煤与瓦斯突出失稳蕴育过程及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭作为我国的主体能源,煤与瓦斯突出事故一直是限制其安全高效开采的因素之一。近年来突出防治技术的发展和煤矿安全需求的增强都对煤与瓦斯突出机理研究提出了更高的要求,以综合假说为基础的定性化认识受限于对针对性、科学化的防突技术指导,对突出机理定量化研究有待加强。
     本文运用岩石力学、渗流力学、吸附理论等理论方法,基于双重孔隙介质模型建立了煤与瓦斯突出发动之前煤岩—瓦斯演化控制方程,以有效应力、吸附变形及渗透性演化等耦合项来表明瓦斯场—煤岩应力应变场之间相互作用,并通过突出能量条件来表征突出倾向性,分析了瓦斯、地应力、煤体力学性质对突出能量的影响及突出能量分布和演化对突出蕴育、失稳的控制作用。研究获得的结论主要在以下几个方面。
     (1)煤中微孔是控制煤体吸附性能的主要因素。在煤孔隙孔径较小时(气体分子直径量级)孔壁吸附势会发生重叠,对瓦斯吸附力增强,在很小压力下即可达到吸附饱和,即减小了Langmuir压力。因此,不仅是煤最大吸附能力,Langmuir压力同样受微孔发育影响,特别是孔径较小的微孔。由于变质程度增加煤中微孔发育,Langmuir压力随煤阶提高呈下降趋势。
     (2)根据屈服煤体峰后渗透性随软化模量增长规律,结合双重孔隙介质渗透性模型建立了采掘过程中扰动煤体的渗透性演化方程。对采掘后前方煤体渗透性进行的研究表明,采掘扰动后煤体渗透性具有分区分布特性,从煤层深部原始地带至煤壁渗透性依次经过降低区、升高区和骤增区,其分区分布特征是与煤体应力分带分布形成机制密切相关的。由于渗透性分区性,煤层瓦斯分布也具有分区特点,煤壁附近高渗低压煤体构成了防止煤体瓦斯突出的安全带。之后分析了不同赋存形式瓦斯对煤体变形破坏的影响,除游离瓦斯对煤体受力有孔隙压力的影响外,煤中吸附态瓦斯的变化也会改变煤体受力状态,影响到煤体的屈服破坏,排放瓦斯后煤体强度的增加能降低突出发生的危险性。
     (3)大型突出案例表明突出地点往往具有瓦斯局部异常,富存了大量瓦斯。而富集区周边存在环状低渗带是瓦斯得以长期保存的一个条件。在化简为一维流动模型后,进一步分析表明低渗带渗透性大小及宽度是影响高压瓦斯保存的主要因素。低渗带内存在的高瓦斯压力及压力梯度使得进入低渗带后突出可能性大大增强,所保存的高压瓦斯能够为突出灾害提供巨大的能量,形成了大型突出的条件。
     (4)煤体强度破坏及煤—瓦斯系统积聚能量超过其储存能力是系统失稳发动突出的条件,因此可以通过突出潜能积聚程度来分析煤体突出危险性。基于此,提出了以突出发动潜能与突出发动过程耗能之比作为失稳判据判断突出倾向性。并通过分析煤体突出发动潜能的积聚形式及发动过程耗散途径,建立了相应的计算公式。
     (5)瓦斯、地应力及煤体力学性质等突出因素是突出能量的主要影响因素。瓦斯条件是突出发动能量积聚的主要影响因素,煤层所受构造应力同样对突出能量积聚有重要影响,增加了煤体突出倾向。煤体力学性质对突出影响主要表现为煤体强度及破碎功的影响。
     (6)通过突出模拟实验验证了瓦斯及应力荷载是煤体突出潜能的主要来源,对突出能否发动及突出规模具有决定作用。另外,可通过不同突出潜能实验条件,根据其突出发动情况,获得煤体失稳突出所需的能量,从而对煤—瓦斯系统能量保持能力进行研究。
     (7)井下开采过程中由于煤层条件非均性,采掘面前方破坏区煤体突出潜能及能量储存能力的分布也是随煤层条件而变化的。在遭遇低透气性、高瓦斯、高应力、构造煤等条件时,破坏区煤体积聚能量超出其能量储存能力,系统能量处于不平衡状态,释放能量从而造成突出,因此突出能量分布及其演化对突出的发生具有控制作用。
As the main energy resource in China, coal and gas outburst always is a main factorrestricting the safe and high-efficiency production of coal. As the technology development ofoutburst control and the increased demand of coal mines for security, higher requirement forcoal and gas outburst mechanism is presented. The qualitative understanding of outburstbased on comprehensive hypothesis is limited to guide the control technology pointedly andspecifically. The quantitive research of outburst mechanism should be enhanced.
     Using rock mechanics, mechanics of flow through porous media and adsorption theory,the governing equations of coalmass-gas evolution before outburst initiation were establishedbased on double porosity media model. Coupling terms such as effective stress,adsorption-induced deformation and permeability, showed the interaction between coal gasfield and coal/rock stress-strain field. With the energy for outburst initiation used forrepresenting the outburst tendency, the effect of coal gas, ground stress and mechanicalproperties of coal on energy for outburst initiation and the effect of distribution and evolutionof energy for outburst initiation on coal and gas outburst were analyzed. The main researchwork were listed in the following.
     (1) Micropore in coal is the dominant factor of adsorption property. When the poreaperture is small, with the magnitude of gas molecular diameter, the adsorption potential ofpore wall would overlap. The adsorption force increases in this case, and the adsorptionreaches saturation at low gas pressure, meaning low Langmuir pressure. Therefore, besidesthe maximum adsorption capacity of coal, the Langmuir pressure is affected by themicropores as well, especially the small ones. Due to the micropores increase as the coal rank,Langmuir pressure shows the declining trend as the coal rank increase.
