再生水入渗过程中盐污染迁移转化规律模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生水回灌是一个世界性的尝试,实践经验表明:将符合水质要求的再生水回灌地下含水层,可以有效地增加地下水资源的存储量,并可以较好地利用含水层的储水空间,起到年度和年际间的调节作用。但是,限于经济和技术原因,回灌水中盐分难以得到有效去除,将会影响到供水安全问题,必须引起足够的重视。
     本次研究根据前期工程地质勘察及研究区土壤样品采集分析,选取北京市顺义潮白河再生水受水区三种典型代表性土壤介质(砾石含砂、细砂、粉质粘土)作为研究对象,并采用受水区再生水进行淋溶模拟试验。
     实际河水淋溶单一介质模拟柱试验的测试结果分析表明,在三种典型土壤介质中,阳离子交换吸附作用主要体现为K-Ca之间的交换,且粉质粘土柱中阳离子离子交换作用较砾石含砂柱和细砂柱更为显著。另外,柱试验结果还表明,随着土壤介质中粘粒含量及总有机碳含量的增加,和阳离子交换容量及粘土矿物总量的上升,典型介质淋溶模拟柱试验中阳离子交换作用达到平衡时所需要的时间也就越长,分别约为砾石含砂72天、细砂80天和粉质粘土86天。定量结果计算也证明了上述结论,粉质粘土介质的各阴阳离子本底含量最高,单位质量粉质粘土介质总硬度及溶解性总固体(TDS)的贡献量最大,分别为57.67mg·100g~(-1)和69.52 mg·100g~(-1)。
     实际河水淋溶组合介质模拟柱试验的测试结果分析表明,在组合介质模拟柱中,阳离子交换吸附作用依然主要体现为K-Ca之间的交换,且组合柱中砾石含砂段阳离子交换方向主要是水中钙离子交换土壤介质中的钾离子,而细砂段与粉质粘土段中,阳离子交换方向则主要是水中钾离子交换土壤介质中的钙离子。其次,组合柱出水水质中总硬度和TDS有降低的总趋势,二者分别降低了4.69mg/L和17.64mg/L,推测这与年后试验环境温度值的降低、进水水化学类型的变化(由年前重碳酸钠型水变为年后重碳酸钠钙型水)及淋溶模拟柱试验本身阳离子交换作用处于临界状态等因素存在一定的关系;另外,实际河水淋溶组合柱各过渡段对总硬度及TDS浓度变化的贡献要大于各单一介质段对其的贡献。
Groundwater recharge with reclaimed water is a world-wide attempt, the experience shows that: the reclaimed water recharge to groundwater aquifer is an effective way to increase the storage capacity of groundwater resources, and can be a better use of aquifer storage space, and play a regulation function of a year and between inter- annual. However, because of the limited of economic and technical, salt difficult to be effectively removed from the reclaimed water. it will affect the water supply security, must be given due consideration, therefore, it must be given due consideration.
     According to engineering geologic investigation and soil sample test analysis, selects reclaimed water of Chao-bai River in Beijing Shun-yi to take three kind of typical representative soil medium (sandy gravel, fine sand, silty clay) as the object of study, and uses the reclaimed water of Chao-bai river to carry on the leaching simulation test.
     The actual river-water leaching single-medium simulation column test results shows that, the cation exchange adsorption mainly manifests is between the K-Ca exchange, and in the silty clay column, the cation exchange function compares the sandy gravel column and the fine sand column is more remarkable. Moreover, the column test result also indicated that, along with clay content and total organic compounds (TOC) increase, with cation exchange capacity (CEC) and total amount of clay minerals rise, in the typical medium leaching simulation column experiment, the cation exchange function's equilibrium time is also longer, respectively is 72 days for the sandy gravel、80 days for the fine sand and 86 days for the silty clay. The quantificational result computation has also proven the above conclusion, the background value of various anions and cations concentration of the silty clay medium is highest, and the contribution quantity of the total hardness of the unit mass silty clay medium and the total dissolved solids (TDS) is biggest, respectively is 57.67mg·100g~(-1) and 69.52 mg·100g~(-1).
     The actual river-water leaching combination-medium simulation column test results shows that, in the combination-medium simulation column, the cation exchange adsorption also mainly manifests is between the K-Ca exchange, and in the layer of sandy gravel of the combination-medium column, the direction of cation exchange mainly is calcium ion in the water exchange to the potassium ion in the soil-medium, but in the layer of fine sand and silty clay of the combination-medium column, the direction of cation exchange mainly is potassium ion in the water exchange to the calcium ion in the soil-medium. Second, total hardness and TDS of effluent water quality are the general trend of lower in the combination-medium column, respectively decreased by 4.69mg/L and 17.64mg/L, this phenomenon is speculated the reason is that the lower temperature of test ambient、the changes of enter water chemistry type (from water chemistry type of HCO3-Na change ioto water chemistry type of HCO3-Na、Ca) and the function of cation exchange of its own in leaching simulation column test is in a critical state and so on. Moreover, the contribution rate of the transition layers of the actual river-water leaching combination-medium column for the total hardness and the total dissolved solids (TDS) is bigger than the contribution rate of the layers of the single-medium.
引文
[1]张自杰.《环境工程手册—水污染防治卷》.北京:高等教育出版社,1996.1404~1410.
