东昆仑造山带混杂岩区非史密斯地层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正确展示造山带现今三维结构,恢复其铸就现今三维结构之形成演化历程是造山带地质调查与研究的核心内容。造山带类型复杂多样,不同类型的造山带有着各自不同的形成机制、演化历程和各自不同的三维结构,但各类造山带有其共性,其共性就是在造山带的整个演化历程中,曾经历过强烈的构造搬运和构造混杂过程,即非史密斯化过程。造山带非史密斯地层构成具如下独特性和复杂性:造山带在俯(仰)冲碰撞和陆内造山阶段,发生过强烈的构造搬运和构造混杂,构造形迹多样化,垂直不长的地层体往往是众多不同来源、不同时代,不同变形变质程度,不同大小的各种构造岩片拼贴体,地层原始层序被严重肢解、破坏;尤以产于俯冲带的俯冲增生杂岩楔的原始形成方式与史密斯地层学的“层序叠覆律”老下新上的顺序正好相反,其混杂岩增生方式是老的“片体”在上,新的“片体”阶段性拼贴在老的“增生片体”的斜下方,这种增生片体的原始位置亦与“原始水平律”相悖,即增生片体一般保持较高角度倾斜;在岩石类型和变质程度上,造山带海相和古陆缘火山岩以及变质岩普遍发育,尤其是超基性、基性岩系分布广泛,变质作用较强,伴有从百余公里以下深部超高压变质岩片的折返和同造山期与造山后期岩浆活动,构成极为复杂的地质景观。非史密斯化过程使造山带地区变为极其复杂的物质混合场,传统的史密斯地层研究方法已难以适应满足造山带地层研究、填图与生产实践的需要,如何对造山带混杂岩区进行精细的地层学调查就变成了亟待解决的问题,这就要求我们必须更新观念,非史密斯地层(non-Smithian strata)这一新的地层学概念因之应运而生,旨在精细恢复造山带组成、结构、形成和演化历程,进一步提高我国造山带区地质研究与环境资源调查评价水平。
     研究区位于东昆仑与西秦岭以及柴达木板块与华南板块结合带,其洋陆转化阶段经历了元古代,早古生代,晚古生代-早中生代多期造山旋回,地层、岩石和构造十分复杂,区内存在两条时代各异的蛇绿混杂岩带,北为东昆中—东昆南复合蛇绿混杂岩带,南为阿尼玛卿蛇绿混杂岩带,它们代表两条时代各异的缝合带,为研究运用非史密斯地层理论方法,进行造山带组成、结构、演化模式调查研究,进而研究秦昆巨型造山带及中国西部南北板块演化研究提供了一个十分理想的场所。本文通过对东昆仑造山带东段混杂岩区大量野外调查(实测混杂岩剖面21条总长160km;混杂岩区1:25万地质填图路线总长1640KM)和室内测试分析研究的基础上,对混杂岩带内各类岩石建造体从地层学角度进行了详实的野外划分和室内测试及综合分析,并在充分收集和借鉴前人研究成果的基础上,取得如下主要结论:
     1.从理论上阐述了非史密斯地层的概念、研究对象和基本构件:非史密斯地层(non-Smithian strata)是指那些经历过不同程度的混杂建造,并经历了变位,变形、变质,全部无序或部分无序的地(岩)层,主要指造山带地层中的无序部分;混杂岩是非史密斯地层的唯一研究对象;混杂岩中的构造岩片(块)是非史密斯地层基本构件之一,亦是非史密斯地层和地质填图基本单位之一,岩片(slice)是指以构造拼合边界所分割的具有一定物质构成的地质体;物质建造形成于同一大的构造旋回期(如晋宁期、加里东期、海西期等)、亲源关系密切、大致经历了相似变形、变质历程的一套岩片组合体被称之为超岩片(superslice)。
     2.以殷鸿福等(1998)归纳总结的非威尔逊旋回理论为指导,从理论上阐述了非史密斯地层形成过程:造山带区古大洋相当复杂,尤其是中国古特提斯域古大洋,多为多岛洋(海),多岛洋是一个宽阔(可达数十纬度)的但不干净的洋,它在其各个演化阶段,始终充满着由裂解地块、裂谷、海道、微板块与次级小洋(海)盆、火山岛弧、海山与边缘海等不同裂离与聚合程度的、海陆相间的多岛洋盆;多岛洋盆在其整个洋陆转化进程中,往往所经历的是多期开合与多期次软碰撞,故由非威尔逊旋回转化而来的造山带混杂岩带地层一般都经历过多期强烈的构造混杂,使造山带演化不同期次、同期次不同阶段、不同大地构造相、不同沉积古地理单元、不同构造层次(深部-浅表构造层次)地层体在极短程内相互拼贴、无序叠置。
     3.对研究区造山带混杂岩非史密斯地层单元系统建立、划分、名词术语、命名原则、和生产应用(造山带混杂岩区地质填图技术路线)等首次提出了一套系统的理论方法体系:提出了造山带非史密斯地层“构造岩片四维裂拼复原原理”和构造岩片的“物态、时态、相态、位态和变形、变质历程”分析法。并从野外实际出发,将1:25万冬给措纳湖幅混杂岩区划分为两大混杂岩带,两亚带,14个超岩片。14个超岩片按岩性岩相不同,又划分出15类岩片,并对它们均进行了较深入的“物质构成、时、相、位和变形、变质历程”调查分析。
     4.在岩片和超岩片时态调查方面取得如下重要进展:(1)在沟里、龙什更公坞等地区的由中浅变质岩岩片构成的“哑地层”中获取较丰富的疑源类和少量放射虫化石,使该套地层从化石方面首次获得了确切的时代证据,并新获一大批同位素年龄数据(14个),年龄值主要分布在1000—500Ma之间,化石时代与同位素测年吻合较好。(2)首次在花石峡—长石头山一带的“马尔争组”中发现与该带(布青山蛇绿混杂岩带)蛇绿岩岩片有密切联系的紫红色放射虫硅质岩,并分离出丰富的深海相早二叠世放射虫化石,为该带蛇绿岩的形成时代提供了有重要价值的参考年龄。(3)对构成布青山蛇绿混杂岩带相关的各类沉积岩岩片,按岩片类型不同分别进行了详细的生物地层研究,获得丰富的有孔虫、蜒、珊瑚动物、海绵动物、钙藻、孢粉和遗迹化石,首次从生物群角度详细阐明了有关岩片(块)的地质年代、形成时的古生态与古环境,充分刻画了该带混杂岩构成的的细部特征,为阿尼玛卿造山带的形成演化研究从古生物角度提供了详实的基础地质资料。
     5.通过对东昆仑东段造山带细致解剖,对运用大地构造相方法剖析混杂岩带非史密斯地层方面进行了有益尝试。以造山带时间演化为主线,据造山带不同演化阶段、不同部位出现的构造古地理单元、盆地类型和物质建造类型,对1:250000冬给措纳湖幅大地构造相进行了较精细深入划分,共划分出7大相类,21种相,运用大地构造相理论与方法,较全面细致地揭示了东昆仑造山带东段造山带形成、物质组成及演化过程。
     6.对东昆仑造山带东段前晋宁—印支期多期洋陆转化过程和非史密斯地层形成历程进行了研究。研究表明,沿东昆中断裂带分布的蛇绿岩具有多期性,是多旋回裂拼作用的综合产物,蛇绿岩至少存在中元古代、加里东期和海西期三个时代,混杂岩带不能仅限于东昆中断裂带附近,整个东昆南地区实际上都是一系列不同时代、不同来源、不同构造变形型式的构造岩片组成的构造混杂物质场。由于构造混杂岩表现为不同时代的相互交织,故以“东昆南复合混杂岩带”相称。根据带内基底岩石性质的不同和演化历史的不同,可进一步划分为北部蛇绿构造混杂岩带和南部构造混杂岩带。北部蛇绿构造混杂岩带不同时代蛇绿岩广泛分布,至少经历了前晋宁旋回,晋宁——加里东旋回,海西一印支旋回三大旋回的洋陆转换。南部构造混杂岩带结构和演化相对较简单,其基底岩系相对年青,为中元古界角闪岩相变质的苦海杂岩。苦海杂岩在变质岩石学方面与北部白沙河岩群或小庙岩群存在明显差别,是不同于北部的独立块体。基底岩系块体外围为活动类型的晚古生代早石炭世—中二叠世沉积建造,这些晚古生代沉积区域与更南部的阿尼玛卿海西期大洋存在成因联系,具分支海槽特点。上二叠统—中三叠统(包括格曲组、洪水川群和闹仓坚沟组)角度不整合于下覆岩系之上,代表碰撞后的前陆盆地堆积。