基于雷达等时层的东南极Dome A冰层断代与晚更新世古积累率重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极冰盖作为地球系统的一个重要组成部分,在重建地球气候演化历史和调查海洋环流变异及海平面变化的过程中扮演着关键角色。位于东南极冰盖中心的冰穹-Dome A(昆仑站)由于其独特的环境要素,是一个有助于深入理解南极冰盖演化、稳定性和找寻地球气候久远记录的理想地点。目前,Dome A作为可能存在超过百万年古气候记录的理想深冰芯钻探位置,成为南极研究的焦点之一。本文从南极冰盖气候演化历史研究的最新进展入手,深入讨论在Dome A开展深冰芯钻探的可能性和战略,通过对东南极Dome A中心区域的中国第21次和第24次地面雷达数据以及最近AGAP (Antarctica's Gamburstev Province project)计划和德国AWI的机载雷达数据(DoCo)的综合分析,结合Vostok、Dome C、Dome Fuji冰芯数据和Dome A气象数据,揭示典型区域的冰流动力学特征;构建冰盖数值模式尝试理解东南极中心区域的冰盖演化与冰流特征。我们得到如下结果:1、模拟出冰层等时线上的水平平均积累率,反演出过去至少8.5万年的古积累率分布;2、模拟出冰盖雷达断面上的积累率空间分布,揭示Dome A的长时间尺度演化特征;3、描述等时线空间分布,揭示冰盖内部冰流动力学机制;4、模拟冰盖雷达断面上的深度-年代关系,为深冰芯钻探可能地点的选取提供理论依据。
     通过中国第21次(CHINARE 21,2004/05)南极科学考察期间在Dome A中心区域及其外围200km内获得的一条冰雷达典型断面,得到Dome A附近冰盖内部的雷达等时层分布。分析表明:在冰盖浅层(0-500m)内部等时层局部出现向斜层(syncline)和背斜层(anticline),总体比较平坦。在冰盖深部(500-2000m),内部等时层水平分布很不规则,在冰下地形波长小于冰厚或与冰厚可比较时,分布呈现显著的褶皱现象,追踪并趋向于平行冰下地形;而当其冰下地形波长为长波并大于冰厚时,内部等时层覆盖了冰下地形,并不随着冰下地形的起伏而起伏;在冰下局部出现单个或两个地形剧烈变化的山峰附近的内部等时层被冰下地形强烈扰动。Dome A中心区域深部的雷达等时层存在不连续性以及褶层曲率较大的现象,但在小尺度内抑制了内部等时层的剧烈形变。另外,结合冰盖厚度数据,找出了3个供选择构建预测冰芯钻探点年代-深度关系的地点。
     通过对雷达数据的分析,揭示出Dome A的三维冰下和表面特征,发现其下方存在一个东北向的马鞍形槽谷。最大的冰厚已经超过了3000m(昆仑站的下方),最高处的表面高程达到4092m。典型向斜层和背斜层的出现表示那里的表面物质积累存在空间分布的不均匀性。内部等时层存在局部的断裂,冰盖底部的内部等时层有时由于反射信号的衰减或者雷达波不能穿透至底部而出现信号盲区。
     冰盖内部的等时层结构和浅层积累率是数值模拟末次冰期冰盖演化的必要参数和边界条件之一。通过对2004/05年度中国21次南极考察队在Dome A获取的高频雷达数据的分析,示踪出三条内部等时层,利用穿越Dome A内部等时层与Vostok冰芯钻取位置的交定年,得到层上相应的深度-年代关系。将深度-年代关系作为输入,使用一个一维冰流模式计算了Dome A过去8.46万年以来三个不同阶段的古积累率,揭示了Dome A地区在相应历史时期的古积累时间与空间变化。结果显示Dome A核心区域的古积累率有着一致的分布特征,且在过去32.6kyr,44.6kyr, 84.6kyr这三个晚更新世的不同时期, Dome A核心区域的平均积累率较低,分别为0.020m/yr, 0.023m/yr, 0.018m/yr,发现在距今3.5-4.5万年间存在一个相对较为湿润的时期;此外,给出了沿着Dome A中心区域向其外围积累率的空间变化。
     本文也介绍冰盖和冰川的动力学和热力学基本理论,推导了浅冰近似下的冰盖演化方程组。同时,介绍三维的冰盖耦合模式-GLIMMER模式并在EISMINT下做了固定边界和移动边界的两个实验,得到了反应冰盖物质平衡和能量平衡的一系列温度、速度和物质通量特征曲线。同时为了描述冰穹位置的物理特征,以及为了检验Dansgaard-Johnsen冰流模式,我们做了该模式的二维冰流情形的简化和改进。实验的结果与冰盖基本理论是吻合的。
The Antarctic ice sheet is an important part in the earth system, and plays a prominent status in reconstructing the history of climate evolution, investigating the variability of ocean circulation and sea level change.But the Antarctic contitent is least accessible , extremely complicated and poorest known. Dome A(Kunlun Station), the summit of the Antarctic ice sheet,is considered a likely place for finding an ice core record reaching back to one million years. During the 21st and 24th Chinese National Antarctic Research Expedition (CHINARE 21, 2004/05;CHINARE 21, 2007/08), two datasets of Ice radio-echo sounding based ground in Dome A,the central region of East Antarctica, were made. And the other datasets from airborne radar systems was collected by AGAP(Antarctica's Gamburstev Province project)and Alfred Wagner Institute(DOCO plans,Dome Connection East Antarctica)。Using the radar datasets and numerical modelling,some results are shown here. The aim of the thesis is to understand the flow and form of the ice sheet around the Dome A region of central East Antarctica. The thesis has the following objectives:first,dealing with and analyzing the radar datasets of linking Dome A and Vostok,where exsists the location of ice core;second,to determine the depth-age relationship of ice around Dome A and to reconstruct the accumulation of the past hundred thousand years by numerical model;third, to establish the ice thickness and the bed topography of Dome A,and to reveal the long-term glacial history of Dome A.Putting the results together would maximise our knowledge of Dome A,even of the Antarctic ice sheet and the global change.
