基于细观力学试验的含瓦斯煤体变形破坏规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出灾害防治是世界各国煤矿生产中面临的重大难题。从细观力学试验出发,研究含瓦斯煤体的微细观变形及破坏过程是揭示煤与瓦斯突出机理,探索相应防治措施新的尝试。本文以含瓦斯煤体为研究对象,以微细观结构和瓦斯赋存特性分析、实验系统和试验方法的研发为基础,以宏细观力学试验、理论分析和数值模拟为手段,揭示瓦斯作用下煤体宏-细观损伤的试验规律,建立含瓦斯煤体的动态损伤预测评价模型和固-气耦合模型,为进一步全面地研究含瓦斯煤体力学行为,探讨新的有效防治煤与瓦斯突出灾害的技术途径奠定理论和技术基础。通过本文研究,在以下几方面取得一些进展:
     1)进行了突出煤体的微细观结构特征及瓦斯赋存特性研究。总结了突出煤体孔隙、裂隙的成因、分类及微细观结构特征,分析了突出煤样孔隙体积分形维数的分段性特征以及裂隙分形维数的自相似性与标度不变性。利用煤体吸附、解吸瓦斯(单相气体CH4)过程中变形的试验结果,分析了煤体的吸附变形规律,建立了煤体变形、膨胀应力与瓦斯压力的关系方程。通过不同地应力、不同瓦斯压力以及全应力-应变中的煤体渗透率变化规律的试验研究,分析了煤样渗透率变化规律,建立了相应的渗透率演化方程。
     2)自行研制了含瓦斯煤岩细观力学实验系统。该系统可进行不同受力状态,不同瓦斯压力条件下软弱煤岩的细观力学试验,与现有的细观试验装置相比,具有以下特点:可提供单轴、平面应变、三轴(σ2 =σ3)三种受力状态;试验测试方法多样化,可进行试验过程中的实时显微图像观测和应力–应变、声发射信号的采集;具有良好的气密性和耐爆性,创造具有瓦斯的试验环境,使煤与瓦斯突出机制的试验研究更加接近矿山实际;装置的结构简单,成本低,系统可靠性高。初步的试验结果表明,该试验装置为固–气耦合条件下的相关试验研究提供新的测试手段,具有较大实用价值。根据含瓦斯煤岩细观力学实验系统的特点,建立了岩石细观图像处理系统;为了解决岩石细观力学试验中图像处理过程复杂、质量不高及操作效率低等问题,将LS-SVM的分类方法与数字图像处理的阈值分割法相结合,提出了人机结合的岩石细观结构图像系统分析方法。
     3)开展了不同瓦斯压力下、不同围压下的突出煤体细观力学试验研究。分析了煤样的动态破裂演化过程以及破坏形式,结果表明,煤样观测面的微裂纹损伤演化是一个分形过程,分形维数可以定量地表示随应力状态的变化引起煤样损伤破裂的演化规律。应用岩石断裂力学的相关理论对在外部应力、孔隙压力和膨胀应力三者共同作用下的典型裂隙的开裂、扩展条件进行分析,并结合RFPA数值模拟软件对含单一裂纹以及典型裂纹系的煤样破裂过程进行模拟,得到了各条件下煤样破裂的演化过程,讨论了瓦斯在煤体破坏过程中的作用。
     4)进行了基于煤样受载过程的声发射试验的宏细观力学的对比分析研究。对含瓦斯煤样损伤破坏过程中声发射参数变化规律、声发射参数的关联性、声发射的频谱特征及分形和混沌特征进行分析。在此基础上,应用模糊数学综合评价方法,基于声发射信息建立了煤岩动态损伤综合预测评价模型,对煤体损伤破坏过程进行动态评价,研究结果与应力-应变变化规律基本一致。
     5)采用细观损伤力学的研究方法,充分考虑含瓦斯煤岩固-气耦合特点,以Weibull理论框架为基础,基于Mohr-Coulomb准则建立含瓦斯煤岩细观统计损伤本构模型,提出了模型参数的回归解、基于声发射信号的求解方法和基于岩石表面断裂过程分形维数等三种模型参数求解方法。综合考虑应力场、渗流场和浓度场的耦合作用,在瓦斯运移过程中的扩散方程和渗流方程、含瓦斯煤体的有效应力方程以及应力-渗透率演化方程的基础上,建立了含瓦斯煤岩固-气耦合渗流模型,并分析了模型的定解条件。
     6)将煤岩固-气耦合细观力学分析方法与工程现场相结合,提出了低渗透煤层增透途径的细观力学分析方法。应用该方法对深孔控制预裂爆破增透前后的煤体作了微细观结构测试和现场效果分析,表明深孔控制预裂爆破明显地改善了煤层的透气性。基于最小二乘支持向量机的回归预测和分类方法,建立了采煤工作面瓦斯危险性预测预警模型,应用实例证明该模型预测结果精度高,预警结果可信度高,可作为采煤工作面瓦斯浓度连续预测与危险性预警的有效建模手段。
Disaster prevention and control of coal and gas outburst is the major challenge of the world's coal mine production faced. Studying on the deformation and failure process of gas-filled coal from the meso-mechanics perspective is a new attempt to reveal the mechanics of coal and gas outburst and research the corresponding prevent and control measures. In this paper, the gas-filled coal as research object, the analysis of meso-structure and characteristics of gas occurrence of coal, and research and development of experimental system and test methods as a research-based, macro & meso-mechanical tests, theoretical analysis and numerical simulation as a means to reveal the test rules of macro & meso damage of coal under gas effect and establish the dynamic damage prediction and evaluation model and solid-gas coupling model of gas filled coal. The purpose of this paper is to lay a theoretical and technological foundation for in-depth study of mechanical behavior of gas-filled coal, investigate newly effective measures for prevention and control of coal and gas outburst disasters. Some progress has been made through these researches as follows:
     1) The characteristics of meso-structure and gas occurrence of outburst coal were investigated. We summarized the genesis, classification and micro-structural characteristics of outburst coal, and analyzed section properties of the pore’s volume fractal dimension and self-similarity & scale invariance of the crack’s fractal dimension. The test result of the deformation of coal during adsorption & desorption single-phase gas (CH4) was used for analysis the law of adsorption deformation, and established equation of expansion of the relationship between stress and gas pressure. Through the experimental investigation on the permeability of coal under different stress, different gas pressures, and complete stress-strain of coal, the rules of permeability of coal samples under different conditions and the corresponding penetration evolution equation was established.