从沉积建造反映的南部构造混杂岩带似乎只经历了海西期一印支期单旋回的洋陆转换,但在该构造带基底岩系中发育较多的加里东期同构造花岗岩类,说明加里东旋回的构造活动在该亚带也有较深的印迹。东昆仑阿尼玛卿蛇绿构造混杂岩带包含了准原地系统的布青山—花石峡超岩片、马尼特超岩片和外来系统的推覆体超岩片。该带北以沿冬给措纳湖经红水川向阿拉克湖一线的NWW向昆南活动大断裂与东昆南构造混杂岩带相邻,南以NWW向的长石头山大断裂与巴颜喀拉地块相接。布青山一花石峡超岩片组成较复杂,包括中元古界角闪岩相变质的苦海杂岩岩片、不同时代蛇绿岩岩片、早二叠世—早三叠世复理石楔岩片、中酸性火山岩岩片和碳酸盐岩片以及早侏罗世羊曲组的陆相碎屑岩岩片。其中蛇绿岩组合至少可分出两套,其一就位于变质的苦海杂岩中,被加里东期岛弧型花岗岩侵入切割,可能属加里东期或前加里东期的蛇绿岩组合;其二就位于早二叠世—早三叠世布青山群马尔争组中,包括超镁铁质岩、玄武岩、辉绿岩墙及远洋硅泥质岩组合,其中硅质岩中发现有早二叠世放射虫,说明其形成于海西期。马尼特超岩片的物质组成相对较简单,主要由布青山群马尔争组的复理石楔岩片、蛇绿岩岩片、碳酸盐岩片等构成,未见深变质岩岩片。两超岩片中的化石资料均显示出二叠纪与三叠纪沉积物质的复杂交织,但北侧布青山一花石峡超岩片中的远洋硅质岩属早二叠世,与其成带相伴的蛇绿岩组合也应属早二叠世,因此,总体来说布青山—花石峡超岩片要较南侧的马尼特超岩片原岩的发育略早些,两超岩片中的蛇绿岩分别成带出现可能反映往南后退式的俯冲增生混杂。
     国际地层指南(赫德伯格H.D.,1976)的一个重大贡献就是推动了地层的多重(种)划分对比研究。该理论认为:岩层有多少可用作地层划分的特性,就可能作多少种划分。但仅据岩层任一性质和属性划分的地层位置不一定与其它的任一种性质或属性划分的地层位置一致,其界线往往互相交叉。非史密斯地层的出现,同近二十年其它地层学科分支(如事件地层、成因地层、生态地层、层序地层、构造地层等)如雨后春笋般出现一样,是旨在从“构造岩片的四维裂拼复原”方面细致刻画造山带各类混杂建造特征。显然这一新的学科分支的研究目标与其它地层学学科分支是一致的,都是设法“据岩层的某种性质和属性”来刻画岩层的不同特征,最后达到对岩层所有属性的全面认识。因此,非史密斯地层的提出,不是对从前所有地层学学科分支的冲击和排斥,而是一种重要补充,尤其是与构造地层的关系,是相辅相成的两姊妹学科,两学科同都是解开造山带无序或部分无序地(岩)层特征的两把钥匙:构造地层侧重于地(岩)层构造形变样式和期次的分析,而非史密斯地层则侧重于通过混杂堆积中构造岩片四维裂拼复原分析,着重了解各构造岩片的物质组成、原生成生时代、相环境、古大地构造背景和变形变质历程。
The key target of the study in orogenic belt is to properly reconstruct their three-dimension architecture and uncover their evolution. Though orogenic belts are varied, and different orogenic belts have different mechanisms, evolutions and three-dimension architectures, all orogenic belts have experienced strong tectonic migration and mixing, which are called non-Smithization .The orogenic strata have following characteristics: During the subduction (obduction) and intracontinental orogeny, the strata experienced dramatic tectonic migration and mixing, resulting in various tectonic features. A short sequence usually composed of tectonic slices of various origins, times, deformations and metamorphisms, and scales. The original sequence was badly destroyed. The extant fragments of orogenic belt usually took form as melanges, especially the accretion complex wedge generated in subduction zone, which is contrary to the Law of Superposition. The original location of the accretion is also contradicted with the Law of Original Horizonality, because the accretion is oblique with high degree. Marine rocks, volcanic rocks of continental margin and metamorphic rocks were well-developed in the orogenic belt, especially ultra-basic, basic rocks were wide spread and were intensely metamorphosed, accompanied by metamorphic slices returned from hundred kilometers underground with ultra-high pressure and magma movements during syn-orogeny and post-orogeny, thus formed the colorful landscapes. During the non-Smithization, the orogenic belt became the integration of mixed materials, and the traditional Smith methods are no longer fit the need of the study and practice in orogenic belt. How to carry out detail study in orogenic belt need prompt solution. Thus urged us to change our old thoughts and turn to non-Smith stratigraphy for help to reconstruct and restore the architecture, component and evolution of orogenic belt, and it will enhance Chinese level on geological research and environmental surveying and appraisal.
