基于双频极化雷达技术的东南极冰盖内部结构特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Study on the Inner Structure and Tomography of East Antarctic Based on Two-Frequency and Multi-Polarization Plane Method of Radio-Echo-Sounding (RES)
  • 作者:王帮兵
  • 论文级别:博士
  • 学科专业名称:地球探测与信息技术
  • 学位年度:2007
  • 导师:田钢 ; 孙波
  • 学科代码:081802
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-04-01
摘要
南极冰盖在全球气候系统中扮演着重要角色,南极冰盖的物质平衡状态和变化趋势对全球海平面变化和温盐环流变异具有举足轻重的影响。因此理解冰流机制和动力过程对于解释冰盖过去、现在和未来的变化规律非常重要。双频极化雷达技术提供了一种间接推测冰介质物性的技术手段。本文基于双频极化雷达技术的现状和需要,开展了以下三个方面工作:首先,从Maxwell方程出发,推导出横向各向异性介质电磁波时域有限差分(FDTD)公式,并使用前人试验测得的冰介质介电参数制作模型,验证了前人关于冰内雷达反射层性质的推断。其次,总结双频极化雷达技术的资料处理方法,针对目前缺乏相应处理软件的现状以及中国21次南极考察冰雷达数据处理的需求,笔者开发出一套处理软件,极大地提高了处理效率并改善了处理效果。最后,应用这套软件处理中国21次南极考察冰雷达数据,分析和解释处理结果,取得了一些列重要成果。其中包括:在Dome A顶部发现超过冰厚3000m的深谷,为中国深冰芯计划确定了目标靶区。获得了Dome A——中山站冰盖厚度和冰下地形数据。根据双频极化雷达资料推断解释Dome A——中山站之间冰盖内部冰晶组构特性等。
The Study on the Inner Structure and Tomography of East Antarctic Based on Two-Frequency and Multi-Polarization Plane Method of Radio-Echo-Sounding (RES)
     Ph.D Supervisor: Prof. Gang Tian and Prof. Bo Sun Major: Geo-exploration and Information TechnologyAntarctic ice sheets play a crucial role in global climatic system, the state and tendency of mass balance influence the changes of global sea level and thermo-salt circumfluence significantly. Therefore, it is indispensable to understand ice stream mechanisms and dynamic processes for interpreting the past, present, and future changing law of ice sheet. The two-frequency polarization radar provides an indirect technical method to demonstrate the character of ice medium.Radio-Echo Sounding (RES) was used to detect the thickness of glaciers and ice sheets since 1960s, and had achieved great success as an important technique in ice-sheet exploration due to its convenience, high efficiency and accuracy. In 1990s, the four-year plan of BEDMAP implemented by BAS put forward special data-base of ice thickness and sub-glacial terrain covered Antarctic continent, and thereinto, 90% data came from radar sounding. RES not only can be used in ice-sheet thickness and sub-glacial terrain exploration, but also used in researching of space change and physical process of crystal-orientation fabrics. In 1999, summarizing former's achievements, based on the study of mass character of ice cores, Fujita suggested to use the two-frequency RES to distinguish reflecting layers caused by dielectric permitivity or conductivity. In 2003, Matsuka used dual-frequency and multi-polarization plane radar to research the space change of crystal-orientation fabrics in Shirase glaciers.
     During the 21st South Pole ice-sheet investigation, the advanced two-frequency RES system was employed to survey the area between ZhongShan and Dome A, and got a set of valuable radar data. This paper, reviewed the past, present and future of the development of RES firstly, and then aimed at the technical characteristic and research progress of two-frequency RES, made further research and detailed discussion finally. We discussed on three topics primarily: forward simulation of electromagnetic wave response of anisotropic, processing software development and data process and interpretation of ZhongShan-Dome A radar data.