     2) A meso-mechanical testing apparatus of gas-filled coal has been developed, which can be used to carry out meso-mechanical experiment for soft rock and coal under different loading conditions and different gas pressure. Compared with the current meso-mechanics apparatus,it has the following advantages. Firstly, three types of force state are provided including uniaxial compression, plane strain and triaxial compression (σ2 =σ3). Secondly,several measuring methods are offered,and the real-time observation of the micro-structural images and the collection of stress-strain and acoustic emission signals are realized during experimental process. Thirdly, it is gas-tight and exploding endurable, which makes it similar to actual testing environment. Fourthly, the structure is very simple,low-cost and high reliability. Preliminary test results of gas-filled coal is shown that the testing apparatus can provide a new and practical test method for solid-gas coupled experiments. According to the characteristics of meso-mechanical testing apparatus of gas-filled coal, the rock meso-image processing system was established. To deal with the problem of the complexity and low quality for the existing image processing methods in meso-mechanical experiments of rocks, a man-computer method for image processing was put forward on the basis of the LS-SVM and image segmentation.
     3) The meso-mechanical experimental investigation was preceded under different gas pressure and different confining pressures. We analyzed the evolution of the dynamic fracture and failure modes of the coal specimen. The results show that the micro-crack damage evolution of coal sample observing surface is a fractal process; the fractal dimension can be quantitatively expressed as changes of stress state caused by the damage evolution of coal sample. Application of relevant theories of rock fracture mechanics to analysis typical crack growth under the combined effect of external stress, swelling stress and pore pressure. The failure process of coal sample which contained a single crack and the typical multiple cracks were simulated with RFPA numerical simulation software, and the fracture evolutionary process were obtained, and also had discussed the role of gas in the failure process of coal specimen.
     4) Based on acoustic emission experiments of the coal loading process, the comparative study of macro-mechanics and meso-mechanics were conducted. We analysis the rules of variations and correlation of AE parameters, frequency characteristics, fractal and chaos characteristics during the damage process of gas-filled coal. On these base, the comprehensive estimate and forecast model of dynamic damage was established with fuzzy comprehensive evaluation. The results of dynamic estimate of coal damage process are agreed well with variation of stress-strain.
     5) A meso-statistical damage constitutive model has been presented base on Weibull theory and Mohr-Coulomb rule using the method of damage meso-mechanical, which take into account the characteristics of solid-gas coupling of gas-filled coal. There are three types of methods of solving model parameters which have been proposed: regression solutions of model parameters, the method based on AE signal and fractal dimension of destroy surface. Considering the coupling effect ion of the stress field, seepage field and concentration field, we established a solid-gas coupling seepage model of gas-filled coal which based on the diffuse equation and seepage equation of gas transport, the effective stress equation and stress-permeability evolvement equation, and analyzed the definite conditions.
     6) The meso-mechanical analysis methodology for increasing permeability of the low-permeability coal seam was proposed through combining the solid-gas coupled micro-mechanical analysis method of the coal and project field. Application of this method to test micro-structures of original and after the pre-split blasting coal, the results show that the deep-hole controlled pre-split blasting improved the gas permeability of coal seam. We have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. The results obtained by LS-SVM regression show that the forecasting has a high precision, and forewarning results are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.