     The internal isochronous layering of the Antarctic Ice Sheet, revealed by ice radar, is a prerequisite for selecting sites for deep ice core drilling that can be used for studying the paleoclimatic record. In 2004/2005, during the 21st Chinese National Antarctic Research Expedition (CHINARE 21), a 200 km long, continuous radar profile was obtained across Dome A. The internal layers along the profile were derived from the stratigraphy detected by the radar. The morphology of the isochronous layers shows that: (1) The internal layers in the shallow ice sheet (0–500 m) are generally flat, with no more than 50 m of layer intervals, and have typical synclines and anticlines in some localized regions; (2) At 500–2000 m below the surface of the ice sheet, the layers appear as“bright layers”, and the width of the layer intervals expands to 50–100 m; (3) When the basal topographic wavelengths are approximate to the thickness of the ice (3 km), the traced internal layers, with localized bumps or concave folds, are asymptotic parallel to the subglacial topography. For the longer topographic wavelengths (-20 km) wider than the thickness of the ice, the layers do not rise and fall with the basal topography. The internal layers surrounding some mountain peaks representing the most extreme variation in the terrain are sharply disturbed by the subglacial topography; (4) Layer discontinuity and fracture were detected in the basal ice sheet. Finally, by combining this new information with that derived from existing data regarding ice thickness , we were able to select three potential sites for reconstructing the age-depth relationship of the ice core.
     The radar profiles were done providing a full information of centre of the Dome A region. The RES data were acquired using a high-frequency monopulse ice-penetrating radar with multi-frequency of 60MHz and 179MHz . The datasets show arches and troughs in isochronous ice layers. In some sites the inclined layers and distortion of isochronous layers in ice revealed by ice-penetrating radar. We also find there is no radar signal in some sites and some sections exhibit instable sedimentation and discontinuation of the internal reflections. At Dome A, the changes of surface elevation is not obvious, the highest is 4092m. The data of ice-penetrating radar revealed flat isochronous layers. In addition, bed topography appears to be the result of a saddle-backed basin. Also,we find a north-east deep channel according to 3D RES exploration result in Dome A, its ice thickness exceeds 3000m.By the disscusions, the identification of the depth-age relationship of ice shows that there is the best site to drill the deep ice core around the Dome A. The datasets also show some arches and troughs in isochronous ice layers. There exist some typical synclines and anticlines in ice revealed by ice-penetrating radar in some local regions.
     A 1-D model is used to calculate the past rates of ice accumulation by internal layering. An approximate mean accumulation from 0.018 to 0.027m/yr over the past 34.6k years, along the RES profiles, was estimated. Also, we have taken the accumulation was 0.02-0.045m/yr in the past 34.6-44.6kyr , and 0.01-0.023m/yr in the past 44.6-84.6kyr along the profile. The variability of accumulation in time -space around the ice divide also was given.
     We also introduce the 3-dimensional coupled model for Antarctic ice sheet– GLIMMER model, and make an idealized ice sheet simulation test under EISMINT-1 benchmark,gets various evolution curves expressing conservation of mass, momentum and energy of ice sheet, and indicates that under fixed boundary condition and moving condition, the physical characteristic curves when ice sheet is in a steady state are in accordance with our current knowledge on Antarctic ice sheet on the whole. In order to consider further simulation of the relation of‘‘depth-age-accumulation’’at Dome A region, we simplify the GLIMMER model into a 2-dimensional ice flow model with coupled temperature field and test it under some brief assumptions. The change of elevation,temperature field and velocity field of ice flow profile in evolution steady state of ice sheet are obtained quantitatively.The results are similar to the calculation results of GLIMMER model.
引文
陈百炼,张人禾,孙菽芬,张廷军,效存德,卞林根.一个冰盖近表层热传输模式及其对南极Dome A的温度模拟,中国科学:地球科学,2010,40: 84-93.
    崔祥斌,孙波,田钢,等.冰雷达探测研究南极冰盖的进展与展望,地球科学进展,2009,24(4):392-402.
    崔祥斌,孙波,田钢,唐学远,张向培,蒋芸芸,郭井学,李鑫.东南极Dome A冰雷达探测: 冰厚分布和冰下地形.科学通报,2010,55(19):1937-1943。
    丁明虎,效存德,明镜等.南极冰盖表面物质平衡实地测量技术,极地研究,2009,21(4) :308-321.
    候书贵,李院生,效存德,等.Dome A地区的近期积累率.科学通报,2007,52(2):243-245.