     1. At present the commonly viewpoint is: internal reflections in ice sheet caused mostly by dielectric permittivity changes due to density fluctuations and(or) crystal-orientation fabrics changes and electrical conductivity changes due to changes in acidity(related to volcanic eruptions). Thro ugh experiments, some scholars found that heavy-acidity or anisotropic ice can cause detectable radar reflection. The paper, started off the equation of Maxwell, deduced the FDTD formula fit to the anisotropic and worked out the corresponding program. We made a set of arranged models which parameters were derived from the others experiment result, to simulate the various phenomenons of radar reflection in real Antarctic sheet. It includes:
     A. The simulating result shows that the distinct reflection appeared if only changing the layer conductivity and keeping the permittivity in the model. B. The responding output of anisotropic medium was simulated in the case of antenna rotation. The simulating result shows that the strength of output voltage variated with rotation angle and had 180°period. C. The simulation results of the output differences of the three types of antenna commonly used in ice radar show that the type C is more sensitive to the difference between anisotropic and isotropic. D. The output differences in different antennas type were compared when the permittivity of the anisotropic medium changed. The result show that, to the type B, the arriving time from bed in the type A has "bring-forward" or "delay" phenomenon, and it depend on the wave impedance difference between the upper and the below layer. Based on these experiments, we presented a simple method for distinguishing the direction of ice flow by comparing the arriving time difference of the ice bed reflection in the two antenna type.
     2. There are great differences between dual-frequency-polarization RES andtraditional RES in the collection method and proceeding and interpretationmethod, since dual-frequency-polarization RES is a new ice radar technique. Wecan obtain four sets of radar data in case of a single profile at least. These mayinclude data from two kinds of frequency (for example, 60 and 179MHz) and twopolarization directions. The data contain abundant information of the inner layers.We can extract them by subtracting between the different data, therefore we caninterpret the forming cause of the inner reflection layer (from the change ofdensity or acid or COF). We gave entire summarization on the proceeding methodof the dual-frequency-polarization RES.
     The present actuality of the RES data proceeding technique exist in two points. The first is that the quantity of the RES data is huge. The proceeding works need a lot of time and the period of the data transformation is relatively long. The second is that the resource and superiority of the collective division and cooperation isn't used fully. Summarizing the technique of the dual-frequency-polarization RES, I developed a software applied in RES data proceeding of the China 21th Antarctic Expedition, and improved the efficiency greatly.
     3. Based on the RES result of the China 21th Antarctic Expedition proceedingby my software, we interpreted some data obtained during the expedition. Firstly,we found a north-east deep channel according to 3D RES exploration result inDome A, its ice thickness exceeded 3000m. This provided the target area forsearch the oldest ice and the china deep ice core project. Secondly, We analyzedand interpreted the multi-polarization plane result, and compared it with the deepcore record in Dome Fuji. According to the comparing result, we proposed thatthe inner ice at the survey point in Dome A may be composed of elongated single-pole COF. In addition, based on the RES time-depth-conversion result, we obtained the ice-bed elevation and tomography combined with the surface elevation data. The RES result has higher precision than the data from BEDMAP database.
     Based on the dual-frequency comparison, we analyzed the inner composition of the ice sheet in the Dome A- ZhongShan station section with large scale. Then a certain section with dual-frequencies and dual-polarizations was selected. We compared the results with diferent frequencies and polarizations and analyzed some corresponding points. According to the conclusion derived from simulation in chapter 4, the arriving time from the bottom of anisotropy layer has difference in the different antenna type. We chose some corresponding points with different polarization to estimate the ice flow direction. The statistic result showed that most of the deduced results were consistent with the real case.
引文
1.秦大河,任贾文,南极冰川学,科学出版社,2001
    2.秦大河,效存德,丁永建等,国际冰冻圈研究的现状与展望,应用气象学报,2006,17(6):694-656.
    3.任贾文,秦大河,I.Allison,东南极洲Lambert冰川流域西部地区的雪层剖面和积累速率变化特征,冰川冻土,1 995,17(3):274.282.
    4.任贾文,秦大河,刘琛,南极洲纳尔逊冰帽浅层粒雪/冰的晶体组构特征,南极研究,1994,6(3):20-24.
    5.任贾文,秦大河,效存德等,南极地区数百年来气候变化的冰芯记录对比研究,冰川冻土,2002,24(5):484.49l
    6.李院生,孙波,极地冰冻圈雪冰一全球变化研究的最前沿一兼述中国极地研究中心极地冰川学研究的回顾与展望,海洋开发与管理,2004,21(5):36-40
    7.周丽娅,李院生等,东南极780年来DT263冰芯中的火山喷发记录研究,科学通报,2006,51(18):2189-2197.
    8.韦丽佳,李院生,谭德军等,极地冰芯不溶性微粒研究进展,地球科学进展,2005,20(2):2l6-222.
    9.温家洪,孙波,李院生,潘增弟,南极冰盖的物质平衡研究:进展与展望,极地研究,2004,16(2):114.126
    10.温家洪,康建成,南极乔治王岛柯林斯冰帽冰川发育条件,极地研究,2001,1 3(4):283-293.