引文
[1]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [2]周世宁,林伯泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [3]霍多特B B.,宋世钊,王佑安译,煤与瓦斯突出机理[M].北京:中国工业出版社,1966.
    [4]俞启香.矿井瓦斯防治[M].北京:中国矿业大学出版社.1992.
    [5]王佑安,吴继周,杨思敬,等.煤矿安全手册[M].北京:煤炭工业出版社,1994
    [5] [6]郑敏哲.从数量级和量纲分析看煤与瓦斯突出的机理.煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文集,1983:3-11.
    [6] [7]谈庆明,俞善炳,朱环球,等.含瓦斯煤在突然卸压下的开裂破坏[J].煤炭学报,1997(22):514-518.
    [7] [8]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [8] [9]蒋承林,俞启香.煤与瓦斯突出的球壳失稳假说[J].煤矿安全,1995(2):17-25
    [9] [10]蒋承林.石门揭穿含瓦斯煤层时动力现象的球壳失稳机理研究[D].徐州:中国矿业大学, 1994
    [10] [11]煤炭科学研究院重庆分院.瓦斯突出强度与瓦斯能量关系的研究[R].科学技术报告.1997
    [11] [12]胡千庭.我国防治煤与瓦斯突出技术和装备的新发展[R],科学技术报告,1997
    [13]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990(2)
    [14]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995
    [12] [15]鲜学福,辜敏,李晓红,等.煤与瓦斯突出的激发和发生条件[J].岩土力学,2009
    [14] [16]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):598-602.
    [17]章梦涛,徐曾和,潘一山.冲击矿压与突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53
    [18]景国勋,张强.煤与瓦斯突出过程中瓦斯作用的研究[J].煤炭学报,2005,30(2):169-171
    [19]李文平.煤岩层地应力差异性对瓦斯突出影响研究.煤矿瓦斯灾害防治理论战略研讨(周世宁,鲜学福,朱旺喜编)[M].徐州:中国矿业大学出版社,2001.
    [20] Karev V I,Kovalenko Y F. Theoretical model of gas filtration in gassy coal seams[J]. Soviet Mining Science,1989,24(6):528-536.
    [21] Gray I. The mechanism of, and energy release associated with outbursts. Symposium on occurrence, prediction and control of outbursts in coal mines. Aust. Inst. Min. Metall. ,Melbourne,1980,111-125.
    [22] Paterson L. A model for outburst in coal[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1986,23:327-332.
    [23] Litwiniszy J. A model for the initiation of coal-gas outbursts[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985,22:39-46.
    [24] Evans I,Pomeroy C D,et al. The compressive strength of coal. Colliery Eng,1961,38:75.
    [25] Hobbs P W. The strength and stress-strain characteristics of coal in triaxial compression. J. Geol.,1964,72:214-231.
    [26] Bieniawaski Z T. The effect of specimen size on compression strength in coal. Int. J. Rock Mech. Min. Sci. ,1968(5):325-333.
    [27] Atkinson R H,Ko HonYim. Strength characteristics of US coal. In: Proc. 18th. Symp. Rock Mech. ,Colorado School of Mines Press Golden,1977,2B3-1.
    [28] White J M. Mode of deformation of Rosebud coal,Colstrip,Montana:room temperature,102.0MPa. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. ,1980,17:129-130.
    [29] Ettinger I L,Lamba E G. Gas medium in coal breaking process. Fuel,1957,36:298-302.
    [30] Tankard H G. The effect of sorbed carbon dioxide upon the strength of coals. M. Sci. Thesis,The University of Sydney, Australia,1957.
    [31]王佑安.在瓦斯介质中煤的强度降低及其变形的初步研究.抚顺煤岩所第一研究室,1964.
    [32]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报,1986,(3):9-16.
    [38] [33]何学秋,王恩元,聂百胜,等.煤岩流变电磁动力学[M].北京:科学出版社,2003.
    [34]何学秋,薛二龙,聂百胜,等.含瓦斯煤岩流变特性研究[J].辽宁工程技术大学学报,2007,26(2):201-203.
    [35]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报,1988,(1):1-7.
    [36]鲜学福.煤与瓦斯突出潜在危险区的预测方法,煤与瓦斯突出预测资料汇编,煤炭科院研究总院重庆分院,1987.
    [42] [37]许江.煤与瓦斯突出潜在危险区预测的研究[D].重庆:重庆大学,1992.
    [38]许江,鲜学福,杜云贵,等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(9):42-47.
    [39]尹光志.岩石力学中的非线性理论与冲击地压预测的研究[D].重庆:重庆大学,1999.
    [40]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆:重庆大学,1998.
    [18] [41]孙培德,万华根.煤层瓦斯流固耦合渗流的二维数值模拟[J].岩石力学与工程学报,2004,23(7):1179-1185
    [42] Sun Peide. Advances in coupled modeling in geomechanics[M]. Beijing:China Environmental Science Press,2005.