    侯书贵,李院生,效存德,庞洪喜,徐建。南极Dome A地区109.91 m冰芯气泡封闭深度及稳定同位素记录的初步结果,中国科学D辑:地球科学2008 , 38,11:1376 -1383.
    蒋芸芸,孙波,柯长青,崔祥斌,唐学远,郭井学,张向培.用雷达电磁波探测研究南极冰盖浅层散射特征:以中山站至Dome A冰盖断面为例.极地研究,2009, 21(1):48-59.
    秦大河,效存德,丁永建,等.国际南极冰盖研究动态和我国南极冰盖研究的现状与展望.应用气象学报,2006,17(6):649-656.
    任贾文,效存德,侯书贵,李院生,孙波,极地冰芯研究的新焦点:NEEM与Dome A.科学通报,2009,54(4):399-401.
    唐学远,孙波,李院生,崔祥斌,李鑫,南极冰盖研究最新进展,地球科学进展,2009,24(11):1210-1218,
    王帮兵,田钢,孙波等.南极冰盖内部结构特性研究—基于三维各向异性电磁波时域有限差分方法.地球物理学报,2009,52(4): 966-975.
    效存德,李院生,侯书贵,Ian Allison,卞林根,任贾文.南极冰盖最高点钻取最古老冰芯的必要条件:Dome A最新实测结果.科学通报,2007,52:2456-2460.
    Arthern,R. J., D. P. Winebrenner, and D. G. Vaughan . Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 2006,111,D06107, doi:10.1029/2004JD005667.
    Baldwin, D.J., J.L. Bamber, A.J. Payne and R.L. Layberry. Using internal layers from the Greenland ice sheet, identified from radio-echo sounding data, with numerical models. Ann. Glaciol.,2003,37:325–330.
    Berggren W A and D. R.Prothero (eds) Eocene-Oligocene Climatic and Biotic Evolution. Princeton: Princeton University Press,1992.
    Bingham R. G.,M J. Siegert. Quantifying subglacial bed roughness in Antarctica: Implications for ice-sheet dynamics and history.Quaternary Science Reviews, 2009, 28(3-4):223-236.
    Bingham, R. G., M. J. Siegert, D. A. Young, and D. D. Blankenship, Organized flow from the South Pole to the Filchner-Ronne ice shelf: An assessment of balance velocities in interior East Antarctica using radio echo sounding data, J. Geophys. Res., 2007(a),112, F03S26, doi:10.1029/2006JF000556.
    Bingham, R. G., and M. J. Siegert , Radar-derived bed roughness characterization of Institute and M?ller ice streams, West Antarctica, and comparison with Siple Coast ice streams, Geophys. Res. Lett., 2007(b),34, L21504, doi:10.1029/2007GL031483.
    Bogorodsky, V., Bentley, C., and Gudmandsen, P.: Radioglaciology, D. Reidel Publishing Co.,1985.
    Boulton G,Magnus Hagdorn M. 2006:Glaciology of the British Isles Ice Sheet during the last glacial cycle: form, flow, streams and lobes. Quaternary Science Reviews,25(23-24): 3359-3390
    Budd W F and Smith I N.Large-scale numerical modelling of the Antarctic ice sheet. Ann. Glaciol.1982,3:42–49.
    Blunier J, Chappellaz J, Schwander A.et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394:739–743.
    Cheng X, Gong P, Zhang Y, et al. Surface topography of Dome A, Antarctica, from differential GPS measurements. J Glaciol, 2009, 55(189): 185—187.
    Conway, H., B. Hall, G. Denton, A. Gades, and E. Waddington , Past and future grounding-line retreat of the West Antarctic Ice Sheet, Science, 1999,286, 280–283.
    Cui Xiangbin,SUN Bo,TIAN Gang,TANG XueYuan,ZHANG XiangPei,JIANG YunYun,GUO JingXue,LI Xin. Ice radar investigation at Dome A, East Antarctica: Ice thickness and subglacial topography. Chinese Science Bulletin,2010,55(4-5):425?431。
    Dnsgaard W, Oxygen-18 Abundance in Fresh Water. Nature, 1954,174:234-235.
    Dansgaard W, Stable isotopes in precipitation. Tellus, 1964,16(4):436-468.
    Dansgaard W, and Johnsen, S. J, A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciology, 1969, 8:215-223.
    DeConto, R M and D Pollard. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245-249
    DeConto, R.M., D. Pollard, P. Wilson, H. Palike, C. Lear and M. Pagani. Thresholds for Cenozoic bipolar glaciation. Nature, 2008,455:653-656.
    Drewry D. J. and D. T. Meldrum.Antarctic airborne radio echo sounding, 1977–78. PolarRecord, 1978,19:267-273.
    Donald Rapp,Ice Ages and Interglacials: Measurements, Interpretation and Models,2009, Praxis Publishing, UK.
    Dowdeswell, J. A. and Evans, S.Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding, Reports on Progress in Physics, 2004,67:1821–1861.
    Drews R., O. Eisen,and I.Hamann et al. Layer disturbances and the radio-echo free zone in ice sheets, The Cryosphere, 2009, 3: 195-203.
    EPICA Community Members. Eight glacial cycles from an Antarctic ice core,Nature.2004,429:623-628.
    EPICA Community Members. One-to-one hemispheric coupling of millennial polar climate variabilityduring the last glacial. Nature,2006,444: 195-198.