     (2) After the study of permeability increase with the softening modulus after stress peakof coal mass, combing the permeability model of double porosity medium the permeabilityevolution equation in the process of excavation was established. The study of permeability infront of working face showed the zonal distribution characteristics that from the original zoneof coal seam to the coal wall the permeability changed though the decrease zone, increasezone and surge increase zone. This characteristics was closely related to the stress zonaldistribution characteristics. As the permeability of coal, the coal gas was zonally distributed aswell. The coal mass near the coal wall had high permeability and low gas content, as a safetybelt preventing the outbursts. And then the effect of different forms of coal gas ondeformation and failure of coal was studied. Besides the effect of pore pressure from the free gas, the change of adsorbed gas affected the stress state and failure of coal mass. The strengthenhancement after coal gas discharging could reduce the outburst risk.
     (3) From the perspective of permeability distribution, the formation of large-scaleoutburst was studied. Abnormal abundance of coal gas occurs around the location oflarge-scale outburst and an annular low-permeability zone in coal seam was necessary forabundant gas preservation. With a simplified one-dimensional flow model, the results shownthat permeability decrease and length of the low-permeability zone were the key factorsaffecting the high-pressure gas preservation. The high gas pressure and gradient increased theoutburst tendency when the excavation entered into the low-permeability zone. Thehigh-pressure gas preserved by the low-permeability zone could provide enough energy for alarge-scale outburst.
     (4) To analyze the tendency of coal and gas outburst, the conditions required by theunstability of coal-gas system were studied. Yield failure and energy accumulated in coal-gassystem over the storage capacity were required for an outburst, and the accumulation degreeof energy for outburst could show the outburst danger. Based on the energy condition foroutburst, the ratio between accumulated energy for outburst initiation and the energyconsumed in the process was utilized as outburst criterion. The corresponding calculationequations of accumulated energy and consumed energy were established.
     (5) Coal gas, ground stress and mechanical properties of coal were the main factors forenergy for outburst initiation. Coal gas was the main factor for energy accumulation. Thetectonic stress loaded on coal seam had an effect for energy accumulation as well, increasingthe outburst tendency. The effect of mechanical properties of coal was mainly due to thestrength and crushing work.
     (6) Through the outburst simulation experiment, it was verified that coal gas and stressload were the main source for energy for outburst initiation, and the energy for outburstinitiation had decisive effect on outburst. Besides, through different engergy conditions, therequied energy for outburst initiation with certain mechanical property of coal mass could beobtained based on the outburst results. This provides a method for analyzing the energystorage capacity of coal-gas system.
     (7) Because of the heteropic coal seam conditions in the exploitation process, thedistribution of energy for outburst initiation in the broken coal in front of the working faceevolved. When the excavation met the conditions such as low permeability, high gas, highstress and tectonic coal, the accumulated energy for outburst initiation would beyond thestorage capacity. The system energy became into unbalanced state, and released energy resulting in outburst. Hence, the distribution and evolution of energy for outburst initiationcontrolled the outburst initiation.
引文
[1]廖春良.“十二五”时期中国能源结构的演变[J].上海经济,2010,(12):40-43.
    [2]范德成,王韶华,张伟.低碳经济目标下一次能源消费结构影响因素分析[J]. Resources Science,2012,34(4):696-703.
    [3]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [4]李波,王凯,魏建平等.2001—2012年我国煤与瓦斯突出事故基本特征及发生规律研究[J].安全与环境学报,2013,13(3):274-278.
    [5]胡省三,成玉琪.21世纪前期我国煤炭科技重点发展领域探讨[J].煤炭学报,2005,30(1):1-7.
    [6]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390.
    [7]袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8.
    [8]袁亮.低透高瓦斯煤层群安全开采关键技术研究[J].岩石力学与工程学报,2008,27(7):1370-1379.
    [9]林柏泉,孟凡伟,张海宾.基于区域瓦斯治理的钻割抽一体化技术及应用[J].煤炭学报,2011,36(1):75-79.
    [10]李晓红,卢义玉,赵瑜等.高压脉冲水射流提高松软煤层透气性的研究[J].煤炭学报,2008,33(12):1386-1390.
    [11]张英华,倪文,尹根成等.穿层孔水压爆破法提高煤层透气性的研究[J].煤炭学报,2004,29(3):298-302.
    [12]蔡峰,刘泽功,张朝举等.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J].煤炭学报,2007,32(5):499-503.
    [13]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究[J].煤炭学报,2004,29(2):129-132.
    [14]于不凡.煤和瓦斯突出机理丛书[M].北京:煤炭工业出版社,1985.
    [15]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [16] Odintsev V. Sudden outburst of coal and gas—failure of natural coal as a solution of methane in asolid substance [J]. Journal of Mining Science,1997,33(6):508-516.
    [17] Kidybinski A. Significance of in situ strength measurements for prediction of outburst hazard in coalmines of Lower Silesia[C]. proceedings of the Proc The Occurrence, Prediction and Control ofOutbursts in Coal Mines The Aust. Inst. Min. Metall., Melbourne, F,1980.
    [18]霍多特,宋士钊.煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [19] Hanes J, Lama R, Shepherd J. Research into the phenomenon of outbursts of coal and gas in someAustralian collieries[C]. proceedings of the5th ISRM Congress, F,1983.
    [20] Sato K, Fujii Y. Source mechanism of a large scale gas outburst at Sunagawa coal mine in Japan [J].pure and applied geophysics,1989,129(3-4):325-343.
    [21] Chen K P. A new mechanistic model for prediction of instantaneous coal outbursts—Dedicated to thememory of Prof. Daniel D. Joseph [J]. International Journal of Coal Geology,2011,87(2):72-79.
    [22]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-8.
    [23]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,(2):17-25.
    [24]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [25]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J].煤炭学报,1996,21(2):173-178.
    [26]章梦涛,徐曾和,潘一山等.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [27]梁冰,章梦涛.拉性载荷作用下煤和瓦斯突出的失稳机理及数值模拟[J].湘潭矿业学院学报,1995,10(2):1-5.
    [28]梁冰,章梦涛.考虑时间效应煤和瓦斯突出的失稳破坏机理研究[J].阜新矿业学院学报,1997,16(2):129-133.
    [29]李萍丰.浅谈煤与瓦斯突出机理的假说——二相流体假说[J].煤矿安全,1989,(11):29-35.
    [30]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报,1999,22(6):80-84.
    [31]马中飞,俞启香.煤与瓦斯承压散体失控突出机理的初步研究[J].煤炭学报,2006,31(3):329-333.