    [15] [43]曹树刚.煤岩的蠕变损伤、瓦斯渗流和煤与瓦斯突出关系的研究[D].重庆:重庆大学,2000.
    [44]曹树刚,鲜学福.煤岩固气耦合的流变力学分析[J].中国矿业大学学报,2001,30(4):362-365.
    [45]章梦涛,潘一山,梁冰,等.煤岩流体力学[M].北京:科学出版社,1995.
    [20] [46]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [47]梁冰,章梦涛,王泳嘉.含瓦斯煤的内时本构模型[J],岩土力学,1995(3):22-28.
    [49] [48]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报, 1995,17(5):12-18 .
    [49]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.
    [50]张国华,梁冰.煤岩渗透率与煤与瓦斯突出关系理论探讨[J].辽宁工程技术大学学报,2002,21(4):414-417.
    [51]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [16] [52]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用.煤炭学报. 2003,28(1):41-45.
    [53]靳钟铭,赵阳升,贺军.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,3(10):271-280.
    [54]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [55]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].长春:吉林大学出版社,2002.
    [56]徐涛.煤岩破裂过程固气耦合数值试验[D].沈阳:东北大学,2004.
    [57]徐涛,唐春安,宋力,等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [58]李树刚,钱鸣高,石平五.煤样全应力应变过程的渗透系数-应变方程[M].煤田地质与勘探,2001,29(1):22-24.
    [59]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[M].岩土工程学报,2001,23(1):68-70.
    [60]卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):686-692.
    [61]谢强,姜崇喜,凌建明.岩石细观力学实验与分析[M].成都:西南交通大学出版社,1997.
    [62]葛修润,任建喜,蒲毅彬,等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [63]赵阳升,孟巧荣,康天合,等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,27(01):28-34.
    [64]姜耀东,赵毅鑫,何满潮等.冲击地压机制的细观实验研究[J].岩石力学与工程学报,2007,26(5):2794–2799.
    [65]谢卫红,高峰,谢和平.细观尺度下岩石热变形破坏的实验研究[J].实验力学,2005,20(4):628-634.
    [66] BOBET A,EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):863–888.
    [67] LIU G T,GAO H,CHEN F Q. Micro-study on creep of concrete at early age under biaxial compression[J]. Cement and Concrete Research,2002,32(12):1865–1870.
    [68]张东升,罗淼,韩永胜.材料力学性能显微测试系统[J].试验力学,2006,21(5):651–654.
    [69]葛修润,李廷芥,张梅英,等.适用于岩石力学细观试验研究的加载仪[J].岩土力学,2000,21(3):289–294.
    [70]中国科学院武汉岩土力学研究所.应力–水流–化学耦合的岩石单轴压缩细观力学试验装置[P].中国:CN 1299106C,2005.
    [71]中国科学院武汉岩土力学研究所.化学腐蚀下岩石破裂全过程三轴压缩细观力学试验装置[P].中国:CN 1603783A,2005.
    [72]中国科学院武汉岩土力学研究所.应力-水流-化学耦合的岩石破裂过程细观力学加载系统[P].中国:CN 1619294A,2005.
    [73] Chen S, Yue Z Q, Tham L G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(6):939-957.
    [74]陈沙,岳中琦,谭国焕.基于数字图像的非均质岩土工程材料数值分析方法[J].岩土工程学报,2005,27(8):956-964.
    [75]岳中琦,陈沙,郑宏,等.岩土工程材料的数字图像有限元分析[J].岩石力学与工程学报,2004:23(6):889-897.
    [76] Yue Z Q,Chen S,Tham L G. Seepage analysis in inhomogeneous geomaterials using digital image processing based finite element method[C]// Soil and Rock America 2003:Proceedings of the 12th Pan-American Conference for Soil Mechanics and Geotechnical Engineering and the 39th U.S. Rock Mechanics Symposium. Massachusetts: MIT,2003: 1297-1302.
    [77]于庆磊,唐春安,唐世斌,等.基于数字图像的岩石非均匀性表征技术及初步应用[J].岩石力学与工程学报,2007,26(3):551-559.
    [78]朱珍德,渠文平,蒋志坚.岩石细观结构量化试验研究[J].岩石力学与工程学报,2007,26(7):1313-1325.
    [79]徐文杰,胡瑞林,岳中琦,等.土石混合体细观结构及力学特性数值模拟研究[J].岩石力学与工程学报,2007,26(2):300-311.
    [80] XU Wenjie,Yue Zhongqi,HU Ruilin,et al. Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method [J]. Int J Rock Mech Mining Sci (2007), doi:10.1016/j.ijrmms.2007.09.003.
    [81] Shkuratnik V L,Filimonov Y L,Kuchurin S V. Experimental investigations into acoustic emission in coal samples under uniaxial loading [J]. Journal of Mining Science,2004,40(5):458-464.
    [82]来兴平,吴学明,高喜才,等.基于MTS-AE单轴压缩下的煤岩损伤特征[J].西安科技大学学报,2008,28(2):375-378.