     The studied area located at the junction of Eastern Kunlun and West Qinling, and the Qaidam Plate and the South China Plate. Its ocean—continent transitions underwent Proterozoic, Early Paleozoic and Late Paleozoic—Early Mesozoic cycles, so the strata, sediments and structures are rather complex. There lied two ophiolite melange belts of different ages in Eastern Kunlun Orogenic Belt, i.e., middle-south Eastern Kunlun compound ophiolite belt in the north, A’nimaqing ophiolite melange belt in the south, which stands for two sutures of different ages. All these favor the study on the components, architectures and evolutions of the orogenic belt, and further on the Qinling—Kunlun orogenic belt and on the evolution of the south and north plates of West China.
     Based on lots of field work (21 surveyed melange sections, totally 160 km, 1 640 km mapping route of 1∶250 000 geologic map), indoors assays and referring former researcher’s results, following conclusions are summarized.
     1.The conception, studied objects and basic constituents of non-Smith strata are elaborated from theory level: Non-Smithian strata are the strata that have undergone mixing of different degrees, thus were deformed, metamorphosed and displaced into disorder totally or partially. They are the disorder parts in orogenic belts. Melange is the solo studied object of non- Smithian stratigraphy. The slices (blocks) in melange is one of the basic constituents of non- Smithian strata, and also one of the basic units in the non-Smithian mapping. The slices used in this paper refer to blocks divided by small-scale tectonic boundaries and have certain constitutes. Superslices used in this paper refer to a set of slice association with similar tectonic deformation bounded by large-scale tectonic mixing.
     2. Guided by non-Wilson cycle theory generalized by Yin et al. (1998), the forming of non- Smithian strata are expounded at theory level. The paleo-oceans in orogenic belts were rather complex, especially the oceans in Chinese paleo-Tethys, most were archipelagos, which were broad (up to several latitudes) and unclean, with many archipelagos, a mosaic of seas and lands including rifted blocks and valleys, seaways, microplates and micro-oceans, and island arcs, seamount and marginal seas. The archipelagic oceans experienced polystage opening, closing and soft-collision during its ocean-basin transitions, so the strata in orogenic belt devolved from non-Wilson cycle usually underwent polystages strong tectonic mixings, inducing the geologic bodies of various episodes, stages of the same episodes, tectonic facies, paleogeographic units and tectonic levels patching and non-sequence imbricating one another in short distance.
     3. A set of systematic theory pertaining to the setting, division, terms, defining principles and practice were put forward:“four-dimension splitting-converging model of tectonic slices”and“material, age, facies, location and process of deformation and metamorphism”analysis method. 1∶250 000 Dongi Conag melange region are divided into two belts, two sub-belts, and 14 superslices, which are further divided into 15 slices according to their lithology, and are analyzed for“constituents, age, facies, location and process of deformation and metamorphism”.
     4. Important advance are made in the date of slices and superslices: (1) Abundant acritarch and a few radiolarian fossils are collected in the“barren strata”formed by epi-middle metamorphic slices at Gouli, Longshigenggongwu, thus provide data evidence for this set of strata. A series of isotopic dating data (14) showed that the date are between 1 000 Ma and 500 Ma, close to that of the fossils. (2) Amaranth radiolarian silicate close connected with ophiolite slices are discovered in“Ma’erzheng Fm.”along Huashxia—Long Stone Hill for the first time, and abyssal Early Permian radiolarians are got, thus provide important reference date for the forming age of ophiolite in this belt. (3) The slices constituting Buqingshan ophiolite melange belt are detailed studied on biostratigraphy, getting abundant foraminifers, fusulinida, coral, spongiaria, calcareous algae, sporopollen and trace fossils. The geologic age, paleoecology and paleoenvironment of the relative slices (blocks) are discussed from biotic standpoint for the first time. The detail biotic features of the melange provide abundant and detail data for the understanding of the forming of A’nimaqing orogenic belt.
     5. Based on thorough study on the east part of Eastern Kunlun Orogenic belt, a valuable try by using tectonic facies to analyze non- Smithian strata are took. Dominated by the evolution time of the orogenic belt, according to the paleogeographic units, basins and formation occurred in different stages and locations, the tectonic facies of 1∶250 000 Dongi Conag sheet are divided into 7 facies types and 21 facies. The forming, constituent and evolution of the east part of Eastern Kunlun orogenic belt are detail uncovered by using tectonic theory and method.