    Eisen, O., U. Nixdorf, F. Wilhelms, and H. Miller. Age estimates of isochronous reflection horizons by combining ice core, survey, and synthetic radar data, J. Geophys. Res.,2004, 109,B04106, doi:10.1029/2003JB002858.
    Eisen, O., I. Hamann, S. Kipfstuhl, D. Steinhage, and F. Wilhelms.Direct evidence for radar reflector originating from changes in crystal-orientation fabric, Cryosphere Discuss.2007,1(1):1–16.
    Fabio Florindo, Martin Siegert (Editor),Antarctic Climate Evolution , Developments in Earth & Environmental Sciences,2009,8,DOI 10.1016/S1571-9197(08)00001-3。
    Fahnestock, M., W. Abdalati, S. Luo, and S. Gogineni, Internal layer tracing and age-depth-accumulation relationships for the northern Greenland ice sheet, J. Geophys. Res., 2001,106, 33,789- 33,798.
    Fowler, A.C.. Sliding with cavity formation. Journ. Glaciol. 1987(a) 33:255-267.
    Fowler, A.C. A theory of glacier surges. Journ. Geophys. Res. 1987(b),9(B):9111-9120.
    Frezzotti M, Bitelli G, Michelis D. Geophysical survey at Talos Dome, East Antarctica: the search for a new deep-drilling site. Ann Glaciol, 2004, 39: 423—432.
    Frezzotti, M. and 13 others. Spatial and temporal variability of snow accumulation in EastAntarctica from traverse data. J. Glaciol., 2005.51(172):113–124.
    Fricker H. A.,T. Scambos and R. Bindschadler et al. An Active Subglacial Water System in West Antarctica Mapped from Space , science , 2007:315(5818): 1544– 1548 , DOI: 10.1126/science.1136897.
    Fujita S, Maeno H, Uratsuka S, et al. Nature of radio echo layering in the Antarctic ice sheet detected by a two-frequency experiment . J Geophys Res, 1999, 104(B6): 13013—13024.
    Fuyuki S, Abe-Ouchi A, Blatter H. European Ice Sheet Modelling Initiative (EISMINT) modelintercomparison experiments with first-order mechanics.Journal of Geophysical Research, 2006,111(F02012): doi:10.1029/2004JF000273.
    Glen, J.W. Experiments on the deformation of ice. Journ. Glaciol. . 1952, 2: 111-114.
    Greve R. and H. Blatter. 2009.Dynamics of Ice Sheets and Glaciers. Springer, Berlin, Germany etc., ISBN: 978-3-642-03414-5.
    Greve R. A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical Transactions of the Royal Society London A , 1997 , 355 (1726) : 921–974. doi:10.1098/rsta.1997.0050.
    Haefeli R. A numerical and experimental method for determining ice motion in the central parts of ice sheets. International Association of Scientific Hydrology Publication 61 (General Assembly of Berkeley 1963 ? Snow and Ice), 1963. 253-260.
    Hammer, C.U., H.B. Clausen, W. Dansgaard, N. Gundestrup, S.J. Johnsen, and N. Reeh. Dating of Greenland ice cores by flow models, isotopes, volcanic debris, and continental dust. Journal of Glaciology, 1978. 20 (82), 3-26.
    Harrison C H. Radio echo sounding of horizontal layers in ice, J Glaciol, 1973,12(66):383—397.
    Hays J D, Imbrie J, Shackleton N J.Variations in the earth's orbit: Pacemaker of the ice ages.Science, 1976,194, 1121-1132.
    Herterich, K. .,A three-dimensional ice-sheet model of the Antarctic ice sheet. Ann. Glaciol. 1988,11:32–35.
    Hebeler, F; Purves, R S; Jamieson, S R (2008). The impact of parametric uncertainty and topographic error in ice-sheet modelling. Journal of Glaciology, 54(188):889-919.
    Hindmarsh, R.C., M.J. Siegert, H. Gudmundsson and D.L. Morse. Optimal fitting of radar-detected isochronic layers to models of tracer transport in ice sheets: extending cores sideways.[Abstract B21A-07.] Eos,2002, 83(19).
    Hindmarsh R C, Leysinger Vieli J M,Raymond M J, et al. Draping or overriding: The effect of horizontal stress gradients on internal layer architecture in ice sheets, J Geophys Res, 2006,111:F02018, doi:10.1029/2005JF000309.
    Hondoh, T, Shoji, H., Watanabe O., Tsyganova, et al: Average time scale for Dome Fuji ice core, East Antarctica, Polar Meteorology and Glaciology, 2004, 18: 1–18.
    Hooke R. L., 2005: Principles of Glacier Mechanics, Cambridge University Press, ISBN: 0521836093.
    Hooke, R.LeB. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space Phys. 1981,19: 664-672.
    Hutter K, The effect of longitudinal strain on the shear stress of an ice sheet:in defence of using stretched coordinates. J. Glaciol., 1981,27(95):39-56.
    Huybrechts P, Payne A J, The EISMINT benchmarks for testing ice-sheet models[J]. Annals of Glaciology ,1996,23:1-12.
    Huybrechts P. Report of the Third EISMINT Workshop on Model Intercomparison.Strasbourg, European Science Foundation,1998:1-120.
    Huybrechts, P., de Wolde, J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming, J. Climate,1999, 12:2169-2188.
    Huybrechts P, Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews 2002,21:203-231.