    11.温家洪,康建成等,柯林斯冰帽排钻冰芯地层划分与物质平衡的初步研究,南极与全球气候环境相互作用和影响的研究[M],北京:气象出版社,1996,210-215.
    12.高向群,T.H.Jacka,单极大型组构冰的单轴压缩试验研究,冰川冻土,1996,18(1):58-63
    13.高向群,密度对各向异性冰雪应变率的影响,冰川冻土,1993,15(3):488-491
    14.高向群,T.H.Jacka,人造冰和冰芯冰蠕变和方位组构发展对比,冰川冻土,1995,17(4):58-63
    15.何樵登主编,地震勘探原理和方法,地质出版社,1986
    16.李大心,探地雷达方法与应用,地质出版社,1994
    17.曾昭发、刘四新等,探地雷达方法原理及应用,科学出版社,2006
    18.葛德彪、闫玉波,电磁波时域有限差分方法(第二版),西安电子科技大学出版社,2005
    19. Ackley, S. R, and T. E. Keliher, Ice sheet internal radio-echo reflections andassociated physical property changes with depth, J. Geophys. Res., 1979, 84(B10):5675-5680.
    20. Arcone, S. A., V. B. Spikes and G. S. Hamilton, Phase structure of radarstratigraphic horizons within Antarctic firn. Ann. Glaciol., 2005, 41:10-16.
    21. Alley, R. B., Fabrics in polar ice sheets: Development and prediction, Science,1988, 240: 493-495.
    22. Azuma, N., A flow law for anisotropic ice and its application to ice sheets,Earth Planet. Sci.Lett., 1994, 128: 601-614.
    23. Azurna, N., A flow law for anisotropic polycrystalline ice under uniaxialcompressive deformation, Cold Reg, Sci. and Technol., 1995, 23: 137-147.
    24. Azuma, N., and A. Higashi, Formation processes of ice fabric pattern in icesheets, Ann. Glaciol., 1985, 6: 130-134.
    25. Azuma, N., Y. Wang, K. Mori, H. Narita, T. Hondoh, H.Shoji, and O.Watanabe, Textures and fabrics in the Dome F (Antarctica) ice core, Ann.Glaciol., 1999,29:163-168.
    26. Azuma, N., Y. Wang, Y. Yoshida, H. Narita, T. Hondoh, H. Shoji, and O.Watanabe, Crystallographic analysis of the Dome Fuji ice core, in Physics of Ice Core Records, edited by T. Hondoh, Hokkaido Univ. Press, Sapporo,Japan, 2000,45-61.
    27. Bailey, J. T., S. Evans, Radio echo sounding of polar ice sheets, Nature, 2004,1964:420-421.
    28. Bentley, C.R., Seismic-wave velocities in anisotropic ice: A comparison ofmeasured and calculated values in and around the deep drill hole at ByrdStation,Antarctica,J.Geophys.Res., 1972, 77(23): 4406-4420.
    29. Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 1994, 114: 185-200.
    30. Bergmann, T., J. O. A. Robertsson, and K. Holliger, Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics, 1998, 63(3): 856-867.
    31. Blankenship, D. D., C. R. Bentley, S. T. Rooney, and R. B. Alley, Till beneathice stream B 1: Properties derived from seismic travel times, J. Geophys. Res.,1987, 92(B9): 8903-8911.
    32. Bogorodskiy, V. V.,C. R. Bentley, and P. E. Gudmandsen, Radioglaciology, D.Reidel, Norwell,Mass.,1985
    33. Bourgeois, J. M, and G. S. Smith, A Fully Three-Dimensional Simulation ofa Ground Penetrating Radar: FDTD Theory Compared with Experiment.IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(1): 35-44.
    34. Budd, W. F., The development of crystal orientation fabrics in moving ice,Z.Gletscherk, Glaziageol., 1972, 8:65-105.
    35. Budd, W. F., and T.H. Jacka, Review of ice rheology for ice sheet modeling ,Cold Reg. Sci. Technol., 1989, 16(2): 107-144,.
    36. Carcione, J. M, Ground Radar simulation for archaeological applications.Geophysical Prospecting, 1995.
    37. Chen, H. W., and T. M. Huang, Finite-difference time-domain simulation ofGPR data. Journal of Applied Geophysics, 1998,40:139-163.