     6. Pre-Jinning—Indo-sinian polystage ocean-continent transitions and the forming of non-Smith strata are studied. Our study show that the ophiolites in the fault were the products of polycycle dispersal and convergence, and there existed at least three periods, i.e., Middle Proterozoic, Caledonian and Hercynian. The melange belt occurred not only near the fault, but the whole south part of the Eastern Kunlun, which is the integration of mixed materials formed by tectonic slices of different origins, stages and deformations. The tectonic melange are interfingered by slices of different stages, so come the name“Compound Melange Belt of the South Kunlun”, which can be subdivided into northern ophiolite melange belt and southern melange belt according to the lithology of the basements and the evolution. The northern ophiolite melange belt contains various ophiolites of different times, and at least experienced three ocean-continent cycles, i.e., pre-Jinning cycle, Jinning—Caledonian cycle and Hercynian —Indo-sinian cycle. The structure and evolution of the south tectonic melange are relative simple, and its basement, Middle Proterozoic metamorphosed diorite (Kuhai complex), is relative younger. Kuhai complex is remarkable different from the northern Baishahe Gr. or Xiaomiao Gr. in metalithology, so it is an isolated block. The outer of the basement are active Early Carboniferous-Middle Permian sediments. The Late Paleozoic sediment areas are related to the Hercynian A’nimaqing ocean in genesis, and both are branch troughs. Upper Permian—Middle Triassic (including Gequ Fm., Hongshuichuan Gr. and Naochangjiangou Fm.), which are representatives of foreland accumulation after collision, angular contacting the underlying strata. It seemed the south tectonic melange has only undergone the Hercynian—Indo-sinian ocean—continent transition from the sedimentary formation, but a few Caledonian syntectonic granites are found in the basement, which showed the Caledonian movement has also left some traces in this subzone. The A’nimaqing Melange consists of Buqingshan—Huashxia superslice, Manite superslice and allochthonous nappe superslice. The A’nimaqing Melange bordered the south melange belt on the north with the NWW South Kunlun Fault extending along Dongi Conag Lake—Hongshuichuan—Alag Lake, and the Bayan Har block on the south with NWW Long Stone Hill Fault. The Buqingshan—Huashxia superslice is complex, including Middle Proterozoic diorite-facies Kuhai melange slice, ophiolite slice of different times, Early Permian—Early Triassic flysch wedge, basic-acid volcanic slice and carbonate slice and Late Triassic—Early Jurassic Yangqu Fm. terrestrial clastic slice. The ophiolites can be divided into two groups at least; one lies in the Kuhai complex and intersected by Caledonian island granite, which may be attributed to Caledonian or pre-Caledonian ophiolite association; the other lies in the Early Permian—Early Triassic Ma’erzheng Fm. of Buqingshan Gr., including ultramafic rock, basalt, diabase dike and pelagic siliceous-argillaceous association, and Early Permian radiolarian are found in the silicates, which reflect that the time is Hercynian. Manite superslice is relative simple, dominated by the flysch wedge, ophiolite, carbonate slice of Ma’erzheng Fm. of Buqingshan Gr., lacking deep metamorphosed slice. The fossils in the two slices show mixture of Permian and Triassic, but the pelagic silicate in the Buqingshan—Huashxia slice dated as Early Permian, so the associated ophiolite should be Early Permian. So the Buqingshan—Huashxia superslice developed a little earlier than the Manite slice, and the zoned ophiolite in them may due to the southward retrogression subduction, accretion and mixing.
     One important attribution of International Stratigraphic Guide lies in that it encourages the study on the multiple classification and correlation of the strata. The strata can be divided into as many kinds as the dividing standards, though the dividing limits are not consistent. Like other branches of stratigraphy (evento-, geneto-, econo-, tectono- and sequence stratigraphy, and so on) appeared successively in recent twenty years, non- Smithian stratigraphy is aimed to deeply demonstrate the characteristics of various melanges in the orogenic belt from four-dimension splitting-converging of tectonic slices. Obviously, the standpoint of this new branch is different from that of the other branches, yet their aims are the same, which is to demonstrate the colorful features of the strata. Therefore, non-Smithian stratigraphy is not excluding the other branches, but an important supplement for them, especially for the tectonostratigraphy. They are twin sister branches, and they are the two keys to uncover the disorder or partially order strata in the orogenic belt. Tectonostratigraphy emphasize on the analysis of the patterns and episodes of the deformation, while non-Smithian strata stressing on understanding of the constituent, original time, environment, paleo-tectonic settings and process of deformation and metamorphism of various slices through the four-dimension splitting-converging of the tectonic slices.
引文
1. 王乃文、郭宪璞、刘羽,非史密斯地层学简介,地质论评,1994. 40 (5): 482
    2. 王玉净、李家骧,二叠纪放射虫 Follicucullus bipartitus-F. charveti 组合带的发现及其地质意义,微体古生物学报,1994.11(2):201-212
    3. 王东安、陈瑞君,雅鲁藏布缝合带硅岩的地球化学成因标志及其地质意义,沉积学报,1995,13(1):27-31
    4. 王国灿、张克信、梁斌等,东昆仑造山带结构及构造岩片组合,地球科学—中国地质大学学报,1997. 22 (4): 352-356
    5. 王国灿、梁斌、张天平等,造山带非史密斯地层的构造复位—东昆仑造山带研究实践,中国区域地质,1998(增刊): 25-30
    6. 王永标、张克信、龚一鸣等,东昆仑地区早二叠世生物礁带的发现及其意义,科学通报,1998. 43 (6): 630-632.
    7. 王希斌 、鲍佩声、戎合,中国蛇绿岩中变质橄榄岩的稀土元素地球化学,岩石学报,1995, 增刊:24-41.