    [32]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [33]王刚,程卫民,谢军等.瓦斯含量在突出过程中的作用分析[J].煤炭学报,2011,36(3):429-434.
    [34] Guan P, Wang H, Zhang Y. Mechanism of instantaneous coal outbursts [J]. Geology,2009,37(10):915-918.
    [35] Lama R. Safe gas content threshold value for safety against outbursts in the mining of the Bulliseam[C]. proceedings of the International Symposium-cum-Workshop on Management and Control ofHigh Gas Emissions and Outbursts in Underground Coal Mines RD Lama (Ed) Wollongong, F,1995.
    [36] Lama R. Assessment of threshold values for safety against outbursts of gas and coal in the Bulli/seamat Appin Colliery [J]. Tech Effect, Kembla Coal and Coke Pty Limited,1996,
    [37] Black D, Aziz N, Jurak M, et al. Outburst threshold limits-are they appropriate?[C]. proceedings ofthe Coal Operators' Conference, F,2009.
    [38]吴余超.西德煤矿防止煤与瓦斯突出的现状[J].矿业安全与环保,1988,(2):58-65.
    [39]王佑安,杨其銮.煤和瓦斯突出危险性预测[J].煤矿安全,1988,(4):35-35.
    [40]席清池.试谈造成煤与瓦斯突出的瓦斯量极小值[J].中州煤炭,1987,(6):38-40.
    [41]秦汝祥,张国枢,杨应迪.瓦斯涌出异常预报煤与瓦斯突出[J].煤炭学报,2006,31(5):599-602.
    [42]郭德勇,韩德馨.地质构造控制煤和瓦斯突出作用类型研究[J].煤炭学报,1998,23(4):337-341.
    [43]彭立世,陈凯德.顺层滑动构造与瓦斯突出机制[J].焦作矿业学院学报,1988,7(2):56-64.
    [44]曹运兴,彭立世.顺煤断层的基本类型及其对瓦斯突出带的控制作用[J].煤炭学报,1995,20(4):413-417.
    [45] Cao Y, He D, Glick D C. Coal and gas outbursts in footwalls of reverse faults [J]. International Journalof Coal Geology,2001,48(1):47-63.
    [46]刘咸卫,曹运兴,刘瑞等.正断层两盘的瓦斯突出分布特征及其地质成因浅析[J].煤炭学报,2000,25(6):571-575.
    [47]张国成,熊明富,郭卫星等.淮南矿区井田小构造对煤与瓦斯突出的控制作用[J].焦作工学院学报(自然科学版),2003,22(5):329-333.
    [48]汪吉林,姜波,陈飞.构造煤与应力场耦合作用对煤与瓦斯突出的控制[J].煤矿安全,2009,(11):94-97.
    [49]韩军,张宏伟,霍丙杰.向斜构造煤与瓦斯突出机理探讨[J].煤炭学报,2008,33(8):908-913.
    [50]董国伟,胡千庭,王麒翔等.隔档式褶皱演化及其对煤与瓦斯突出灾害的影响[J].中国矿业大学学报,2012,41(6):912-916.
    [51]郭德勇,韩德馨,王新义.煤与瓦斯突出的构造物理环境及其应用[J].北京科技大学学报,2002,24(6):581-584.
    [52] Wold M, Connell L, Choi S. The role of spatial variability in coal seam parameters on gas outburstbehaviour during coal mining [J]. International Journal of Coal Geology,2008,75(1):1-14.
    [53]张子敏,林又玲,吕绍林.中国煤层瓦斯分布特征[M].北京:煤炭工业出版社,1998.
    [54]张子敏,张玉贵.大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J].煤炭学报,2005,30(2):137-140.
    [55]朱兴珊,徐凤银.论构造应力场及其演化对煤和瓦斯突出的主控作用[J].煤炭学报,1994,19(3):304-314.
    [56]韩军,张宏伟,朱志敏等.阜新盆地构造应力场演化对煤与瓦斯突出的控制[J].煤炭学报,2007,32(9):934-938.
    [57]朱兴珊.论地质构造及其演化对煤和瓦斯突出的控制:以南桐矿区为例[J].中国地质灾害与防治学报,1997,8(3):13-20.
    [58]汪西海.煤和瓦斯突出与地应力之关系[J].地质力学学报,1997,3(1):88-94.
    [59]张宏伟,陈学华,程五一等.构造应力与煤和瓦斯突出[J].辽宁工程技术大学学报,1998,17(4):353-357.
    [60]韩军,张宏伟,宋卫华等.煤与瓦斯突出矿区地应力场研究[J].岩石力学与工程学报,2008,27(S2):3852-3859.
    [61]张玉贵,张子敏,曹运兴.构造煤结构与瓦斯突出[J].煤炭学报,2007,32(3):281-284.
    [62]邵强,王恩营,王红卫等.构造煤分布规律对煤与瓦斯突出的控制[J].煤炭学报,2010,35(2):250-254.
    [63]屈争辉.构造煤结构及其对瓦斯特性的控制机理研究[D].徐州:中国矿业大学,2010.
    [64] Paterson L. A model for outbursts in coal[C]. proceedings of the International Journal of RockMechanics and Mining Sciences&Geomechanics Abstracts, F,1986. Pergamon.
    [65] Aston T, Kullmann D, Barron K. Modelling of outbursts at#26Colliery, Glace Bay, Nova Scotia. Part1: Outburst history and field data [J]. Mining Science and Technology,1990,11(3):253-260.
    [66] Barron K, Kullmann D. Modelling of outbursts at#26Colliery, Glace Bay, Nova Scotia. Part2:Proposed outburst mechanism and model [J]. Mining Science and Technology,1990,11(3):261-268.
    [67]Choi S, Wold M. A mechanistic study of coal and gas outbursts[C]. proceedings of the DC Rocks2001,The38th US Symposium on Rock Mechanics (USRMS), Washington D.C., F,2001.
    [68] Choi X, Wold M. Study of the Mechanisms of Coal and Gas Outbursts Using a New NumericalModeling Approach[C]. proceedings of the Underground Coal Operators' Conference, F,2004.
    [69] Xue S, Wang Y, Xie J, et al. A coupled approach to simulate initiation of outbursts of coal andgas—model development [J]. International Journal of Coal Geology,2011,86(2):222-230.