    38. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, FDTD Local Grid withMaterial Traverse. IEEE Transactions on Antennas and Propagation, 1997,45(3):411-421.
    39. Chew, W. C, and W. H. Weedon, A 3D perfectly matched medium frommodified Maxwell's equations with stretched coordinationes, Microwave andOptical Tech. Lett., 1994, 599-604.
    40. Chew, W. C, Waves and Fields in Inhomogeneous Media. ISBN 0-7803-4749-8. IEEE Press, New York,2000 Corporate Blvd., N. W., Boca Raton, Floridam, USA, 1995.
    41. Clayton, R., B. Engquist, Absorbing boundary conditions for acoustic andelastic wave equations. Bulletin Seismographic Society of America, 1977,65:1529-1540.
    42. Clough, J. W., Radio-echo sounding: Reflection from internal layers in icesheets, J. Glaciol., 1977, 18 (78): 3-14.
    43. Drewry, D. J., Robin G. Q.,Form and flow of the Antarctic Ice Sheet duringthe last million years, In :Robin G. Q ., The climatic record in polar ice sheets,Cambridge University Press,Cambridge,1983, 28-38.
    44. Drewry, D. J., Antarctic: glaciological and geophysical folio, Scott PolarResearch Institute, University of Cambridge, Cambridge, 1983.
    45. Drewry, D. J., Initiation and growth of the East Antarctic ice sheet, Journalof the Geological Society, 1975, 131: 255-273.
    46. Duyal, P., V. Y. Lipenkov, N. I. Barkov, and S.de La Chapelle, Recrystallization and fabric development in the Vostok ice core, Eos Trans. AGU,79(45), Fall Meet. Suppl., F152, 1998.
    47. Eisen, O., F. Wilhelms, U. Nixdorf and H. Miller, Identifying isochrones inGPR profiles from DEP-based forward modeling, Ann. Glaciol., 2003, 37:344-350.
    48. Evans, S., Dieletric properties of ice and snow-A review, J. Glaciol., 1665 ,5(42): 773-792.
    49. Engquist, B., A. Majda, Absorbing boundary conditions for the numericalsimulation of waves. Mathematical Computations, 1977, 31:629-651.
    50. Fang, J., and Z. Wu., Generalized Perfectly Matched Layer — An Extensionof Berenger's Perfectly Matched Layer Boundary Condition, IEEE Microwave Guide Wave Lett.,1995, 5(12):451-453.
    51. Fang, J., and Z. Wu., Generalized Perfectly Matched Layer for the Absorptionof Propagating and Evanescent Waves in Lossless and Lossy Media, IEEETrans. Microwave Theory Tech., 1996, 44(12): 2216-2222.
    52. Fujita, S., and S. Mae, Cause and nature of ice sheet radio-echo internalreflections estimated from the dielectric properties of ice, Ann. Glaciol.,1994,20: 80-86.
    53. Fujita, S., M. Nakawo, and S. Mae, Orientation of the 700-m Mizuho coreand its strain history, Proc. NIPR Symp. Polar Meteorol. Glaciol.,1987, 1:122-131.
    54. Fujita, S., M. Shiraishi, and S. Mae, Measurement on the dielectric propertiesof acid-doped ice at 9.7GHz, IEEE Trans. Geosci. Remote Sens., 1992a,30(4): 799-803.
    55. Fujita, S., S. Mae, and T. Matsuoka, Dielectric anisotropy in ice Ih at 9.7GHz.,Ann. Glaciol., 1993,17:276-280.
    56. Fujita, S., H. Maeno, and S. Uratsuka, Nature of radio echo layering in theAntarctic ice sheet detected by a two-frequency experiment, J. Glaciol.Res., 1999,104(B6): 13013-13024.
    57. Fujita, S., T. Matsuoka, T. lshida, K. Matsuoka, and S. Mae, A summary ofthe complex dielectric permittivity of ice in the megahertz range and itsapplication for radar sounding of polar ice sheets, in Physics of Ice CoreRecords, Edited by T. Hondoh, Hokkaido Univ. Press, Sapporo, Japan,2000,185-212.
    58. Fujita, S., K. Matsuoka, H. Maeno, and T. Furukawa, Scattering of VHF radiowaves from with an ice sheet containing the vertical-girdle-type ice fabricand anisotropic reflection boundaries, Ann. Glaciol.,37, in press,2003.