    8. 王清晨. 走向九十年代的 Melange 研究. 国外地质,1990,4
    9. 王秉璋、张智勇、祁生胜等,秦昆接合部造山带非史密斯地层类型及特征的初步认识,中国区域地质,1998.增刊:74-79
    10. 中英青藏高原综合考察地质报告. 科学出版社, 1985
    11. 白文吉、周美付,洪古勒楞蛇绿岩中斜长石的化学成分特征,矿物岩石,1989,9,1 ,7-14
    12. 古凤宝., 东昆仑地质特征及晚古生代――中生代构造演化.青海地质.1994.(4):4-13
    13. 田军、龚一鸣、梁斌,东昆仑造山带二叠—三叠纪遗迹化石,沉积学报,1999
    14. 邓万明,藏北蛇绿岩中尖晶石类矿物的化学成分,地质科学,1988,2,121-127
    15. 冯庆来,放射虫古生态的初步研究,地质科技情报,1992. 11(2). 41-45
    16. 冯庆来,造山带区域地层学研究的思想和工作方法,地质科技情报,1993. 1(3): 51-56
    17. 冯庆来、刘本培,滇西南二叠纪放射虫,地球科学—中国地质大学学报,1993.18(5):553-564
    18. 冯庆来、刘本培、方念乔,造山带断片型地层层序恢复实例剖析,地质科学. 1997. 32(3): 318-324
    19. 刘家军,郑明华, 热水沉积硅岩的地球化学,四川地质学报,1993,13(2): 110-118
    20. 刘增乾, 徐宪, 潘桂棠等. 青藏高原大地构造与形成演化. 地质出版社, 1990
    21. 刘椿。古地磁学导论,北京:科学出版社,1991,44-73
    22. 吉磊,稀土元素、海相硅质岩沉积环境的有效指标,地质论评,1992, 38(5):444-448
    23. 朱云海、陈能松、王国灿等,东昆中蛇绿岩中单斜辉石、角闪石矿物成分特征及岩石学意义,地球科学,1997, 22(4):363-368
    24. 朱云海、张克信等,东昆仑造山带不同蛇绿岩带的厘定及其构造意义,地球科学—中国地质大学学报,1999,.24 (2),134-138
    25.朱云海,Pan Yuanming,张克信等,东昆仑造山带蛇绿岩矿物学特征及其岩石学成因讨论,矿物学报,2000,2(待刊)
    26. 任纪舜, 中国大陆的组成、结构、演化和动力学.地球学报,1994,(3—4):5-13
    27. 任纪舜、牛宝贵、刘志刚,软碰撞、叠覆造山和多旋回缝合作用,地学前缘,1999,6(3):85-93
    28. 许靖华,大地构造和沉积作用,北京:地质出版社,1985
    29. 许靖华、崔可锐、施央申,一种新型的大地构造相模式和弧后碰撞造山,南京大学学报,1994,30(3):381- 389
    30. 许靖华、孙枢、王清晨等,中国大地构造相图,科学出版社,1998
    31. 许志琴,侯立玮,王宗秀. 中国松潘—甘孜造山带的造山过程. 地质出版社,1992
    32. 杜远生、颜佳新、韩欣,造山带沉积地质学研究的新进展,地质科技情报,1995. 14(1): 29-34
    33. 杜远生、盛吉虎、丁振举,造山带非史密斯地层及其地质制图,中国区域地质,1997. 16(4):439-443
    34. 杜远生、张克信,关于非史密斯地层学的几点认识,地层学杂志,1999.23(1):78-80
    35. 李昌年,火成岩微量元素岩石学,武汉:中国地质大学出版社 ,1986
    36. 李曙光、刘德良、陈移之等, 大别山南麓含柯石英榴辉岩的 Sm-Nd 同位素年龄. 科学通报,1992,(4):364-349
    37. 吴浩若. “构造杂岩”及其地质意义—以西准噶尔为例。地质科学,1991,1,1~8
    38. 吴浩若、咸向阳、邝国敦,广西南部晚古生代放射虫组合及地质意义,地质科学,1994.29(4):340-345
    39. 张以弗、郑健康,青海可可西里及邻区地质概况。地震出版社,1994
    40. 张国伟,秦岭造山带的形成及其演化,西北大学出版社,1988
    41. 张克信、陈能松、王永标等,东昆仑造山带非史密斯地层序列重建方法初探,地球科学—中国地质大学学报,1997.22 (4), 343-346
    42. 张克信、黄继春、张天平等,东昆仑阿尼玛卿混杂岩沉积地球化学特征,地球科学—中国地质大学学报,1999.(2)
    43. 张克信、黄继春、殷鸿福、王国灿等,1999, 放射虫等生物群在非史密斯地层研究中的应用—以东昆仑阿尼玛卿混杂岩为例,中国科学(D 辑),29(6):542-550
    44. 张雪亭、任家琪,青海巴颜喀拉山群非史密斯地层特征,中国区域地质,1978. 增刊:18-24
    45. 张旗,论造山带中超镁铁岩的成对分布,岩石矿物学杂志,1987, 6(2)
    46. 张旗,中国蛇绿岩研究中的几个问题,地质科学,1992,11(增刊),139-146
    47. 张雯华,丛柏林,一种简单的基性-超基性岩岩石化学研究方法,科学通报,1976,(4),176-183
    48. 单文琅, 宋鸿林, 傅昭仁等. 构造变形分析的理论、方法和实践. 武汉: 中国地质大学出版社,1995
    49. 周国庆,蛇绿岩的概念及其演变,见张旗主编,蛇绿岩与地球动力学研究,北京:地质出版社,1996,
    15-20
    50. 邱家骧,廖群安,中国东部新生代玄武岩中单斜辉石巨晶的主要特征及成因信息,岩石矿物学杂志,1987,l6 ,56-64
    51. 邱家骧,林景仟,岩石化学,地质出版社,1991
    52. 青海省地质矿产局,青海区域地质志,地质专报(一),区域地质(第 24 号),北京:地质出版社,1991
    53. 青海省地质矿产局,青海岩石地层,武汉:中国地质大学出版社,1996
    54. 青藏高原岩石圈结构构造和形成演化——亚东—格尔木岩石圈地学断面综合研究. 中华人民共和国地质矿产部地质专报,五、构造地质地质力学,第 20 号,1996
    55. 罗建宁,大陆造山带沉积地质学研究的几个问题,地学前缘,1994. 1 (1-2): 177-183
    56. 杨式溥,古生态学及遗迹化石学,中国地质大学(北京),1983
    57. 杨式溥,青海果洛、玉树地区二叠纪和三叠纪复理石相遗迹化石,沉积学报,1988. (3): 1-11
    58. 杨式溥, 古遗迹学.北京:地质出版社,1990,134-160,图版 1-图版 14
    59. 杨巍然,杨森楠. 造山带结构与构造演化的现代理论和研究方法——东秦岭造山带剖析。中国地质大学出版社,1991
    60. 姜春发、杨经绥、冯秉贵等,昆仑开合构造,北京:地质出版社,1992
    61. 郑健康,东昆仑区域构造的发展演化,青海地质,1992,(1):15-25
    62. 郑剑东.,青藏高原形成、演化及动力学研究现状. 地质科技情报, 1993, 12(1): 11~16
    63. 陈克强、汤家富主编,构造地层单位研究。中国地质大学出版社,1995。92
    64. 钟大赉.,大型走滑断层—碰撞后陆内变形的重要形式。科学通报,1989,34(7),526~529
    65. 路凤香,地幔岩石学,中国地质大学出版社,1989,120-131
    66. 高延林, 肖序常, 常承法等. 青藏高原及邻区构造单元划分及地质特征. 地质出版社, 1988
    67. 高延林,吴向农,左国朝. 东昆仑山清水泉蛇绿岩特征及其大地构造意义. 中国地质科学院西安地质矿产研究所所刊,1988,21:17~28
    68. 徐跃通,信江盆地石炭纪硅质岩地球化学特征及沉积环境意义,地质科学,1998, 33(1): 39-49
    69. 侯立玮、胡世华,构造岩片填图法在川西造山带 1:5 万区调中的初步实践,中国区域地质,1995. (1): 77-80.