    [70] Xue S, Yuan L, Wang Y, et al. Numerical Analyses of the Major Parameters Affecting the Initiation ofOutbursts of Coal and Gas [J]. Rock Mech Rock Eng, DOI10.1007/s00603-013-0425-4.
    [71]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-106.
    [72]俞善炳.煤与瓦斯突出的一维流动模型和启动判据[J].力学学报,1992,24(4):418-431.
    [73]郑哲敏,陈力,丁雁生.一维瓦斯突出破碎阵面的恒稳推进[J].中国科学A辑,1993,23(4):377-384.
    [74]赵阳升.瓦斯压力在突出中作用的数值模拟研究[J].岩石力学与工程学报,1993,12(4):328-337.
    [75]贺军,赵阳升,张文等.煤与瓦斯突出的软化分析与失稳研究[J].工程力学,1993,10(2):79-87.
    [76]梁冰,章梦涛.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [77]梁冰,章梦涛.应力,瓦斯压力在煤和瓦斯突出发生中作用的数值试验研究[J].阜新矿业学院学报,1996,15(1):1-4.
    [78]赵国景,步道远.煤与瓦斯突出的固─流两相介质力学理论及数值分析[J].工程力学,1995,12(2):1-7.
    [79]丁继辉,赵国景.有限变形下的煤与瓦斯突出的固流两相介质耦合失稳理论[J].河北农业大学学报,1998,21(1):74-82.
    [80]丁继辉,麻玉鹏.煤与瓦斯突出的固—流耦合失稳理论及数值分析[J].工程力学,1999,16(4):47-53.
    [81] Xu T, Tang C, Yang T, et al. Numerical investigation of coal and gas outbursts in undergroundcollieries [J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6):905-919.
    [82]唐春安,刘红元.石门揭煤突出过程的数值模拟研究[J].岩石力学与工程学报,2002,21(10):1467-1472.
    [83]徐涛,郝天轩,唐春安等.含瓦斯煤岩突出过程数值模拟[J].中国安全科学学报,2005,15(1):107-110.
    [84]徐涛,唐春安,宋力等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [85]罗新荣,夏宁宁,贾真真.掘进煤巷应力仿真和延时煤与瓦斯突出机理研究[J].中国矿业大学学报,2006,35(5):571-575.
    [86]齐黎明,林柏泉,支晓伟.基于RFPA-Flow的马家沟矿突出数值模拟[J].西安科技大学学报,2006,26(2):167-169.
    [87]张春华,刘泽功,刘健等.立井揭高瓦斯深埋煤层围岩力学特性数值模拟研究[J].煤矿安全,2010,41(7):8-11.
    [88]程建圣,梁运培,董钢锋.立井井筒掘进工作面煤与瓦斯突出RFPA仿真模拟研究[J].煤矿安全,2008,(3):5-7.
    [89]张春华,刘泽功,李尧斌等.深部矿井煤与瓦斯突出特性数值模拟研究[J].煤炭科学技术,2009,(8):49-52.
    [90]高坤,段东,王继仁等.煤层透气性对瓦斯突出模式的影响[J].辽宁工程技术大学学报(自然科学版),2010,(4):015.
    [91]刘永茜,杨军,张玉贵.煤与瓦斯突出的非连续变形分析(DDA)模拟[J].煤炭学报,2010,35(5):797-801.
    [92]夏永军,武文宾.不同掘进工艺煤巷瓦斯渗流场演化及对突出发动的作用分析[J].煤炭学报,2010,35(S):91-94.
    [93]孙东生,赵卫华,王红才等.红菱煤矿石门揭煤突出过程模拟研究[J].中国矿业,2009,18(5):91-94.
    [94]潘岳,张孝伍.狭窄煤柱岩爆的突变理论分析[J].岩石力学与工程学报,2004,23(11):1797-1803.
    [95]高明仕,窦林名,张农等.煤(矿)柱失稳冲击破坏的突变模型及其应用[J].中国矿业大学学报,2005,34(4):433-437.
    [96]左宇军,李夕兵,马春德等.动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005,24(5):741-746.
    [97]杨官涛,李夕兵,王其胜等.地下采场失稳的能量突变判断准则及其应用[J].采矿与安全工程学报,2009,26(3):268-271.
    [98]师刚,苏立海,马云峰等.岩质边坡评价方法对比研究[J].水利与建筑工程学报,2009,7(1):109-111.
    [99]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座——Ⅱ有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.
    [100]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [101]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486-492.
    [102]潘岳,戚云松.对边坡失稳潜滑带为两种介质的尖点突变模型研究的讨论[J].岩石力学与工程学报,2010,29(11):2287-2292.
    [103]赵志刚,谭云亮,程国强.煤巷掘进迎头煤与瓦斯突出的突变机制分析[J].岩土力学,2008,29(6):1644-1648.
    [104]Rouquerol J, Avnir D, Fairbridge C, et al. Recommendations for the characterization of porous solids(Technical Report)[J]. Pure and Applied Chemistry,1994,66(8):1739-1758.
    [105]Weishauptová Z, Medek J. Bound forms of methane in the porous system of coal [J]. Fuel,1998,77(1):71-76.
    [106]Weishauptova Z, Medek J, Ková L. Bond forms of methane in porous system of coal II [J]. Fuel,2004,83(13):1759-1764.
    [107]Sing K, Sing K, Everett D, et al. Reporting physisorption data for gas/solid systems [J]. Pure and ApplChem,1982,54(11):2201-2218.
    [108]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of theAmerican Chemical society,1918,40(9):1361-1403.
    [109]Crosdale P J, Beamish B, Valix M. Coalbed methane sorption related to coal composition [J].International Journal of Coal Geology,1998,35(1):147-158.
    [110]周荣福,傅雪海,秦勇等.我国煤储层等温吸附常数分布规律及其意义[J].煤田地质与勘探,2000,28(5):23-25.
    [111]苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005,25(1):19-21.
    [112]Lamberson M N, Bustin R M. Coalbed methane characteristics of Gates Formation coals, northeasternBritish Columbia: effect of maceral composition [J]. AAPG bulletin,1993,77(12):2062-2076.