    Huybrechts P, Numerical modeling of ice sheets through time, in: Knight, P.G. (ed.): Glacier Science and Environmental Change, Blackwell Publishing (Oxford), 2006,406-412.
    Huybrechts P,Oerlemans J,Evolution of the East Antarctic ice sheet: a numerical study of thermo-mechanical response patterns with changing climate. Ann.Glaciol.1988,11:52–9.
    Huybrechts, P., Rybak, O., Pattyn, F., Steinhage, D. Past and present accumulation rate reconstruction along the Dome Fuji-Kohnen radio echo sounding profile, Dronning Maud Land, East Antarctica, Annals of Glaciology.2009,50 (51): 112-120.
    Jacobel R. W., Welch B C, Steig E J. Glaciological and climatic significance of Hercules Dome, Antarctica: An optimal site for deep ice core drilling, J Geophys Res , 2005, 110: F01015.
    Jacobel R. W., Hodge S M. Radar Internal Layers from the Greenland Summit, Geophys Res Lett, 1995,22(5): 587—590.
    Jacobel R. W., Welch B C, A time marker at 17.5 kyr BP detected throughout West Antarctica ,Ann. Glaciol.,2005, 41: 47–51.
    Jacobel R.W., B.C. Welch, and D. Osterhouse et al., Spatial variation of radar-derived basal conditions on Kamb Ice Stream, West Antarctica, Annals of Glaciology, 2009,50(51): 10-16.
    James S. Eldrett, David R. Greenwood, Ian C. Harding & Matthew Huber, Increased seasonality through the Eocene to Oligocene transition in northern high latitudes,Nature,2009,459, 969-973。
    Jamieson, S.S.R., Hulton, N.R.J., Hagdorn, M., Modelling landscape evolution under ice sheets. Geomorphology,2008, 97:91-98.
    Jenssen D.,A three-dimensional polar ice sheet model.J.Glaciol.1977,18(80), 373–89.
    Jong-Soo Rhyee, Kyu Hyoung Lee, Sang Mock Lee, Eunseog Cho, Sang II Kim,Eunsung Lee, Yong Seung Kwon, Ji Hoon, Shim & Gabriel Kotliar ,Peierls distortion as a route to high thermoelectric performance in In4Se3-δcrystals,Nature,2009,459, 965-968。
    Johnsen S J, Clausen H B, Dansgaard W ,et al.Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 1992(a) ,359(6393): 311-313.
    Johnsen S J, Dansgaard W.On flow model dating of stable isotope records from Greenland ice cores, in: The Last Deglaciation: Absolute and Radiocarbon Chronologies, edited by: Bard, E., and Broecker, W., Springler Verlag, Berlin Heidelberg, 1992(b).
    Johnsen S J, Dahl-Jensen D, Dansgaard W and Gundestrup N. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles.Tellus.Series B: Chemical and Physical Meteorology, Stockholm, Sweden. 1995,47B(5) 624-629.
    Jouzel, J., G. Raisbeck, J.P. Benoist, F. Yiou, C. Lorius, D.Raynaud, J.R. Petit, N.I.Barkov, Y.S. Korotkevich and V.M. Kotlyakov, A comparison of deep Antarctic ice cores and their implication for climate between 65,000 and 15,000 years ago., Quat. Res.1989, 31:135-150,
    Jouzel, J., Waelbroek, B. Malaiz, M. Bender, J.R. Petit, N.I.Barkov, J.M. Barnola, T. King, V.M. Kotlyakov, V. Lipenkpov, C. Lorius, D.Raynaud, C.Ritz and T.
    Sowers, Climatic interpretation of the recently extended Vostok ice records, Climate Dynamics, 1996,12, 513-521.
    Jouzel J, Masson-Delmotte V, Cattani O,et al. Orbital and millennial Antarctic climate variability over the last 800 000 years . Science, 2007,317:793-796.
    Kamb, B. Sliding motion of glaciers: theory and observation. Rev. Geophys. Space Phys. 1970,8: 673-728.
    Kapista A, J K Ridley, G. de Q. Robin, M.J. Siegert and I. Zotikov, Large deep freshwater lake beneath the ice of central East Antartica, Nature, 381, 684-686, 1996。
    Kawamura K, Parrenin F,Uemura R, et al. Northern Hemisphere forcing of climatic cycles over the past 360,000 years implied by accurately dated Antarctic ice cores. Nature, 2006, 448:912-916.
    Lawver L A,Gahagan L M, Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198(1):11-37(27)
    Leysinger-Vieli, G.J.M.C., Siegert, M J,Payne, A J . Reconstructing ice sheet accumulation rates at Ridge B, East Antarctica. Annals of Glaciology, 2004, 39: 326-330.
    Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R., Machlus,M. L. Major middle Miocene global climate change: Evidence from East Antarctica and thetransantarctic mountains. Geol. Soc. Am. Bull., . 2007,119:1449–1461.
    Lisiecki L, Raymo M. A Pliocene-Pleistocene stack of 57 globally distributed benthicδ18O records, Paleoceanogr,2005, 20, PA1003, doi:10.1029/2004PA001071.
    Lliboutry L. A critical review of analytical approximate solutions for steady state velocities and temperature in cold ice sheets, Z. Gletscherkd. Glacialgeol.,1979, 15(2), 135–148.