    70. 侯光久、朱云海、张天平等,东昆仑造山带托索湖地区玄武岩岩石地球化学特征及构造环境分析,中国区域地质,1998,增刊:31-37
    71. 郭宪璞、刘羽、王绍文,非史密斯地层学的试验研究,地质科学研究论文集,北京:中国经济出版社,1996. 11-19
    72. 殷鸿福等,中国古生物地理学,武汉:中国地质大学出版社,1988
    73. 殷鸿福、黄定华,早古生代镇淅地块与秦岭多岛小洋盆的演化,地质学报,1995. 69(3): 193-204
    74. 殷鸿福、彭元桥,秦岭显生宙古海洋演化,地球科学—中国地质大学学报,1995. 20(6): 605-611
    75. 殷鸿福、张克信,东昆仑造山带的一些特点,地球科学—中国地质大学学报,1997.22(4),339-342
    76. 殷鸿福、张克信、王国灿等,非威尔逊旋回与非史密斯方法—中国造山带研究理论与方法,中国区域地质,1998 (增刊):1-9
    77. 殷鸿福, 张克信, 1998, 中央造山带的演化及其特点, 地球科学,23 (5): 437-442
    78. 龚一鸣、杜远生、冯庆来等,关于非史密斯地层的几点思考,地球科学——中国地质大学学报,1996. 21 (1): 19-26
    79. 龚一鸣,杜远生,冯庆来等。造山带沉积地质与圈层耦合。中国地质大学出版社,1996, 146
    80. 黄汲清, 中国主要构造地质单位. 北京:地质出版社,1954
    81. 黄继春、张克信、朱艳明等,东昆仑造山带海西一印支期构造古地理演化的古地磁证据,地球科学—中国地质大学学报,1999
    82. 解玉月,昆中断裂东段不同时代蛇绿岩特征及形成环境,青海地质,1998,1,27-35
    83. 冀六祥、欧阳舒,青海中东部布青山群孢粉组合及其时代,古生物学报,1996.35 (1):1-25
    84. 潘桂棠等. 青藏高原新生代构造演化. 地质出版社, 1990
    85. 潘桂棠、陈智梁、李兴振等,东特提斯地质构造形成演化,北京:地质出版社,1997
    86. A.M.Celal Sengor 著,丁晓等译.板块构造学与造山运动-特提斯例析.上海:复旦大学出版社,1992
    87. A.G Sylvester, Strike-slip faults, Geological Society of American, 1988~1989, Centennial Article, 205~242
    88. Adachi M., Yamamato K., Suigiski R. Hydrothermal chert and associated siliceous rock from the Northem Pocific: Their Geological significance as indication of ocean ridge activity. Sedimentary Geology, 1986, 47(1-2): 125-148
    89. Arth, J.G., Behaviour of trace elements during magmatic processes- a summary of theoretical models and their applications. J.Res.U.S.Geol.Surv., 1976,4,41-47
    90. Bhatia M. R. Rare earth element geochemistry of Austrilian Paleozoic graywackes and mudrocks: Provence and tectonic control. Sedimentary Grology, 1985, 45(1-2): 97-113
    91. Bhatia M. R. and Crook K. A. W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol. 1986,92:181-193
    92. Bloomer, SH and Hawkins, JW, Gabboric and ultramafic rocks from the Marine Trench: an island arc ophiolite, in: The tectonic and geologic evolution of Southeast Asian seas and islands, Part 2, Am. Geophy. Union .,Washington, D.C., 1983,294-317
    93. Bostrom K. Provenance and accumulation rates of opsaline silica, Al, Fe, Ti, Mn, Cu, Ni and Coin pacific pelagic sediment. Chemical Geology, 1973, 11(1-2): 123-148
    94. Cabanis, B. and Lecolle, M., Le diagramme La/10-Y/15-Nb/8 : un outil pour la discrimination des series volcaniques el la mise en evidence des processus de melange et/ou de contamination crustale ,C .R. Acad. Sci, Ser.Ⅱ., 1989, 309,2023-2029
    95. Casey, JF, Elthon, DL, Siroky, FX, et al, Geochemical and geological evidence bearing on the origin of the Bay of Islands ophiolite and Coastal complex ophiolites of western Newfoundland. Tectonphysics, 1985,116,1-40
    96. Catalano K., Di Stefan P., Kozar H., Permian circumpacific deep-water faunas from the Western Tethys(Siciy, Italy)—new evidences for the position of the Permian Tethys. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1991.87:75-108
    97. Chopin C..Very-high-pressure metamorphism in western Alps:implications for subduction of continental crust. Phil. Trans. R. soc. Lond. 1987,(321A):83-179
    98. Coleman R G. Pyenccretion tectonics and metamorphism of ophiolites. Ofioliti,1984, 9:205~222
    99. Coleman R G. The diversity of ophiolites. Geologic en Mijnbow ,1987,16:43~55
    100. Coleman, RG, Ophiolite, Ancient Oceanic Lithosphere? Springer-Verlag, New York, 12, 1977,229
    101. Coleman, RG, The diversity of ophiolites, Geol.Mijnbouw, 1984,63,141-150
    102. Dias R, Ribeiro A. Contriiction in a transpression regime: example in the Iberian branch of the Ibero-American arc. J. Struct. Geol, 1994,16:1543~1554
    103. Dick, HJB., and Bullen,T, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas ,Contrib. Mineral. Petrol., 1984, 86, 54-70
    104. Flores,G.. Discussion Proceedings of the 4th world petroleum conference. 1955,I/A/2:121-122
    105. French W.J., et al , Calculation of temperature of crystallization of silication from basalt melts, Miner . Mag., 1981, 44,19-26
    106. Fujimaki, H, partition coefficients of Hf, Zr and REE between zircon, apatite and liquid, Contrib. Mineral. Petrol.,1986,94,42-45
    107. Geophysic. 1989,(13):1-368. Oxford: Oxford Science Publications
    108. Hantzschel.Trace fossils and problematica.Treatise on Invertebrate Paleontology.Part.W.Geol.Soc.Amer,and Univ,Kansas Press,1975,W35-W137
    109. Haskin,,LA, Haskin,MA, Frey,FA,et al ,Relative and absolute terrestrial abundances of the rare earths. In:Ahrens,LH.(ed.),Origin and distribution of the elements,vol.1. Pergamon, Oxford,1968,889-911