    59. Fujita, S., H, Maeno, and K. Matsuoka, Radio-wave depolarization andscattering within ice sheets: a matrix-based model to link radar and ice-core measurements and its application, J. Glaciol., 2006, 52(178): 407-424.
    60. Furukawa, T., T. Yamada, K. Suzuki, T. Suzuki, K. Matsuoka, K. Horikawa, E.Murakata, K. Yasugahira, and Y. Iizuka, Glaciological data collected by the 39lh and 40th Japanese Antarctic Research Expedition during 1998-2000,JARE Data Rep., 267(Glaciology 26),61 pp., Natl. Sci. Mus., Tokyo,2002.
    61. Garfield, D.E., and H.T.Ueda, Resurvey of the "Byrd" station, Antarctica,drill hole, J.Glaciol., 1976,17(75):29-34.
    62. Gogineni, S., T. Chuah, C. Allen, K.C.Jezek, and R.K. Moore, Improvedcoherent radar depth sounder, J.Glaciol., 1998,44(148):659-669.
    63. Gow,A.J., and T.Wiiliamson, Rheological implications of the structure andcrystal fabrics of the West Antarctic Ice Sheet as revealed by deep coredrilling at Byrd Station, Geol.Soc.Am.Bull.,1976, 87(12): 1665-1677.
    64. Gribbons, M, S. K. Lee, and A. C. Cangellaris, Modification of Berenger'sPerfectly Matched Layer for the absorption of electromagnetic waves inlayered media, in Proc. Llth Ann. Rev. of Progress in ACES,Monterey, CA,Mar.,1995, 25:498-503.
    65. Gudmandsen P., Layer echoes in polar ice sheets, J. Glaciol., 1975, 15(73):95-101.
    66. Hammer,C.U., Acidity of polar ice cores in relation to absolute dating,pastvolcanism,and radio echoes,J.Glaciol., 1980,25(93): 359-372.
    67. Hargreaves, N. D., The polarization of radio signals in the radio echosounding of ice sheets, J. Phys. D, 1977, 10:1285-1304.
    68. Hargreaves, N. D., Radio-frequency birefringence of polar ice, J. Glaciol.,1978, 21(85): 301-313.
    69. Harrison, C. H., Radio echo sounding of horizontal layers in ice, J. Glaciol.,1973, 12 (66): 383-397.
    70. Hvidberg, C.S., Steady-state thermomechanical modeling of ice flow near thecentre of large ice sheets with the finite element technique, Ann. Glaciol.,1996,23:116-123.
    71. Jacobel, R. W., and S. M. Hodge, Radar internal layers from the Greenlandsummit, Geophys. Res. Lett., 1995,22(5):587-590.
    72. Kameda, T., H. Shoji, K. Kawada, O. Watanabe, and H. B. Clausen, Anempirical relation between overburden pressure and firn density, Ann.Glaciol., 1994,20:87-94.
    73. Kanagaratnam, P., S. P. Gogineni, et al., High-resolution radar mapping ofinternal layers at the North Greenland Ice Core Project, J. Geophys. Res.,2001, 106 (D24):33, 799-33,811.
    74. Katz, D. S., E. T. Thiele, and A. Taflove, Validation and extension to threedimensional of the Berenger PML absorbing boundary condition for FD-TDmeshes, IEEE Microwave and Guided Wave Lett., 1994, 4: 268-270.
    75. Kim, I.S., W. J. Hoefer, A Local Mesh Refinement Algorith for the TimeDomain Finite Difference Method Using Maxwell's Curl Equations, IEEETransactions on Microwave Theory and Technique, 1990, 38(6): 812-815.
    76. Kohler, J., J. C. Moore and E. lsaksson, Comparison of modelled andobserved responses of a glacier snowpack to ground-penetrating radar, Ann.Glaciol., 2003, 37: 293-297.
    77. Kunz, K. S., and Luebbers, R. J., The Finite Difference Time Domain Methodfor Electromagnetic, ISBN 0-8493-8657-8, CRC Press, Boca Raton, AnnArbor, London, Tokyo,445 Hoes Lane, P. O. Box 1331, Picataway, NJ08855-1331, USA,1993.
    78. Kunz, K. S., and L. Simpson, A Technique for Increasing the Resolution ofFinite Difference Solutions of the Maxwell Equation. IEEE Transactions onElectromagnetic Compatibility, 1981, 23(4):419-422.