    [113]Bustin R, Clarkson C. Geological controls on coalbed methane reservoir capacity and gas content [J].International Journal of Coal Geology,1998,38(1):3-26.
    [114]An F-H, Cheng Y-P, Wu D-M, et al. The effect of small micropores on methane adsorption of coalsfrom Northern China [J]. Adsorption,2013,19(1):83-90.
    [115]Gan H, Nandi S, Walker Jr P. Nature of the porosity in American coals [J]. Fuel,1972,51(4):272-277.
    [116]Clarkson C R, Marc Bustin R. Variation in micropore capacity and size distribution with compositionin bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methanepotential [J]. Fuel,1996,75(13):1483-1498.
    [117]降文萍,崔永君,钟玲文等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学,2007,18(4):576-579.
    [118]Joubert J I, Grein C T, Bienstock D. Sorption of methane in moist coal [J]. Fuel,1973,52(3):181-185.
    [119]Kowalczyk P, Tanaka H, Kaneko K et al. Grand canonical Monte Carlo simulation study of methaneadsorption at an open graphite surface and in slitlike carbon pores at273K [J]. Langmuir,2005,21(12):5639-5646.
    [120]Dubinin M. The potential theory of adsorption of gases and vapors for adsorbents with energeticallynonuniform surfaces [J]. Chemical Reviews,1960,60(2):235-241.
    [121]Terzaghi K. Principles of soil mechanics, IV—Settlement and consolidation of clay [J]. EngineeringNews-Record,1925,95(3):874-878.
    [122]陈勉,陈至达.多重孔隙介质的有效应力定律[J].应用数学和力学,1999,20(11):1121-1127.
    [123]Bangham D, Fakhoury N, Mohamed A. The Swelling of Charcoal. Part III. Experiments with theLower Alcohols [J]. Proceedings of the Royal Society of London Series A-Mathematical and PhysicalSciences,1934,147(860):152-175.
    [124]Yates D. The expansion of porous glass on the adsorption of non-polar gases [J]. Proceedings of theRoyal Society of London Series A Mathematical and Physical Sciences,1954,224(1159):526-544.
    [125]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.
    [126]张先敏,同登科.考虑基质收缩影响的煤层气流动模型及应用[J].中国科学: E辑,2008,38(5):790-796.
    [127]王佑安,陶玉梅,王魁军等.煤的吸附变形与吸附变形力[J].煤矿安全,1993,(6):19-26.
    [128]姚宇平.吸附瓦斯对煤的变形及强度的影响[J].煤矿安全,1988,19(12):37-41.
    [129]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报,1986,15(3):9-16.
    [130]曹树刚,张遵国,李毅等.突出危险煤吸附,解吸瓦斯变形特性试验研究[J].煤炭学报,2013,38(10):1792-1799
    [131]Czerw K. Methane and carbon dioxide sorption/desorption on bituminous coal—Experiments oncubicoid sample cut from the primal coal lump [J]. International Journal of Coal Geology,2011,85(1):72-77.
    [132]Kelemen S, Kwiatek L. Physical properties of selected block Argonne Premium bituminous coalrelated to CO2, CH4, and N2adsorption [J]. International Journal of Coal Geology,2009,77(1):2-9.
    [133]Day S, Fry R, Sakurovs R. Swelling of Australian coals in supercritical CO2[J]. International Journalof Coal Geology,2008,74(1):41-52.
    [134]Robertson E. Modeling permeability in coal using sorption-induced strain data[C]. proceedings of theSPE Annual Technical Conference and Exhibition, F,2005.
    [135]Cui X, Bustin R M, Chikatamarla L. Adsorption‐induced coal swelling and stress: Implications formethane production and acid gas sequestration into coal seams [J]. Journal of Geophysical Research:Solid Earth (1978-2012),2007,112(B10): B10202.10201-B10202.10216.
    [136]Karacan C. Swelling-induced volumetric strains internal to a stressed coal associated with CO2sorption [J]. International Journal of Coal Geology,2007,72(3):209-220.
    [137]Larsen J W. The effects of dissolved CO2on coal structure and properties [J]. International Journal ofCoal Geology,2004,57(1):63-70.
    [138]Goodman A, Favors R, Hill M, et al. Structure changes in Pittsburgh No.8coal caused by sorption ofCO2gas [J]. Energy&fuels,2005,19(4):1759-1760.
    [139]Goodman A, Favors R, Larsen J W. Argonne coal structure rearrangement caused by sorption of CO2[J]. Energy&fuels,2006,20(6):2537-2543.
    [140]Ettinger I, Lamba E. Gas medium in coal-breaking processes [J]. Fuel,1957,36(3):298-306.
    [141]Czapliński A, Ho da S. Changes in mechanical properties of coal due to sorption of carbon dioxidevapour [J]. Fuel,1982,61(12):1281-1282.
    [142]Aziz N, Ming-Li W. The effect of sorbed gas on the strength of coal–an experimental study [J].Geotechnical&Geological Engineering,1999,17(3-4):387-402.
    [143]梁冰,章梦涛,潘一山等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [144]李小双,尹光志,赵洪宝等.含瓦斯突出煤三轴压缩下力学性质试验研究[J].岩石力学与工程学报,2010,29(S1):3350-3358.
    [145]尹光志,李小双,赵洪宝等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):697-702.
    [146]Viete D, Ranjith P. The effect of CO2on the geomechanical and permeability behaviour of brown coal:Implications for coal seam CO2sequestration [J]. International journal of coal geology,2006,66(3):204-216.
    [147]Ranjith P, Jasinge D, Choi S-K, et al. The effect of CO2saturation on mechanical properties ofAustralian black coal using acoustic emission [J]. Fuel,2010,89(8):2110-2117.
    [148]Perera M, Ranjith P, Peter M. Effects of saturation medium and pressure on strength parameters ofLatrobe Valley brown coal: carbon dioxide, water and nitrogen saturations [J]. Energy,2011,36(12):6941-6947.
    [149]Ates Y, Barron K. The effect of gas sorption on the strength of coal [J]. Mining science andtechnology,1988,6(3):291-300.
    [150]Karacan C. Heterogeneous sorption and swelling in a confined and stressed coal during CO2injection[J]. Energy&fuels,2003,17(6):1595-1608.