    110. Hart, SR, A large-scale isotope anomaly in the southern hemisphere mantle ,Nature, 1984, 309, 753-757
    111. Hawbin, J.W., and Evans, C.A., Geology of the Zambales Ranges, Luzon, Philippine Islands: Ophiolite derived from an island arc-back basin pair, in: The tectonic and geologic evolution of southeast. Asian seas and islands, Part 2, Am. Geophy. Union , Washington, D. C., 1983,95-123
    112. Hedge, CE., Strontium isotopes in basalts from the Pacific ocean basin , Earth Planet Sci. Lett .,1978,38,88-94
    113. Horton,J.W.Jr(eds.). Melanges and Olistostromes of the U.S. Appalachians. Geological Society of American Special Paper 228, 1989.
    114. Hsu K.J..Principles of melange and their bearing on the Franciscan-knoxville paradox. Geol. Soc. Amer. Bull.,1968,(79):1063-1074
    115. Hsu K.J.,Melanges and their distinction from olistostromes, in Dott,R.H., and Shaver,R.J.,eds., Modern and ancient geosynclinal sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication 1974 (19): 321-333
    116. Irvine TN and Barager, WRA., A guide to the chemical classification of the common volcanic rocks, Can., J. Earth Sci, 1971,523-548;
    117. Ishiga H., Paleozic radiolarians. In: Ichikawa k. et al. eds. Pre-cretaceous Terranes of Japan. Osaka: Osaka City Univ. 1990. 285-295
    118. Jason B . Saleeby. Tectonic significance of serpentinite mobility and ophiolitic melange. Their Nature, Origin and Significance. Geological Society of American Special Paper 153~168, 1984
    119. Jenner, GA, Dunning,GR, Malpas, L, et al, Bay of Islands and Little Port complex, revisited: age, geochemical and isotopic evidence confirm suprasubduction-zone origin ,Can.J. Earth. Sci, 1991,28, 1635-1652
    120. Karson, Variations in structure and petrology in the Coastal Complex, Newfoundland: anatomy of an oceanic fracture zone, In: Ophiolites and oceanic lithosphere .Edited by Gass, IG, Lippard, SJ, and Shelton, AW, Blackwell, London, 1984,131-144
    121. Knipe R J . Deformation mechanism-recognition from natural tectonices. Jour. Stru. Geol, 1989, 11(1/2):
    127~146
    122. Le Bas ,MJ, et al., A chemical classification of volcanic rocks based on the total alkali-silica diagram, J.Petrol., 1986,27,745-750
    123. Le Roax ,AP., Dick, HJB, Brlank, AJ, et.al, Geochemistry , mineralogy ,and petro-genesis of lavas erupted along the southwest Indian Ridge between the Bouvet triple junction and 11 degrees east , J.Petrol., 1983,
    24, 267-318
    124. Loren A. Raymond and Tom Terrnova. Prologue: The melange problem—a review. Their Nature, Origin and Significance. Geological Society of American Special Paper 1~6, 1984
    125. Loren A. Raymond. Classification of Melenges. Their Nature, Origin and Significance. Geological Society of American Special Paper 7~20, 1984
    126. Masuda,A, Nakamura, N, and Tanaka,T, Fine structures of mutually normalised rare-earth patterns of chondrites. Geochim.Cosmochim.Acta, 1973, 37,239-248
    127. McDonough, WF, Stosch, HG, Ware, NG, Distribution of titanium and the rare earth elements between peridotite minerals, Contrib. Mineral. Petrol , 1992 , 100 , 321-328
    128. McDonough, WF, Sun. S, Ringwood, AE, et al., K, Rb, and Cs in the earth and moon and the evolution of the earth’s mantle. Geochim Cosmochim Acta ,Ross Taylor Symposium volume,1991
    129. Meschade , M, A method of discrimination between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram , Chem. Geol.,1986,56,207-218
    130. Miyashiro, A, Classification, characteristics and origin of ophiolites , J. Geol.,1975, 83,249-281
    131. Moore J.C . 增生杂岩体的构造样式与变形组构. 地质科技动态,1985,24~27
    132. Muleul R. Bhatia,雷建喜译,澳大利亚古生代杂砂岩和泥岩的稀土元素地球化学特征—物源和大地构造的控制作用,地质科学译丛,1987,(3):59-67
    133. Murray R. W, Brink M. R. B. 美国加利福尼亚弗郎西斯杂岩和蒙特雷群中燧石的稀土元素、主元素和微量元素:海相细粒沉积物中稀土元素来源的确定,董维全、张倩译,地质地球化学,1993,(3):45-56
    134. Murray R. W., Brink M. R. B., Jones D. L. et al. Rare earth element as indicators of different marine depositional environment in chert and shale, Geology, 1990, 18(3): 268-271
    135. Nie, S., Yin, A., Rowley., D.B.etc..Exhumation of the Dabie Shan ultra high-pressure rocks and and accumulation of the Songpan-Ganzi flysch sequence,central China. Gelolgy,1994,(22): 999-1002
    136. Pearce , JA, Basalt geochemistry used to investigate past tectonic environment on Cyprus , Tectonophysics ,1976,25,41-67;
    137. Pearce , JA, and Cann , JR, Tectonic setting of basic volcanic rocks determined using trace element analyses , Earth Planet .Sci.Lett., 1973,19.290-300