    [83]李廷,杜赟,王鑫,等.高孔岩石局部变形带的野外证据和实验研究进展[J].岩石力学与工程学报,2008,27(增1):2593-2603.
    [84]窦林名,何学秋,王恩元,等.由煤岩变形冲击破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,41(12):86-88.
    [85]肖红飞,何学秋,王恩元.受压煤岩破裂过程电磁辐射与能量转化规律研究[J].岩土力学,2006,27(7):1097-1110.
    [86]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究[J].地球物理学报,2000,43(1):131-137.
    [87]王恩元,何学秋,刘贞堂.煤岩破裂声发射实验研究及R/S统计分析[J].煤炭学报,1999,24(3):270-273.
    [88] Masahiro S,Hidekazu S,Masaru S,etal. Hypocenter distributions of AE in coal under uniaxial compression[J]. Journal of the Mining and Metallurgical Institute of Japan,1988,104(1201):163-168.
    [89]邹银辉.煤岩声发射机理初探[J].矿业安全与环保,2004,31(1):31-34.
    [90]邹银辉,董国伟,李建功,等.波导器声发射信号传播衰减理论及规律[J].煤炭学报,2008,33(6):648-651.
    [91]文光才,杨慧明,邹银辉.含瓦斯煤体声发射应力波传播规律理论研究[J].煤炭学报,2008,33(3):295-298.
    [92] Itakura, K. Nakajima I,Watanabe Y. AE activity in cross-measure drivages against outburst-prone coal seams - study on AE activity prior to gas outburst (1st report)[J]. Journal of the Mining and Metallurgical Institute of Japan,1988,104(1206):495-503.
    [93] Nakajima I,Itakura K,Deguchi G. AE activity in entry drivage against outburst-prone coal seam: Study on AE activity prior to gas outburst (2nd report)[J]. Journal of the Mining and Metallurgical Institute of Japan,1988,104(1210): 877-882.
    [94]吴紫汪,马巍,浦毅彬,等.冻土蠕变变形特征细观分析[J].岩土工程学报,1997,19 (3):1-6.
    [95]杨更社,谢定义,张长庆,等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15 (1):48-54.
    [96]杨更社,谢定义,张长庆.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报,1998,17(3):279-285.
    [97] KawaKata H,Cho A , Yanagidani T,et al. The observations of faulting in Westerly granite under triaxial comp ression by X2ray CT scan [J]. Int. J. Rock Mech. &Min. Sci ,1997,34 (34 ):151-162.
    [98]杨更社,谢定义,张长庆,等.岩石损伤扩展力学特性的CT分析[J].岩石力学与工程学报,1999,18(3):250-254.
    [99]葛修润,任建喜,浦毅彬,等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [100]任建喜,葛修润,浦毅彬,等.岩石破坏全过程的CT细观损伤演化机理动态分析[J].西安公路交通大学学报,2000,20(2):12-16.
    [101]葛修润,任建喜,浦毅彬,等.岩石细观损伤扩展规律的CT实时试验[J].中国科学(E辑),2000,30(2):104-111.
    [102]任建喜.三轴压缩岩石细观损伤扩展特性CT实时检测[J].实验力学,2001,16(4):387-395.
    [103]刘宝琛,詹哲明,崔志莲.煤受压变形及破坏的实验研究.煤炭学报,1983(2):51-61.
    [104]凌建明.节理岩体损伤力学及时效损伤特性的研究[D].上海:同济大学,1992.
    [105] MENENDEZ B,DAVID C,NISTAL A M. Confocal scanning laser microscopy applied to the study of pore and crack networks in rocks [J].Computers and Geosciences,2001,27(9):1101-1109.
    [106]尚嘉兰,孔常静,李廷芥,等.岩石细观损伤破坏的观测研究[J].实验力学,1999,14(3):373-383.
    [107]赵永红.受单轴压缩大理岩填充割缝周围的微裂纹生长[J].岩石力学与工程学报,2004,23(15):2504-2509
    [108]谢卫红,高峰,谢和平.细观尺度下岩石热变形破坏的实验研究[J].实验力学,2005,20(4):628-635.
    [109] WONG R H C,CHAU K T,WANG P. Microcracking and grain size effect in Yuen Long marbles [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(5):479-485.
    [110] HATZOR Y H,ZUR A,MIMRAN Y. Microstructure effects on microcracking and brittle failure of dolomites [J]. Tectonophysics,1997,281(3):141-161.
    [111]李炼,谭国焕,李启光,等.花岗岩板渐进破坏过程的微观研究[J].岩石力学与工程学报,2001,21(7):940-947.
    [112]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测[J].岩石力学与工程学报,20 02,21(7):935-939.
    [113]杨更社.岩石材料损伤变量与CT数间的关系分析[J].力学与实践,1998,20(4):47-49.
    [114]杨更社.岩石损伤检测技术及其进展[J].长安大学学报,2003,23(6):47-55.