    [151]Barenblatt G, Zheltov I P, Kochina I. Basic concepts in the theory of seepage of homogeneous liquidsin fissured rocks [strata][J]. Journal of Applied Mathematics and Mechanics,1960,24(5):1286-1303.
    [152]Warren J, Root P J. The behavior of naturally fractured reservoirs [J]. Old SPE Journal,1963,3(3):245-255.
    [153]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [154]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-4.
    [155]Thimons E D, Kissell F N. Diffusion of methane through coal [J]. Fuel,1973,52(4):274-280.
    [156]陈富勇,琚宜文,李小诗等.构造煤中煤层气扩散-渗流特征及其机理[J].地学前缘,2010,17(1):195-201.
    [157]闫宝珍,王延斌,倪小明.地层条件下基于纳米级孔隙的煤层气扩散特征[J].煤炭学报,2008,33(6):657-660.
    [158]Clarkson C, Bustin R. The effect of pore structure and gas pressure upon the transport properties ofcoal: a laboratory and modeling study.2. Adsorption rate modeling [J]. Fuel,1999,78(11):1345-1362.
    [159]张登峰,崔永君,李松庚等.甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J].煤炭学报,2011,36(10):1693-1698.
    [160]简星,关平,张巍.煤中CO2的吸附和扩散:实验与建模[J].中国科学:地球科学,2012,42(4):492-504.
    [161]Shi J, Durucan S. A bidisperse pore diffusion model for methane displacement desorption in coal byCO2injection [J]. Fuel,2003,82(10):1219-1229.
    [162]富向,王魁军,杨天鸿.构造煤的瓦斯放散特征[J].煤炭学报,2008,33(7):775-779.
    [163]安丰华,程远平,吴冬梅等.基于瓦斯解吸特性推算煤层瓦斯压力的方法[J].采矿与安全工程学报,2011,28(1):81-85.
    [164]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].中国矿业大学出版社,2003.
    [165]石丽娜,杜庆军,同登科.煤层气窜流-扩散过程及其对开发效果的影响[J].西南石油大学学报(自然科学版)2011,33(3):137-140.
    [166]卢福长,武晓玲,唐文忠.扩散作用对煤层气可采性的影响[J].断块油气田,2000,7(3):17-18.
    [167]苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤田地质与勘探,2002,30(4):21-24.
    [168]张胜利,李宝芳.煤层割理的形成机理及在煤层气勘探开发评价中的意义[J].中国煤田地质,1996,8(1):72-77.
    [169]毕建军,苏现波,韩德馨等.煤层割理与煤级的关系[J].煤炭学报,2001,26(4):346-349.
    [170]Su X, Feng Y, Chen J, et al. The characteristics and origins of cleat in coal from Western North China[J]. International Journal of Coal Geology,2001,47(1):51-62.
    [171]Li H, Shimada S, Zhang M. Anisotropy of gas permeability associated with cleat pattern in a coalseam of the Kushiro coalfield in Japan [J]. Environmental Geology,2004,47(1):45-50.
    [172]Li H. Major and minor structural features of a bedding shear zone along a coal seam and related gasoutburst, Pingdingshan coalfield, northern China [J]. International Journal of Coal Geology,2001,47(2):101-113.
    [173]Gamson P D, Beamish B, Johnson D P. Coal microstructure and micropermeability and their effectson natural gas recovery [J]. Fuel,1993,72(1):87-99.
    [174]秦峰,王媛.非达西渗流研究进展[J].三峡大学学报(自然科学版),2009,31(3):25-29.
    [175]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发,2002,29(2):86-89.
    [176]贾振岐,王延峰,付俊林等.低渗低速下非达西渗流特征及影响因素[J].大庆石油学院学报,2001,25(3):73-76.
    [177]李中锋,何顺利.低渗透储层非达西渗流机理探讨[J].特种油气藏,2005,12(2):35-38.
    [178]王道成,李闽,谭建为等.气体低速非线性渗流研究[J].大庆石油地质与开发,2007,26(6):74-77.
    [179]许凯,雷学文,孟庆山等.非达西渗流惯性系数研究[J].岩石力学与工程学报,2012,31(1):164-170.
    [180]Klinkenberg L. The permeability of porous media to liquids and gases [M]. Drilling and productionpractice. New York1941.
    [181]肖晓春,潘一山.低渗煤储层气体滑脱效应试验研究[J].岩石力学与工程学报,2008,27(S2):3509-3515.
    [182]胡国忠,王宏图,范晓刚等.低渗透突出煤的瓦斯渗流规律研究[J].岩石力学与工程学报,2009,28(12):2527-2534.
    [183]Jasinge D, Ranjith P, Choi S-K. Effects of effective stress changes on permeability of latrobe valleybrown coal [J]. Fuel,2011,90(3):1292-1300.
    [184]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [185]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004.
    [186]Reiss L H. The reservoir engineering aspects of fractured formations [M]. Editions Technip,1980.
    [187]Somerton W H, S ylemezo lu I, Dudley R. Effect of stress on permeability of coal[C]. proceedings ofthe International journal of rock mechanics and mining sciences&geomechanics abstracts, F,1975.Elsevier.
    [188]Durucan S, Edwards J. The effects of stress and fracturing on permeability of coal [J]. Mining Scienceand Technology,1986,3(3):205-216.
    [189]赵阳升,胡耀青,杨栋等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [190]Konecny P, Kozusnikova A. Influence of stress on the permeability of coal and sedimentary rocks ofthe Upper Silesian basin [J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(2):347-352.
    [191]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [192]Yang W, Lin B-Q, Zhai C et al. How in situ stresses and the driving cycle footage affect the gasoutburst risk of driving coal mine roadway [J]. Tunnelling and Underground Space Technology,2012,31(139-148.
    [193]康天合,赵阳升.煤体裂隙尺度分布的分形研究[J].煤炭学报,1995,20(4):393-398.
    [194]傅雪海,秦勇,薛秀谦等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001,30(3):225-228.
    [195]胡宝林,张志龙,车遥等.鄂尔多斯盆地煤储层孔隙分形特征研究[J].淮南工业学院学报,2002,22(4):1-4.
    [196]张松航,唐书恒,汤达祯等.鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J].中国矿业大学学报,2009,38(5):713-718.