    Lorius C., J. Jouzel, C. Ritz, L. Merlivat, N.I. Barkov, Y.S. Korotkevich and V.N. Kotlyakov, A 150,000-year climate record from Antarctic ice, Nature, 1985,316, 591-596.
    Lunt, Daniel J.; Foster, Gavin L.; Hqywood, Alan M.; Stone, Emma J. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 2008, 454 (7208). 1102-1105.
    Lythe, M. B., and D. G. Vaughan , BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res.,2001, 106: 11335-11351.
    MacGregor J A, K Matsuoka, M R Koutnik, E D Waddington, M Studinger, D P Winebrenner, Millennially averaged accumulation rates for the Lake Vostok region inferred from deep internal layers, Annals of Glaciology, 2009,50(51):25– 34.
    Mahaffy, M. A. W, A three-dimensional numerical model of ice sheets: tests on the Barnes ice cap,Northwest Territories. J. Geophys. Res.1976,81 (6):1059–1066.
    Martin, C., R.C.A. Hindmarsh and F.J. Navarro, Dating ice flow change near the flow divide at Roosevelt Island, Antarctica, by using a thermomechanical model to predict radar stratigraphy. J.Geophys. Res.,2006, 111(F1), F01011.
    Matsuoka T, Fujita S., Mae S.Effect of temperature on dielectric properties of ice in the range 5–39 GHz, J Appl Phys,1996, 80:5884 -5890, doi:10.1063/1.363582.
    Matsuoka, K., Furukawa, T., Fujita, S., Maeno, H., Uratsuka, S., Naruse, R., and Watanabe,O. Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey, Geophys. Rese. solid earth, 2003,108(B10), 2499, doi:10.1029/2003JB002425.
    Millar D H., Radio-echo layering in polar ice sheets and past volcanic activity, Nature,1981,292 :441—443.
    Morland L W. Thermomechanical balances of ice sheet flows , Geophysical & Astrophysical Fluid Dynamics, 1984 ,29:237-266.
    Morse D. L., E. D. Waddington, and E. J. Steig. Ice Age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica, Geophys. Res. Lett., 1998,25(17):3383–3386, doi:10.1029/98GL52486.
    Motoyama H. The second deep ice coring project at Dome Fuji, Antarctica. Scientific Drilling2007,5: 41–43.
    Naish T R.,Unlocking the Ice House: Antarctica and its role in climate change, Royal Society of New Zealand Alpha Series ,2004,120(8)
    Nereson N, C.Raymond, The accumulation pattern across Siple Dome,West Antarctica, inferred from radar-detected internal layers, J. Glaciol.,2000, 46(152):75-87.
    Neumann, T. A., H. Conway and S. F. Price et al. Holocene accumulation and ice sheet dynamics in central West Antarctica, J. Geophys. Res., 2008,113, F02018, doi:10.1029/2007JF000764.
    Nye, J.F. The flow law of ice from measurements in glacier tunnels, laboratory experimentsand the Jungfraufirn borehole experiments. Proc. Royal Soc. London, Series A.1953,219: 477-489.
    Nye J F,The distribution of stress and velocity in glaciers and ice sheets. Proc.Roy. Soc. London Series A 239, 1957,113–133.
    Nye, J. F. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol., 1963,4(36):785-788.
    Nye, J.F. The effect of longitudinal stress on the shear stress at the base of an ice sheet.Journ. Glaciol.1969, 8: 207-213.
    Oerlemans J,A model of the Antarctic ice sheet. Nature,1982,297 (5967):550–553.
    Oleg Rybak, Philippe Huybrechts (2003). A comparison of Eulerian and Lagrangian methods for dating in numerical ice sheet models, Annals of Glaciology, 37, 150-158.
    Oerter, H., W. Graf, F. Wilhelms, A. Minikin and H. Miller. Accumulation studies on Amundsenisen, Dronning Maud Land,by means of tritium, dielectric profiling and stable-isotope measurements: first results from the 1995–96 and 1996–97 field seasons. Ann. Glaciol., 1999. 29: 1–9
    Paden J., T. Akins, and D. Dunson et al. Ice-sheet bed 3-D tomography, Journal of Glaciology, 2010,56(195):3-11.
    Parrenin, F, R′emy, F, Ritz, C.et al ,New modelling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core, J. Geophys.Res., 2004 ,109, D20102,doi:10.1029/2004JD004561.
    Parrenin, F, Dreyfus,G, Durand G.et al, 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, 2007, 3:243–259.
    Parrenin, F., Jouzel, J., Waelbroeck, C., et al. Dating the Vostok ice core by an inverse method, J.Geophys.Res., 2001,106(D23), 31 837–31 851.
    Parrenin, F., R.C.A. Hindmarsh and F. Remy. Analytical solutions for the effect of topography,accumulation rate and lateral flow divergence on isochrone layer geometry. J. Glaciol., 2006,52(177),191–202.
    Paterson, W.S.B. 1994: The physics of glaciers 3rd edition, Oxford, NewYork, Tokyo, Elsevier(480 pages).
    Payne A J , Huybrechts P , Abe-Ouchi A et al.Results from the EISMINT model intercomparison :the effects of thermomechanical coupling.Journal of Glaciology,2000,46(153):227-238.
    Payne A J, Dongelmans P W. Self-organization in the thermomechanical flow of ice sheets. Journal of Geophysical Research, 1997, 102(B6):12219–12233.