    [115]任建喜.三轴压缩岩石损伤扩展细观机理及其本构模型[J].煤炭学报,2001,26(6):578-583.
    [116]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,2001,20(4):425-431.
    [117] Zhao Y H. Fractal variation of fracturing in compressed rock specimen [J]. Chinese Science Bulletin,1995,40:1277–1281.
    [118] Zhao Y H. Crack pattern evolution and a fractal damage constitutive model for rock [J]. Int. J. Rock Mech. Min. Sci.,1998,35(3):349-366.
    [119] WU X Y,BAUD P,WONG T F. Micromechanics of compressive failure and spatial evolution of anisotropic damage in Darley Dale sandstone [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(1):143-160.
    [120]朱珍德,张勇,等.用数字图像相关技术进行红砂岩细观裂纹损伤特性研究[J].岩石力学与工程学报,2005,24(7):1123-1129.
    [121]张勇.南京红砂岩细观损伤演化特性及其本构模型试验研究[D].南京:河海大学,2005.
    [122]渠文平.基于数字图像处理技术的岩石细观量化试验研究[D].南京:河海大学,2006.
    [123]朱珍德,渠文平,蒋志坚.岩石细观结构量化试验研究[J].岩石力学与工程学报,2007,26(7):1313-1325.
    [124]于庆磊,唐春安,朱万成,等.基于数字图像处理的岩石细观破了力学分析[J].力学与实践,2006,28(4):60-64.
    [125]徐晓鹏,彭瑞东,谢和平,等.基于SEM图像分维估算的脆性材料细观结构演化方法研究[J].岩石力学与工程学报,2004,23(21):3600-3603.
    [126] Kulatilake P H S W,Panda B B,Fiedler R. Box fractal dimension and the first invariant of fracture tensor of fracture networks as measures of statistical homogeneity of jointed rock masses [A]. In:Proc. 2nd North American Rock Mechanics Symposium[C]. Montreal:[s. n.],1996,1779-1786.
    [127] Xie H P,Gao F. The mechanics of cracks and a statistical strength for rocks [J]. Int. J. Rock Mech. Min. Sci.,2000,37(3):477-488.
    [128] Carpinteri A,Yang G. Fractal dimension evolution of micro crack net in disordered materials[J]. Theoretical and Applied Fracture Mechanics,1996,25(1):73-81.
    [129] Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials [J]. Int. J. of Solids and Structures,1994,31(3):291-302.
    [130]姜小春,谢和平,周宏伟.拉伸载荷下准脆性材料微裂纹损伤宏细观损伤变量关系初探[J].岩石力学于工程学报,2007,26(s1):2648-06.
    [131]肖洪天,周维垣.脆性岩石变形与破坏的细观力学模型研究[J].岩石力学与工程学报,2001,20(2):151-155.
    [132]胡千庭.煤与瓦斯突出的力学作用机理及应用研究[D].北京:中国矿业大学,2007.
    [133]张慧,李小彦,等.中国煤的扫描电子显微镜研究[D].北京:地质出版社,2003.
    [134]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1).:40-44.
    [135]琚宜文,姜波,王桂樑,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005.
    [136]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [137]徐龙君.突出区煤分形结构与性质[M].重庆:重庆大学出版社,2004.
    [138]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [139]姚宝魁.煤和瓦斯突出机理[M].北京:中国科学技术出版社,1993.
    [140] BARRETT E P,JOYNER L G,HALENDA P P. The determination of pore volume and area distributions in porous substances I,computations from nitrogen isotherms[J]. Journal of American Chemistry Society,1951,73(1):373–380.
    [141] KHAJA M S,RAMA K S,SAI P S,et al. Derivation of the expanded form of the BJH equation and its application to the pore structure analysis of mesoporous adsorbents[J]. dsorption Science andTechnology,1992,9(4):212–230.
    [142] RACHID G,MOHAMED S,ABDELKADER B. Adsorption of carbon dioxide at high pressure over H-ZSM-5 type zeolite,micropore volume determinations by using the Dubinin–Raduskevich equation and the“t-plot”method[J]. Microporous and Mesoporous Materials,2008,113(1/3):370–377.
    [143]张慧,王晓刚,员争荣.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002,21(3):278-284.
    [144]钟玲文.煤内生裂隙的成因[J].中国煤田地质,2001,16(3):6-9.
    [145]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [146]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005.
    [147]谢和平.分形-岩石力学导论[M].北京,科学出版社,2005.
    [148] Langmuir I. The constitution of fundamental properties of solids and liquids[J]. Journal of American Chemical Society,1916,38(2):221-295.
    [149] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of American Chemical Society,1918,40(1):361-403.
    [150]林瑞泰.多孔介质传热传质理论[J].北京:科学出版社,1995.
    [151]赵洪宝.含瓦斯煤失稳破坏及声发射特性的理论与实验研究[D].重庆:重庆大学,2009
    [152]孔祥言.高等渗流力学[M].合肥:中国科技大学出版社,1999.