    79. Lipenkov, V. Y., Formation and decomposition of air hydrates in glacier ice(in Russion), Mater, Glyatsiol., Issled., 1989, 65: 58-64.
    80. Lipenkov, V. Y., and N. I. Barkov, Internal structure of the Antarctic Ice Sheetas revealed by deep core drilling at Vostok Station, in Lake Vostok Study:Scientific Objectives and Technological Requirements, Arctic and Antarct. Res. Inst., St. Petersburg, Russia, 1998, 31-32.
    81. Liu Sixin, M. Sato, Transient Radiation from an Unloaded, Finite DipoleAntenna in a Borehole: Experimental and Numerical Results. Geophysics,2005, 70(6):43-51.
    82. Mae, S., and R. Naruse, Possible causes of ice sheet thinning in the MizuhoPlateau, Nature, 1978, 273:291-292.
    83. Mae, S., and M. Yoshida, Airborne radio echo-sounding in Shirase glacierdrainage basin, Antarctica, Ann. Glaciol.,1987, 9: 160-165.
    84. Maeno,H.,K.Kamiyama,T.Furukawa,O.Watanabe,R.Naruse,K.Okamoto,T.Suitz,and S. Uratsuka, Using a mobile radio echo sounder to measure bedrocktopography in East Queen Maud Land, Antarctica, Proc. NIPR Symp.Polar Meteorol Glaciol., 1994, 8:149-160.
    85. Maeno, H., S. Uratsuka, K. Okamoto, and O. Watanabe, Subsurface survey ofthe Antarctic ice sheet using a mobile radio-echo sounder, J.Communi.Res.Lab., 1996, 43(2):139-149.
    86.Maloney, J. G, G. S. Smith, and W. R. Scott, Accurate Computation of the Radiation from Simple Antennas Using the Finite-Difference Time-DomainMethod. IEEE Transactions on Antennas and Propagation, 1990, 38(7):1059-1068.
    87. Matsuoka, K., S. Fujita, T. Matsuoka, T. Ishida, T. Hondoh, and S. Mae,Measurement of the complex permittivity of acid-doped ice from 1 kHz to30MHz - New data set for developing ice radar and dielectric analysis of icecores-, Proc. NIPR Symp. Polar Meteorol Glaciol., 1996, 10:25-35.
    88. Matsuoka, K., H. Maeno, S. Uratsuka, S. Fujita, T. Furukawa, and O.Watanabe, A ground-based, multi-frequency ice-penetrating radar system,Ann.Glaciol., 2002, 34:171-176.
    89. Matsuoka, K., T. Furukawa, and S. Fujita, Crystal orientation fabrics withinthe Antarctic ice sheet revealed by a multipolarization plane anddual-frequency radar survey. J. Glaciol.Res., 2003, 108, BIO, 2499.
    90. Matsuoka, T., S. Fujita, and S. Mae, Effect of temperature on dielectricproperties of ice in the range 5-39GHz, J. Applied Phys., 1996, 80(10):5884-5890.
    91. Matsuoka, T., S. Fujita, and S. Mae, Dielectric properties of ice containingionic impurities at microwave frequencies, J. Phys. Chemi. B, 1997a, 101(32):6219-6222.
    92. Matsuoka, T., S. Fujita, S. Morishima, and S. Mae, Pricise measurement ofdielectric anisotropy in ice Ih at 39GHz, J. Applied Phys., 1997b, 81(5):2344-2348.
    93. Millar, D. H. M., Radio-echo layering in polar ice sheets and past volcanicactivity, Nature, 1981, 292:441-443.
    94. Miners, W. D., A. Hildebrand, S. Gerland, N. Blindow, D. Steinhage, and E.W. Wolff, Forward modeling of the internal layers in radio echo soundingusing electrical and density measurements from ice cores, J.Phys. Chem., B,1997,101(32):6201-6204.
    95. Miners, W. D., E. W. Wolff, et al., Modeling the radio echo reflections insidethe ice sheet at Summit, Greenland, J. Geophys. Res., 107 (B8, 2172),(10.1019/2001JB000535.), 2002.
    96. 'Moghaddam, M., E. J. Yannakakis, and W. C. Chew, Modeling of theSubsurface Interface Radar, Journal of Electromagnetic Wave and Applications, 1991, 5(1): 17-39.
    97. Monorchio, A., and R. Mittra, A Novel Subgridding Scheme Based on aCombination of the Finite-Element and Finite-Difference Time-DomainMethod. IEEE Transactions on Antennas and Propagation, 1998, 46(9):1391-1393.