    Payne A J, Baldwin D J., Analysis of ice-flow instabilities identified in the EISMINT intercomparison exercise. Annals of Glaciology, 2000, 30:204– 210.
    Payne A J , Huybrechts P , Abe-Ouchi A et al.Results from the EISMINT model intercomparison :the effects of thermomechanical coupling[J].Journal of Glaciology,2000,46(153):227-238.
    Petit J , Jouzel J, Raynaud D,et al.Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 1999,399:429-436。
    Philberth, K., and B. Federer, On the temperature profile and the age profile in the central part of cold ice sheets, J. Glaciology,1971, 10: 3-14.
    Qin Dahe, Ren Jiawen, et al. Primary Results of Glaciological studies along an 1100 km transect from Zhongshan station to Dome A,East Antarctic Ice Sheet.Annals of Glaciology,2000,Vol.31:198-204
    Raymond, C. F. ,Deformation in the vicinity of ice divides,J. Glaciol.,1983, 29(103):357– 373.
    Rippin D. M., M. J. Siegert and J. L. Bamber,et al. Switch-off of a major enhanced ice flow unit in East Antarctica , Geophys. Res. Lett. , 2006: , 33 , L15501 , doi:10.1029/2006GL026648.
    Ritz, C., Rommelaere, V.. and Dumas, C: Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostok region, J. Geophys. Res., 2001,106(D23),31 943–31 964.
    Robin G de Q, Drewry D J, Meldrum D T. International studies of ice sheet and bedrock,Philos Trans R Soc London SerB,1977, 279(963):185—196.
    Robin, G. Q. and Millar, D. M.: Flow of ice sheets in the vicinity of subglacial peaks, Ann. Glaciol., 1982,3:290–294.
    Rutt I. C.,Payne A J,Lunt D J,et al. Simulation of seasonal snow-cover and glacial inceptionwith GENIE and GLIMMER,Fall Meet. Suppl.,Eos Trans.AGU,2005,86(52).
    Ruth U., J. M. Barnola, and J. Beer et al., "EDML1": A chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years, Clim. Past, 2007:,3: 475-484.
    Rutt I. C., M.Hagdorn, and N.R.J Hulton, et al.2009: The GLIMMER community ice sheet model. Journal of Geophysical Research, 114, F02004. doi:10.1029/2008JF001015.
    Salamatin, A. N. and Ritz, C, A simplified multi-scale model for predicting climatic variations of the ice-sheet suface elevation in central Antarctica, Ann. Glaciol., 1996,23, 28–35.
    Schwander J, Jouzel J, C.U.Hammer, J.R.Petit, R.Udist,E.Wolff. A tentative chronology for the EPICA Dome Concordia ice core,Geophysical Research Letters, 2001. 28(22):4243-4246.
    Shackleton N J , Backman J , Zimmerman H, et al. Oxygen isotope calibration of the onset of ice- rafting and history of glaciation in the North Atlantic region. Nature,1984 307, 620-623。
    Shackleton N J, Sanchez-Goni M F, Pailler D, Lancelot Y. Marine Isotope Substage 5e and the Eemian Interglacial. Global and Planetary Change, 2003,36(3), 151–155.
    Sigert M. J. , B. Welch, and D. Morse et al. Ice flow direction change in interior West Antarctica.Science, 2004(a),305 (5692):1948-1951.
    Siegert M. J., LAKES BENEATH THE ICE SHEET: The Occurrence, Analysis, and Future Exploration of Lake Vostok and Other Antarctic Subglacial Lakes. Annual Review of Earth and Planetary Sciences , 2005(a) , 33:215-245 , doi: 10.1146/annurev.earth.33.092203.122725.
    Siegert, M. J., R. Hindmarsh, H. Corr and A. Smith et al. Subglacial Lake Ellsworth: A candidate for in situ exploration in West Antarctica, Geophys. Res. Lett., 2004(b), 31:L23403, doi:10.1029/2004GL021477.
    Siegert M. J., Payne A J. Past rates of accumulation in central West Antarctica, Geophys Res Lett, 2004(c),31:L12403, doi:10.1029/2004GL020290
    Siegert M J, Taylor J, Payne A J. Spectral roughness of subglacial topography and implications for former ice-sheet dynamics in East Antarctica. Glob Planet Change, 2005(b),45: 249—263.
    Siegret M J,Glacial-interglacial variations in central East Antarctic ice accumulation rates ,Quaternary Science Reviews, 2003(a),22 :741-750
    Siegret M J,R Hindmarsh,G Hamilton, Evidence for a large surface ablation zone in central East Antarctica during the last Ice Age,Quternary Research ,2003(b) , 59:114-121.
    Siegert M J , R Hodgkins , J A Dowdeswell, A chronology for the Dome C deep ice-coresite through radio-echo layer correlation with the Vostok ice core, Antarctica, Geophys. Res. Lett., 1998,25:1019-1022,
    Siegert M J, R Hodgkins, A stratigraphic link across 1100 km of the Antarctic Ice Sheet between the Vostok ice-core site and Titan Dome (near South Pole), Geophys. Res. Lett., 2000,27:2133-2136.
    Siegert, M. and Kwok, R.: Ice-sheet radar layering and the development of preferred crystal orientation fabrics between Lake Vostok and Ridge B, central East Antarctica, Earth Planet.Sci. Lett., 2000,179: 227–235,.