    [153] ZHU W C, LIU J, SHENG J C, Elsworth D. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44 (2): 971-980.
    [154] Klinkenberg L J. The permeability of porous media to liquids and gases[C]// Drill Production Practices. New York:American Petroleum Institute, 1941: 200–213.
    [155]周世宁,林伯泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社2007
    [156] Rafael C.Gonzalez,Richard E.Woods,Steven L.Eddins. Digital Image Processing Using MATLAB[M].Inc. Upper Saddle River, NJ, USA:Prentice-Hall 2003.
    [157]崔屹.数字图像处理技术与应用[J].北京:电子工业出版社,1997.
    [158]赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1996.
    [159]刘榴娣,刘明奇,党长民.实用数字图像处理[M].北京:北京理工大学出版社,1998.
    [160]阮秋琦.数字图像处理基础[M].北京:中国铁道出版社,1988
    [161]余成波.数字图像处理及MATLAB实现[M].重庆:重庆大学出版社,2003.
    [162]罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2003.
    [163]渠文平.基于数字图像处理技术的岩石细观量化试验研究[D].南京:河海大学,2006
    [164] JOHN S T,NELLO C. Support vector machines and other kernelbased learning methods[M]. New York:Cambridge University Press,2000
    [165]祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6–9.
    [166] SUYKENS J A K,VANDEWALLE J. Recurrent least squares support vector machines[J]. IEEE Transactions on Circuits and System(I),2000,47(7):1109–1 114.
    [167] SUYKENS J A K,VANDEWALLE J. Least square support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293–300.
    [168] FLETCHER R. Practical methods of optimization[M]. New York:John Wiley and Sons Inc.,1987.
    [169]姜谙男,梁冰.基于最小二乘支持向量机的煤层底板突水量预测[J].煤炭学报,2005,30(5):613–617.
    [170] SUYKENS J A K,GESTEL T V,BRABANTER J D,et al. Least squares support vectormachines[M]. Singapore:World Scientific Co.,Pte. Ltd.,2002.
    [171]郭辉,刘贺平,王玲.最小二乘支持向量机参数选择方法及其应用研究[J].系统仿真学报,2006,18(7):2033–2036.
    [172]徐芳,梅文胜,张志华.航空影像分割的最小二乘支持向量机方法[J].武汉大学学报(信息科学版),2005,30(8):694–698.
    [173]曹树刚,刘延保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(增1):2 794–2 799.
    [174]曹树刚,刘延保,张立强,等.突出煤体单轴压缩和蠕变状态下的声发射对比试验[J].煤炭学报,2007,32(12):1 264–1 268..
    [175]王登科.含瓦斯煤体本构模型与失稳规律研究[M].重庆:重庆大学出版社,2009.
    [176]李贺,尹光志,许江.岩石断裂力学[M].重庆:重庆大学出版社,1988.
    [177] Jacob Bear. Dynamics of fluids in porous media[M]. American Elsevier Publishing Company, I NC,1972.
    [178]李世愚.岩石断裂力学导论[M].合肥:中国科学技术大学出版社,2009.
    [179]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [180]唐春安,于广明,刘红元,等.采动岩体破裂与岩层移动数值试验[M].长春:吉林大学出版社,2003
    [181]唐春安,朱万成.混凝土损伤与断裂——数值试验[M].北京:科学出版社,2003.
    [182]于庆磊,杨天鸿,刘洪磊,等.中低围压花岗岩细观破坏机制的数值模拟[J].东北大学学报(自然科学版),2009,30(7):1026-1029.
    [183]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004
    [184]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程生发射特征研究[J].岩石力学与工程学报,2004,23(15):2499–2503
    [185]王祖荫.声发射技术基础[M].济南:山东科学技术出版社,1990.
    [186]滕山邦久.声发射(AE)技术的应用[M].冯夏庭译.北京:冶金工业出版社,1996.
    [187]黄滚.岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究[D].重庆:重庆大学,2007.
    [188]李树春.周期荷载作用下岩石变形与损伤规律及其非线性特征[D].重庆:重庆大学出版社,2008.
    [189] Yanagidani T et al. Loacation of dilatancy in Ohshima granite under constant uniaxial stress[J]. J. Geophys. Res.,1985,90(B8):6840-6858.
    [190] Kusunose K,Nishizawa O. AE gap prior to local fracture of rock under uniaxial compression[J]. J. Phy Earth,1986,34(s1):45-56
    [191] Hirata T et al. Fracture structure of spatial distribution of microfacturing in rock[J]. G. J. R. abstr. Soc. ,1987,90(2):368-374.
    [192]安镇文,姚栋华,陈颙.岩石声发射和地震活动的信息维特征[J].中国科学(B辑),1992,22(7):736-742.
