciol 43:70-78.
    Vreeland, R.H., Rosenzweig, W.D., Powers, D. W. (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897-900.
    Wake, C.P., Dibb, J.E., Mayewski, P.A., Zhongqin, L.I., and Zichu, X.I.E. (1994) The chemical composition of aerosols over the Eastern Himalayas and Tibetan Plateau during low dust periods. Atmospheric Environment,1994b,28.:695-704.
    
    
    Wang,Y., Pu,J., Zhang Y., Sun,W. (2003)Characteristic of present warming change recorded in Malan ice core, central Tibetan Plateau. J Glaciol Geocryol, 25(2): 130-134.
    Willerslev, E., Hansen, A.J., CHRISTENSEN, B., STEFFENSEN, J.P., and ARCTANDER, P. (1999) Diversity of Holocene life forms in fossil glacier ice. Proc. Natl. Acad. Sci. USA 96:8017-8021.
    Xiang, S., Yao, T., An, L., Xu, B., and Wang, J. (2005) 16S rRNA Sequences and Differences in Bacteria Isolated from the Muztag Ata Glacier at Increasing Depths. Appl. Environ. Microbiol., 71:4619-4627.
    Xiao, C., Kang, S., Qin, D., Yao, T., and Ren, J. (2002) Transport of atmospheric impurities over the Qinghai-Xizang(Tibetan)Plateau as shown by snow chemistry. Journal of Asian Earth Sciences 20: 231-239.
    Xie, S., Yao, T., Kang,S., Duan K., Xu B., and Thompson, L.G. (1999) Climatic and environmental implications from organic matter in Dasuopu glacier in Xixiabangma in Qinghai-Tibetan Plateau. Science in China (series D), 42(4): 383-391.
    Xie, S., Yao, T., Kang,S., Xu, B., Duan, K. and Thompson, L.G. (2000) Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate. Organic Geochemistry, 2000, 31: 15-23.
    Yao, T., Xiang, S., Zhang, X., Wang, N., and Wang, Y. (2006) Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochemical Cycles, 20(1): B1004-1-10.
    Yoshimura, Y., Kohshima, S., and Ohtani, S. (1997) A Community of Snow Algae on a Himalayan Glacier: Change of Algal Biomass and Community Structure with Altitude. Arctic and Alpine Research 29: 126-137.
    Yoshimura, Y., Kohshima, S., Takeuchi, N., Seko, K., and Fujita, K. (2000) Himalayan ice-core dating with snow algae. Journal of Glaciology, 46: 335-340.
    Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660-703.
    Zhang, S., Hou, S., Ma, X., Qin, D., and Chen, T. (2007) Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation. Biogeosciences, 4:1-9.
    Zhang, X., Liu, J., Tian, L., He, Y., and Yao, T. (2004) Variations of 8180 in Precipitation along Vapor Transport Paths. Advances in Atmospheric Sciences 21: 562-572
    
    
    Zhang, X.F., Yao, T.D., Tian, L.D., Xu, S.J., and An, L.Z. (2008) Phylogenetic and Physiological Diversity of Bacteria Isolated from Puruogangri Ice Core. Microbial Ecology.55(3):476-488.
    Zhang, X.J., Yao, T.D., Ma, X.J., and Wang, N.L. (2002) Microorganisms in a high altitude Glacier Ice in Tibet. Folia Microbiologica, 47(3): 241-245.
    Zhou, J., Bruns, M.A., and Tiedje, J.M. (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316-322.
    Zhu, F., Wang, S., Zhou, P. (2003) Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from China No 1 glacier. Int J Syst Evol Microbiol 53:853-857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700