    98. Moore, J.C., Dielectric variability of a 130 m Antarctic ice core: Implicationsfor radar sounding, Ann. Glaciol., 1988,11: 95-99.
    99. Moore, J. C, and S. Fujita, Dielectric properties of ice containing acid andsalt impurity at microwave and low frequencies, J. Geophys. Res., 1993, 98(B6):9769-9780.l00.Motoyama, H., H. Enomoto, T. Furukawa, K. Kamiyama, H. Shoji, T.Shiraiwa, K. Watanabe, K. Namasu, and H. Ikeda, Preliminary study of iceflow observations along traverse routes from coast to Dome Fuji, East Antarctica by differential GPS method, Antarct. Rec, 1995, 39(2): 94-98.l0l.Mur, G, Absorbing boundary conditions for finite-difference approximationsof the time-domain eletromagnetic-field equations, IEEE Transactions onElectromagnetic Compatibility, 1981, 23:1073-1077.
    102.Nakawo, M., H. Ohmae, F. Nishio, and T. Kameda, Dating the Mizuho 700-mcore from core ice fabric data, Proc.NIPR Symp.Polar Meteorol.Glaciol.,1989,2:105-110.
    103.Naruse, R., Thinning of the ice sheet in ice sheet in Mizuho Plateau, EastAntarctica, J. Glaciol.,1979, 24(90):45-52.
    104.Nishio, F., S. Mae, H. Ohmae, S. Takahashi, M. Nakawo, and K. Kawada,Dynamic behavior of the ice sheet in Mizuho Plateau, East Antarctica,Proc .NIPR Symp.Polar Meteorol Glaciol., 1989, 2:97-104.
    105.Ohmae, H., F. Nishio, M.Ishikawa, T. Katsushima, and S. Takahashi,Regional difference of attenuation of radio waves within Antarctic ice sheet,in Proceedings of the sixth Symposium on Polar Meteorology and Glaciology,Mem. Natl. Inst. Pol. Res., Special Issue, 1984, 34:152-159.
    106.Okoniewski, M., E. Okoniewski, and M. A. Stuchly, Three-DimensionalSubgridding Algorithm for FDTD, IEEE Transactions on Antennas andPropagation, 1997,45(3):422-428.
    107.Paren, J. G, Reflection coefficient at a dielectric interface, J. Glaciol., 1981,27(95):203-204.
    108.Paren, J. G, and G de. Q. Robin, Internal reflections in polar ice sheets, J.Glaciol., 1975, 14(71): 251-259.
    109.Paterson, W. S. B., Why ice-age ice is sometimes "soft", Cold Reg. Sci.Technol., 1991,20:75-98.
    110.Paterson, W. S. B., The Physics of Glaciers, Pergamon, Tarry town, N.Y.,1994.
    111.Payne, A. J., Limit cycles in the basal thermal regime of ice sheets, J.Geophys. Res., 1995, 100 (b3):4249-4263.
    112.Petit, J. R., et al., Climate and atmospheric history of the past 420,000 yearsfrom the Vostok ice core, Antarctica, Nature, 1999, 399:429-436.
    113.Prescott, D. T., and N. V. Shuley, A Method for Incorporating Different SizedCells into the Finite-Difference Time-Domain Analysis Technique, IEEEMicrowave and Guided Wave Letters,1992, 2(ll):434-436.
    114.Raymond, C. R, Deformation in the vicinity of ice divide, J. Glaciol., 1983,29(103):357-373.
    115.Robin, G. de. Q., Radio-echo sounding: Glaciological interpretations andapplications, J. Glaciol., 1975, 15(73):49-64.
    116.Robin, G. de. Q., and D. H. M. Millar, Flow of ice sheets in the vicinity ofsubglacial peaks, Ann. Glaciol., 1982, 3:290-294.
    117.Robin,G. de. Q., and J. T. Bailey, Interpretation of radio echo sounding inpolar ice sheets, Philos. Trans. R. Soc. London, 1969, 265(166):437-505.
    118.Robin, G. de. Q., D. J. Drewry, and D. T. Meldrum, International studies ofice -sheet and bedrock, Phiilos, Trans. R. Soc. London,1977,279(963):185-196.
    119.Robin, G. de. Q., and C. Swithinbank, Fifty years of progress in understanding ice sheets, Journal of Glaciology, Special Issue, 1987, 33-47.