    [193]雷兴林,马瑾,楠濑勤一郎.三轴压缩下粗晶花岗岩声发射三维分布及其分形特征[J].地震地质,1991,13(2):92-106.
    [194] Feng Xiating,Seto M. Fractal structure of the distribution of microfracturing in rocks[J]. Geophysical Journal International,1999,136:275-285.
    [195]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性——第二部分:时间分形分析[J].岩石力学与工程学报,2000,19(5):551-556.
    [196]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性——第二部分:试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [197]高峰,李建军,李肖音,等.岩石声发射特征的分形分析[J].武汉理工大学学报,2005,27(7):67-69
    [198]谭云亮,刘传孝,赵同彬.岩石非线性动力学初论[M].北京:煤炭工业出版社,2008
    [199] Christian Merkwirth,Ulrich Parlitz,Immo Wedekind,et. al. TSTOOL 1.2,2004.
    [200]王东生,曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995.
    [201] Rosenstein M T,Collins J J and De Luca C J.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physica D,1993,65,117.
    [202] Holger Kantz,Thoma Schreiber. Nonlinear time series analysis[M].Cambridge Press,2001.
    [203] Abarbanel H D I. Analysis of Observed Chaotic Data[M]. New York:Springer,1996.
    [204] S M潘迪特,吴宪民著,李昌琪,荣国俊译.时间序列及系统分析与应用[M].北京:机械工业出版社,1988.
    [205]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [206]杨伦标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,1995.
    [207]曹树刚,王艳平,刘延保,等.基于危险源理论的煤矿瓦斯爆炸风险评价模型[J].煤炭学报,2006,32(4):470-474
    [208]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [209]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [210]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [211]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25 (2):184-187.
    [212]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23 (19 ):3226-3231.
    [213]曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究[J].岩石力学与工程学报,2005,24(14):2403-2408
    [214]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究[J].岩土工程学报,2004,26 (6):820-823.
    [215]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791
    [216]李树春,许江,李克钢.基于初始损伤系数修正的岩石损伤统计本构模型[J].四川大学学报(工程科学版),2007,39(6):41-44.
    [217]高峰,谢和平,赵鹏. Weibull模量和岩石强度的分形性质[J].科学通报,1993,38(15):1435-1438.
    [218]赵阳升,杨栋,冯增朝,等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J].岩石力学与工程学报,2008,27(7):1321-1328.
    [219]陶云奇.含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D].重庆:重庆大学出版社,2009.
    [220] A. T.艾鲁尼,唐修义,宋德淑,王荣龙译.煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社,1992.
    [221]王艳平.基于危险源理论煤矿瓦斯爆炸和涌出风险预警系统及其应用研究[D].重庆:重庆大学,2006.
    [222] Wang Y P,Cao S G,Wu X M, et al. Gas emission forecasting and fore-warning research of a working face based on improved BP network[P]. In: Progress in mining science and safety technology. Beijing: Science Press,2007,Part A : 1226-1231.
    [223]付琳燕,华钢.基于人工神经网络的煤矿瓦斯浓度预测系统研究[J].煤矿机电, 2006(6):41-43
    [224]吕品,马云歌,周心权.上隅角瓦斯浓度动态预测模型的研究及应用[J].煤炭学报,2006,31(4):461-465
    [225]章国清,秦玉金,姜文忠,等.我国矿井瓦斯涌出量预测方法研究现状及展望[J].煤矿安全,2007,8:58-60.
    [226] Vapnik V N. The Nature of Statistical Learning Theory,New York:Springer,1999.
    [227]曹树刚,徐阿猛,沈大富,等.顺层深孔预裂爆破瓦斯预抽的试验研究[J].中国矿业,2007,16(7):68–70,73.
    [228]龚敏,黄毅华,王德胜,等.松软煤层深孔预裂爆破力学特性的数值分析[J].岩石力学与工程学报,2008,27(8):1 674–1 681.
    [229]张兴华.利用深孔控制预裂爆破强化瓦斯抽放消除回采工作面突出危险性[J].煤矿安全,2006,(2):22–24.
    [230]石必明,俞启香.低透气性煤层深孔预裂控制松动爆破防突作用分析[J].建井技术,2002,23(5):27–30.
    [231]蔡峰,刘泽功,张朝举,等.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J].煤炭学报,2007,32(5):499–503.
    [232]曹树刚,李勇,刘延保,等.深孔控制预裂爆破对煤体微观结构的影响.岩石力学与工程学报,2009,28(4):673-678.
    [233]龚敏,刘万波,王德胜,等.提高煤矿瓦斯抽放效果的控制爆破技术[J].北京科技大学学报,2006,28(3):223–226.
    [234]国家安全生产监督管理局,国家煤矿安全监察局.煤矿安全规程[M],北京:煤炭工业出版社,2004.
    [235]陶云奇,许江,李树春.改进的灰色马尔柯夫模型预测采煤工作面瓦斯涌出量[J].煤炭学报,2007,32(4) :391-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700