    [197]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [198]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):74-82.
    [199]陈玮胤,姜波,屈争辉等.碎裂煤显微裂隙分形结构及其孔渗特征[J].煤田地质与勘探,2012,40(2):31-34.
    [200]张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008,33(11):1216-1219.
    [201]王海锋,程远平,吴冬梅等.近距离上保护层开采工作面瓦斯涌出及瓦斯抽采参数优化[J].煤炭学报,2010,35(4):590-594.
    [202]St George J, Barakat M. The change in effective stress associated with shrinkage from gas desorptionin coal [J]. International Journal of Coal Geology,2001,45(2):105-113.
    [203]Schwerer F, Pavone A. Effect of pressure-dependent permeability on well-test analyses and long-termproduction of methane from coal seams[C]. proceedings of the SPE Unconventional Gas RecoverySymposium, Pittsburgh, F,1984.
    [204]Zhang H, Liu J, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams:a new FE model [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1226-1236.
    [205]Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact onpermeability of coal [J]. Fuel,1990,69(5):551-556.
    [206]Harpalani S, Chen G. Influence of gas production induced volumetric strain on permeability of coal[J]. Geotechnical&Geological Engineering,1997,15(4):303-325.
    [207]Seidle J, Huitt L. Experimental measurement of coal matrix shrinkage due to gas desorption andimplications for cleat permeability increases[C]. proceedings of the International meeting onpetroleum Engineering, Beijing, F,1995.
    [208]Liu H-H, Rutqvist J. A new coal-permeability model: internal swelling stress and fracture–matrixinteraction [J]. Transport in Porous Media,2010,82(1):157-171.
    [209]Palmer I, Mansoori J. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A NewModel [J]. SPE Reservoir Evaluation&Engineering,1998,1(6):539-544.
    [210]Shi J, Durucan S. Drawdown induced changes in permeability of coalbeds: A new interpretation of thereservoir response to primary recovery [J]. Transport in porous media,2004,56(1):1-16.
    [211]Cui X, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbedgas production from deep coal seams [J]. Aapg Bulletin,2005,89(9):1181-1202.
    [212]Robertson E, Christiansen R. A permeability model for coal and other fractured, sorptive-elasticmedia[C]. proceedings of the SPE Eastern Regional Meeting, F,2006.
    [213]贺天才,秦勇.煤层气勘探与开发利用技术[M].徐州:中国矿业大学出版社,2007.
    [214]范章群,夏致远.煤基质形状因子理论探讨[J].煤田地质与勘探,2009,37(3):15-18.
    [215]Lim K, Aziz K. Matrix-fracture transfer shape factors for dual-porosity simulators [J]. Journal ofPetroleum Science and Engineering,1995,13(3):169-178.
    [216]Drucker D, Prager W, Greenberg H. Extended limit design theorems for continuous media [J]. QuartAppl Math,1952,9(4):381-389.
    [217]Jaiswal A, Shrivastva B. Numerical simulation of coal pillar strength [J]. International Journal ofRock Mechanics and Mining Sciences,2009,46(4):779-788.
    [218]Duncan Fama M, Trueman R, Craig M. Two-and three-dimensional elasto-plastic analysis for coalpillar design and its application to highwall mining[C]. proceedings of the International journal ofrock mechanics and mining sciences&geomechanics abstracts, F,1995. Elsevier.
    [219]Alonso E, Alejano L, Varas F, et al. Ground response curves for rock masses exhibiting strain‐softening behaviour [J]. International journal for numerical and analytical methods in geomechanics,2003,27(13):1153-1185.
    [220]Hajiabdolmajid V, Kaiser P. Brittleness of rock and stability assessment in hard rock tunneling [J].Tunnelling and Underground Space Technology,2003,18(1):35-48.
    [221]张帆,盛谦,朱泽奇等.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报,2008,27(S1):2651-2655.
    [222]陆银龙,王连国,杨峰等.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,29(3):640-648.
    [223]王广荣,薛东杰,郜海莲等.煤岩全应力-应变过程中渗透特性的研究[J].煤炭学报,2012,37(1):107-112.
    [224]Chen H-D, Yuan-Ping C, Zhou H-X, et al. Damage and Permeability Development in Coal DuringUnloading [J]. Rock Mechanics and Rock Engineering,1-14.
    [225]Zhang J, Standifird W, Roegiers J-C, et al. Stress-dependent fluid flow and permeability in fracturedmedia: from lab experiments to engineering applications [J]. Rock mechanics and rock engineering,2007,40(1):3-21.
    [226]Wang J-A, Park H. Fluid permeability of sedimentary rocks in a complete stress–strain process [J].Engineering geology,2002,63(3):291-300.
    [227]Hol S, Spiers C J. Competition between adsorption-induced swelling and elastic compression of coalat CO2pressures up to100MPa [J]. Journal of the Mechanics and Physics of Solids,2012,60(1862–1882.
    [228]Pabst W, Gregorová E, Tichá G. Elasticity of porous ceramics—A critical study of modulus porosityrelations [J]. Journal of the European Ceramic Society,2006,26(7):1085-1097.
    [229]Gash B W. Measurement of" Rock Properties" in Coal for Coalbed Methane Production[C].proceedings of the SPE Annual Technical Conference and Exhibition, F,1991.
    [230]Gash B W, Volz R F, Potter G, et al. The effects of cleat orientation and confining pressure on cleatporosity, permeability and relative permeability in coal [M]. SCA Conference.1992:17-21.
    [231]Montemagno C D, Pyrak‐Nolte L J. Porosity of natural fracture networks [J]. Geophysical ResearchLetters,1995,22(11):1397-1400.
    [232]Pyrak‐Nolte L J, Montemagno C D, Nolte D D. Volumetric imaging of aperture distributions inconnected fracture networks [J]. Geophysical Research Letters,1997,24(18):2343-2346.
    [233]林柏泉,周世宁.煤巷卸压带及其在煤和瓦斯突出危险性预测中的应用[J].中国矿业大学学报,1993,22(4):44-52.
    [234]Shepherd J, Rixon L, Griffiths L. Outbursts and geological structures in coal mines: a review[C].proceedings of the International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts, F,1981. Elsevier.