    138. Pearce, JA, Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C.J and Norry M.J. (eds),Continental basalts and mental xenoliths . Shiva, Nantwich , 1983, 230-249
    139. Pearce, JA, Trace element characteristics of lavas from destructive plate boundaries ,In : Andesites ,edits by Thorpe, RS, 1982,525—548
    140. Pubellier M., Quebral R., Rangin C.,etal., The Mindanao collision zone: a soft collision event within a continuous Neogene strike-slip setting. J Southeast Asian Ear Sci, 1991, 6(34):239-248
    141. Rampone, E, Bottazzi ,P , Ottolini ,L , Complementary Ti and Zr anomalies in ortho- pyroxene and clinopyroxene from mantle peridotites, Nature ,1991,354,518-521
    142. Rampone, E, Hofmann ,AW, Piccardo,GB, et al, Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride , N. Italy ) , Contrib. Mineral. Petrol., 1996 ,123,61-76
    143. Raymond,L.A., Tectonite and Melange-A Distinction, Geology, 1975, 3: 7-9
    144. Raymond,L.A.(eds.). Melanges: Their Nature, Origin, and Significance. Geological Society of American Special Paper 198, 1984.
    145. Rittmann , A , Note to contribution by V. Gottini on the “Serial character of the volcanic rocks of Pantelleria”, Bull .Volcanol .,1970,33,979-981;
    146. Roberton,A.H.F., Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region. Earth-Science Reviews,1994,(37):139-213.
    147. Salters, VJM and Shimizu, N, Worldwide occurrences of HFSE-depleted mantle, Geochim. Cosmochim. Acta, 1988,52,2177-2182
    148. Sanderson D J, Marchini WRD Transpression . J. Struct. Geol, 1984, 6: 449~458
    149. Saunders , AD,Norry,MJ, and Tarney,J, Origin of MORB and chemically depleted mantle reservoirs :trace element constraints . J. Petrol ., Special Lithosphere Issue ,1988,415-445
    150. Seilacher A., Bathymetry of trace fosslils. Marine Geol. 1967. (5): 413-428
    151. Serri, G; Hebert, R; Hekinian, R, Chemistry of ultramafic tectonites and ultramafic to gabbroic cumulates from the major oceanic basins and the Northern Apennines ophiolites. Ofioliti. 1985 ,10, 63-76
    152. Seyler M and Bonatti E. Na 、AlⅣ and AlⅥ in clinopyroxenes of subcontinental and suboceanic ridge peridotites: A clue to different melting processes in the mantle? Earth.Planet.Sci.Letts., 1994 ,122(3):281~289
    153. Simonen,A, Stratigraphy and sedimentation of the Svecofennidic Early Supracrustal rocks in South-Western Finland. Bull.Comm.Geol.Finland,1953,160,64
    154. Song, Y, and Frey, FA, Geochemistry of peridotite xenoliths in basalts from Hannuoba eastern China: implications for sub-continental mantle heterogeneity, Geochim. Cosmochim. Acta, 1989,53, 97-114
    155. Sun,SS, Chemical composition and origin of the earth’s primitive mantle, Geochim. Cosmochim. Acta. 1982,46, 179-182
    156. Suzuki K. Grain-boundary enrichment of incompatible elements in some mantle peridotites. Chem. Geol., 1987,63:319-334
    157. Taylor, SR and McLennan SM ,The continental crust : its composition and evolution ,1985 Blackwell, Oxford
    158. Tim Byrne. Early deformation in melange terranes of the Ghost Rocks Formation , Kodiak Island, Alaska. Their Nature, Origin and Significance. Geological Society of American Special Paper 21~52, 1984
    159. Verfalvy,V, et al , Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the north arm mountain massif , Bay of Islands ophiolite , Newfoundland : implications for the genesis of boninitic and related magmas ,Can.Mineralogist , 1997, 35, 543-570
    160. Yang, J.S., Robinson, PT ,Jiang, C.F., et al ., Ophiolites of the Kunlun Mountains, China and their tectonic implications, Tectonophysics , 1995,258,215-231
    161. Yin Hongfu. Tethys-an archipelagic ocean model. Pro.30th Int’l.Congr.. 1997,(11):91-97.
    162. Yoder, H.S., Generation of Basaltic magma, National Academy of Science, Washington, D.C., 1976,265;
    163. Yumul,GP, Varying mantle sources of supra-subduction zone ophiolite :REE evidence from the Zambales Ophiolite Complex,Luzon,Philippines,Tectonophysics,1996, 262, 243-262
    164. Zhu Yunhai, Pan Yuanming, Zhang Kexin et al, Ophiolites and tectonic evolution of East Kunlun orogenic belt, In Proceedings of the International Conference on Pangea and the paleozoic-transition, Edit by: Yin HF and Tong JN, 1999,174-175
    165. Zhang Kexin, Huang Jichun, Yin Hongfu, Wang guocan et al., 2000, Application of radiolarians and other fossils in non-Smith strata—Exemplified by the A’nyemaqen mélange belt in East Kunlun Mts. SCIENCE IN CHINA(Series D), 43(4):364-374.
    166. Zindler A, and Hart SR, Chemical geodynamics .Annu.Rev.Earth Planet.Sci., 1986, 14, 493-571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700