    120.Rowden-Rich, R.J.M., and C.J.L Wilson, Models for strain localization inLaw Dome, Antarctica, Ann. Glaciol., 1996, 23:396-401.
    121.Russell-Head, D.S., and W.F. Budd, Ice-sheet flow properties derived frombore-hole shear measurements combined with ice-core studies,J.Glaciol., 1979,24(90): 117-130.
    122.Shoji, H., and A. Higashi, Deformation mechanism map of ice, J. Glaciol.,1978,21(85):419-427.
    123.Shoji, H., and C.C. Langway Jr., Air hydrate inclusions in fresh ice core,Nature, 1982, 298:548-550.
    124.Shoji, H., and C.C. Langway Jr., Flow-law parameters of the Dye 3,Greenland , deep ice core, Ann. Glaciol.,1988, 10:146-150.
    125.Takahashi, S., R. Naruse, F. Nishio, T. Furukawa, H. Motoyama, S. Fujita,and S. Mae, East Queen Maud Land Enderby Land: Glaciological folio, icesheet dynamics, Natl. Inst. Of Polar Res., Tokyo, 1997.
    126.Taylor, K.C., C.U. Hammer, R. B . Alley, H.B. Clausen, D. Dahl-Jensen,A.J.Gow, N.S.Gundestrup, J.Kipfstuhl, J.C.Moore, and E.D. Waddington,Eletrical conductivity measurements from the GISP2 and GRIP Greenland icecores, Nature, 1993, 366:549-552.
    127.Thorsteinsson, T., Fabric development with nearest-neighbor interaction anddynamic recrystallization, J. Geophys. Res., doi: 10.1029/2001JBOO244,2OO2,107(Bl):2014.
    128.Thorsteinsson, T., J. Kipfstuhl, and H.Millar, Textures and fabrics in theGRIP ice core, J. Geophys. Res., 1997, 102(C12):26,583-26,599.
    129.Uchida,T., P.Duval, V.Y.Lipenkov,T.Hondoh, and S.Mae,Brittle zone andair-hydrate formation in polar ice sheets,Mem.Natl.Inst.Polar Res.,Speci.Issue Jpn., 1994,49:298-305.
    130.Ulaby, F.T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing:Active and Passive, Addison-Wesley, Reading, Massachusetts, 1982, 925-966.
    131.Vaughan, D. G, H. F. J. Corr, C. S. M. Doake, E. D. Waddington, Distortionof isochronous layers in ice revealed by ground-penetraing radar,Nature, 1999, 298:323.
    132.Veidl J. C, and R. Mittra, An Efficient Implementation of Berenger'sPerfectly Matched Layer (PML) for Finite-Difference Time-Domain MeshTruncation, IEEE Transactions on Microwave and Guided Wave Letters,1996, 6(2): 94-96.
    133.Visscher, P. B., Discrete formulation of Maxwell equations, Computers inPhysics, Seiten, 1989,42-45.
    134.Warren, S. G, Optical constants of ice from the ultraviolet to the microwave,Appl. Opt., 1984, 23: 1206-125.
    135.Watannabe, O., et al., Basic analysis of Dome Fuji deep ice core, Part 1:Stable oxygen and hydrogen isotope ratios, major chemical components anddust concentration, Polar Meteorol. Glaciol., 1999, 13:83-89.
    136.White, M. J., and Z. Huang, Development of a Multigrid FDTD Code forThree-Dimensional Applictions. IEEE Transactions on Antennas andPropagation, 1997, 45(10): 1512-1517.
    137.Woodruff, A. H. W., and C. S. M. Doake, Depolarization of radio waves candistinguish between floating and grounded ice sheets, J. Glaciol., 1979,23(89):223-232.
    138.Yee, K. S., Numerrical solution of initial boundary value problems involvingMaxwell's equations in isotropic media. IEEE Transactions on Antennas &Propagation, 1966,14(3):302-307.
    139.Zivanovic, S. S., K. S. Yee, and K. K. Mei, A Subgridding Method for theTime-Domain Finite-Difference Method to Solve Maxwell's Equations. IEEETransactions on Microwave Theory and Techniques, 1991, 39(3):471-479.
    140.Zwally, J., and A. Brenner, Seasat and GEOSAT altimetry for the Antarcticand Greenland Ice Sheets [CD-ROM], Natl. Snow and Ice Data Cent.,Boulder,Colo.,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700