    [235]Li H, Ogawa Y, Shimada S. Mechanism of methane flow through sheared coals and its role onmethane recovery [J]. Fuel,2003,82(10):1271-1279.
    [236]Han J, Zhang H, Li S, et al. The characteristic of in situ stress in outburst area of China [J]. SafetyScience,2012,50(4):878-884.
    [237]Pashin J C. Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview[J]. International Journal of Coal Geology,1998,35(1):209-240.
    [238]Ayers W B. Coalbed gas systems, resources, and production and a review of contrasting cases fromthe San Juan and Powder River basins [J]. AAPG bulletin,2002,86(11):1853-1890.
    [239]Yao Y, Liu D, Tang D, et al. Preliminary evaluation of the coalbed methane production potential andits geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China [J]. InternationalJournal of Coal Geology,2009,78(1):1-15.
    [240]Groshong Jr R H, Pashin J C, Mcintyre M R. Structural controls on fractured coal reservoirs in thesouthern Appalachian Black Warrior foreland basin [J]. Journal of Structural Geology,2009,31(9):874-886.
    [241]Cai Y, Liu D, Yao Y, et al. Geological controls on prediction of coalbed methane of No.3coal seam inSouthern Qinshui Basin, North China [J]. International Journal of Coal Geology,2011,88(2):101-112.
    [242]Williams R, Weissmann J. Gas emission and outburst assessment in mixed CO2and CH4environments [M]. Proc ACIRL Underground Mining Sem. Australian Coal Industry Res. Lab., NorthRyde.1995.
    [243]蔡美峰,孔广亚.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学学报,1997,19(4):325-328.
    [244]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [245]霍多特bb.煤和瓦斯突出[M].北京:中国工业出版社.1966.
    [246]俞启香.煤矿瓦斯防治[M].徐州:中国矿业大学出版社.1992.
    [247]Valliappan S, Wohua Z. Role of gas energy during coal outbursts [J]. International journal fornumerical methods in engineering,1999,44(7):875-895.
    [248]Gray I. Coal mine outburst mechanism, thresholds and prediction techniques [M]. ACARP Report C.2006.
    [249]Smith D, Williams F. Diffusional effects in the recovery of methane from coalbeds [J]. Society ofPetroleum Engineers journal,1984,24(5):529-535.
    [250]Mora C, Wattenbarger R. Analysis and verification of dual porosity and CBM shape factors [J].Journal of Canadian Petroleum Technology,2009,48(2):17-21.
    [251]中梁山煤矿.煤和瓦斯突出实测[J].煤矿安全,1979,(1):45-50.
    [252]蔡成功,王佑安.突出危险和非危险煤冲击破碎时煤的破碎功试验研究[J].煤矿安全,1988,(7):13-18.
    [253]蔡成功,熊亚选.突出危险煤破碎功理论与实验研究[J].煤炭学报,2005,30(1):63-66.
    [254]李德建,贾雪娜,苗金丽等.花岗岩岩爆试验碎屑分形特征分析[J].岩石力学与工程学报,2010,29(S1):3280-3289.
    [255]Hayashi K, Sato A, Ito T. In situ stress measurements by hydraulic fracturing for a rock mass withmany planes of weakness [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(1):45-58.
    [256]Kang H, Zhang X, Si L, et al. In-situ stress measurements and stress distribution characteristics inunderground coal mines in China [J]. Engineering Geology,2010,116(3):333-345.
    [257]Haimson B. The hydrofracturing stress measuring method and recent field results [J]. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1978,15(4):167-178.
    [258]Klee G, Rummel F, Williams A. Hydraulic fracturing stress measurements in Hong Kong [J].International Journal of Rock Mechanics and Mining Sciences,1999,36(6):731-741.
    [259]康红普,林健,颜立新等.山西煤矿矿区井下地应力场分布特征研究[J].地球物理学报,2009,52(7):1782-1792.
    [260]康红普,姜铁明,张晓等.晋城矿区地应力场研究及应用[J].岩石力学与工程学报,2009,28(1):1-8.
    [261]康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报,2007,26(5):929-933.
    [262]康红普,吴志刚,高富强等.煤矿井下地质构造对地应力分布的影响[J].岩石力学与工程学报,2012,31(S1):2674-2680.
    [263]Lama R, Bodziony J. Management of outburst in underground coal mines [J]. International Journal ofCoal Geology,1998,35(1):83-115.
    [264]Gale W. Strata control utilising rock reinforcement techniques and stress control methods, inAustralian coal mines [J]. Mining Engineer,1991,150:247-253.
    [265]Singh R, Porter I, Hematian J. Finite element analysis of three-way roadway junctions in longwallmining [J]. International journal of coal geology,2001,45(2):115-125.
    [266]Gadde M M. Effect of In-situ Stresses on the Stability of Coal Mine Development Workings [D]. WestVirginia University,2003.
    [267]钱呜高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社.2003.
    [268]苏承东,唐旭,倪小明.煤样抗压,拉强度与点荷载指标关系的试验研究[J].采矿与安全工程学报,2012,29(4):1-5.
    [269] Skochinski A. Communication of the initiation of a sudden outburst of gas and coal in the model inoutburst laboratory ofthe Institute of Mining of AN SSSR [J]. Ugol,1953,10:39.
    [270]邓全封,栾永祥,王佑安.煤与瓦斯突出模拟试验[J].煤矿安全,1989,(11):5-10.
    [271]丁晓良,丁雁生,俞善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990,22(2):154-162.
    [272]蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66-69.
    [273]王维忠,陶云奇,许江等.不同瓦斯压力条件下的煤与瓦斯突出模拟实验[J].重庆大学学报:自然科学版,2010,33(3):82-86.
    [274]尹光志,赵洪宝,许江等.煤与瓦斯突出模拟试验研究[J].岩石力学与工程学报,2009,28(8):1674-1680.
    [275]张春华.石门揭突出煤层围岩力学特性模拟试验研究[D].安徽:安徽理工大学,2010.
    [276]杨凤玲,高玉杰,张园园等.型煤成型影响因素的实验研究[J].煤化工,2010,(4):37-40.
    [277]蒋承林.煤与瓦斯突出阵面的推进过程及力学条件分析[J].中国矿业大学学报,1994,23(4):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700