    Steinhage, D. Dome Connection East Antarctica (DoCo) - internal structure of the ice sheet between deep ice core drill sites in East Antarctica revealed by airborne RES, Symposium on Glaciology in the International Polar Year Northumbria University, Newcastle upon Tyne, UK, 2009,27–31.
    Steinhage D., U.Nixdorf, and U.Meyer et al., Subglacial topography and internal structure of central and western Dronning Maud Land, Antarctica, determined from airborne radio echo sounding.Journal of Applied Geophysics, 2001,47:183-189.
    Sun Bo, Martin Siegert, Simon M. Mudd, David Sugden, Shuji Fujita, Cui Xiangbin, Jiang Yunyun, Tang Xueyuan, Li Yuansheng , The Gamburtsev Mountains and the origin and early evolution of the Antarctic Ice Sheet ,Nature,459: 690-693,2009.
    Stirling H, Esat T M, Lambeck K, McCulloch M T.. Timing and Duration of the Last Interglacial: Evidence for a Restricted Interval of Widespread Coral Reef Growth. Earth and Planetary Sci. Lett., 1998,160(3-4):745–762.
    Tang Xueyuan, Zhang Zhanhai, Sun Bo, Li Yuansheng, Li Na, Wang Bangbing and Zhang Xiangpei. Antarctic ice sheet GLIMMER model test and its simplified model on 2-dimensional ice flow,,Progress in Natural Science,2008, 18(2): 173-180.
    Tang Xueyuan, Sun Bo, Zhang Zhanhai, Li Yuansheng, Yang Qinghua ,GLIMMER Antarctic Ice Sheet Model , An experimental research of moving boundary condition.CHINESE JOURNAL OF POLAR SCIENCE,2008,19(1):23-35.
    Taylor K C, Hammer C U, Alley R B,et al. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores, Nature 1993,366: 549—552.
    Taylor Dome Ice Core Project http: //depts.washington.edu/isolab/taylor/. Tikku A.A., R E Bell,M. Studinger et al., Ice flow field over Lake Vostok, East Antarctica inferred by structure tracking, Earth Planet. Sci. Lett., 2004,227:249-261.
    Van der Veen C.J., FUNDAMENTALS OF GLACIER DYNAMICS,Balkema, Rotterdam, 1999,ISBN: 90 5410 470 8.
    Van der Veen, C.J., E. Mosely Thompson, A.J. Gow and B.G. Mark, Accumulation at South Pole: comparison of two 900 year records, J. Geophys. Res., 1999,104:31067-31,076。
    Van der Veen C J, I M Whillans. Force budget:I,Theory and numerical methods. J.Glaciol. 1989, 35,53-60。
    Vaughan D G, Corr H F , Doake C S , et al. Distortion of isochronous layers in ice revealed by ground-penetrating radar. Nature, 1999, 395:323-326
    Vaughan, D. G., P. S. Anderson, J. C. King, G. W. Mann, S. D. Mobbs, and R. S.
    Ladkin.Imaging of firn isochrones across an Antarctic ice rise and implications for patterns of snow accumulation rate. J. Glaciol., 2004, 50(170): 413–418.
    Vialov, S. S., Regularities of glacial shields movements and the theory of plastic viscous flow, in: Physics of the movements of ice, Int. Assoc. Hydr. Sci., 1958,47:266-275.
    Waddington E D,Neumann T A, Koutnik M R, Marshall, Hans-Peter; Morse, D L. Inference of accumulation-rate patterns from deep layers in glaciers and ice sheets,Journal of Glaciology, 2007,53(183):694-712.
    Wang Bangbing, Tian Gang, and Cui Xiangbin et al. The internal COF features in Dome A of Antarctica revealed by multi-polarization-plane RES, Applied Geophysics, 2008, 5(3):230-237.
    Wang Shaowu. Glacial2Interglacial cycles. Advances in Clim ate Change Research, 2008, 4 (1): 61-62.
    Watanabe O, Jouzel J, et al, Homogeneous climate variability across East Antarctica over the past three glacial cycles, Nature ,2003,422:509– 512.
    Welch B C,Jacobel R W, Bedrock topography and wind erosion sites in East Antarctica, observations from the 2002 US-ITASE traverse. Annals of Glaciology,2005,41:92-96.
    Whillans I M, The equation of continuity and its application to the ice sheet near "Byrd" station, Antarctica. Journal of Glaciology 1977,18(80): 359-371.
    Xiao, C., Y. Li, S. Hou, I. Allison, L. Bian, and J. Ren (2008), Preliminary evidences indicate Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core, Chin. Sci. Bull., 53(1),102-106.
    Zachos J C,Pagani M,Sloan L,Thomas E,Billups K. Trends,rhythms,and aberrations in global climate 65 Ma to present. Science,2001,292,686–693.
    Zachos, J.C., Quinn, T.M., Salamy, K.A., High-resolution(104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography,1996,11: 251-266.
    Zhang S, Dongcheng E, Wang Z, et al. Surface topography around the summit of Dome A,Antarctica, from real-time kinematic GPS.J Glaciol, 2006, 177: 159—160.
    Zhang S, Dongcheng E, Wang Z, et al. Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica. Ann Glaciol, 2008, 48(1): 113—118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700