    [2]何星海,马世豪.再生水补充地下水水质指标及控制技术[J].环境科学,2004,25(5):61~64.
    [3]北京市环境科学研究院,北京市水文总站,北京市勘察设计院.北京市平原地区地下饮用水源保护及防治技术指南[R].2000.
    [4]于开宁,郝爱兵,李铎,等.石家庄市地下水盐污染的分布及污染机理[J].地学前缘,2001,8(1):151~154.
    [5]王东胜,沈照理,钟佐燊,等.氮迁移转化对地下水硬度升高的影响[J].现代地质,1998,12(3):431~435.
    [6]唐莲,张晓童.再生水灌溉土壤污染物运移规律的试验研究[J].农业科学研究,2007,28(1):29~31.
    [7]沈冰,乔云峰,黄领梅,等.有沙层土柱中钾离子运移的试验研究[J].西北农林科技大学学报,2005,33(2):127~132.
    [8]沈照理,朱宛平,钟佐燊.《水文地球化学基础》.北京:地质出版社,1995.
    [9]唐克旺,等.中国地下水资源质量评价(Ⅱ),地下水水质现状和污染分析[J].水资源保护.2006,22(3):1-5.
    [10]厉艳君,等.地下水水质评价方法综述,地下水.2007,29(5):19~24.
    [11]管孝艳,杨培岭,吕烨,等.咸淡水交替灌溉下土壤盐分再分布规律的室内实验研究[J].农业工程学报.2007,23(5):88~91.
    [12]李玉堂,甄国新,陈东宛,等.北京市顺义区地下水中氨氮的分布及其影响因素[J].环境与健康杂志.2007,24(9):706~708.
    [13]何江涛,钟佐燊,汤鸣皋,等.人工构建快速渗滤污水处理系统的试验[J].中国环境科学. 2002,22(3):239~243.
    [14]地下水质量标准.中华人民共和国地质矿产部.
    [15]地表水环境质量标准.国家环境保护总局,国家质量监督检验检疫总局.
    [16]Check GG, Waller D H, Lee S A, et al. The lateral-flow sand-filter system for septic-tankeffluent treatment. Water Environ. Res, 1994, 66: 919~928.
    [17]U. S. Environmental Protection Agency. Guidelines for Water Reuse. EPA/ 625/ R292/ 004, Cincinnati, Ohio: U. S. Environ2mental Protection Agency, Center for Environmental Research Information, 1992.
    [18]Laber J, Perfler R, Haberl R. Two strategies for advanced nitrogen elimination in vertical flow constructed wetlands. Wat. Sci. Tech., 1997, 35(5):71~77.
    [19]State of California. Draft Proposed Groundwater Recharge Reg2ulation [R] Sacramento, California; California Department of Health Service, Division of Drinking Water, 1999.
    [20]于开宁,陈京生,葛正林,等.石家庄市地下水盐污染评价-权均值法[J].地球学报.2000,21(2):221~226.
    [21]刘宏斌,张云贵,李志宏,等.北京市平原农区深层地下水硝态氮污染情况研究[J].土壤学报.2005,42(3):411~418.
    [22]汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘.2002,9(2):339~340.
    [23]魏娜,程晓如,刘宇鹏.浅谈国内外城市污水回用的主要途径[J].节水灌溉.2006,(1):31~36.
    [24]刘晶晶,刘春生,李同杰,等.钙在土壤中的淋溶迁移特征研究[J].水土保持学报.2005,19(4):53~75.
    [25]周卫,林葆.土壤中钙的化学行为与生物有效性研究进展[J].土壤肥料.1996,(5)19~44.
    [26]刘春,谭利敏,尹国勋,等.焦作市污染区地下水无机氯化物污染原因初探[J].江苏环境科技.2006,19(2):124~126.
    [27]邹胜章,张金炳.北京西南城近郊浅层地下水盐污染特征及机理分析[J].水文地质工程.2002,(01):35~38.
    [28]陈忠,沈明道,赵敬松,等.粘土矿物含量分析中的几个问题[J].沉积学报.1998,16(1):137~139.
    [29]钱云平.地下水系统中污染物的行为特征[J].地下水.1997,(2):31~33.
    [30]Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation toclimate and vegetation [J].Ecological Applications. 2000,10: 423~436.
    [31]Payal sampat. Groundwater Quality Deteriorating, Vital signs 2000[J].World Watch Institute,2000:124~125.
    [32]Tiessen H,Stewart JW B.Particle-size fractions and their use in studies of soil organic matter:II Cultivation effects on organic matter composition insize fractions[J].Soil Science Society of America Journal. 1983, (47): 509~514.
    [33]柳文华,等.中水回灌的水质标准比较分祈[J].北京水务. 2007,(4):24~26.
    [34]王鹤立,陈雷,程丽,等.再生水回用于景观水体的水质标准探讨.中国给水排水.2001,17(12):31~35.
    [35]周律,邢丽贞,段艳萍.再生水回用景观水体的水质要求探讨[J].给水排水.2007,33(4):42.
    [36]韩中华.国外实施再生水回灌的启示[J].北京水务.2006,(5):4~6.
    [37]罗朋,张富仓,李晓军,等.入渗水头对盐碱土水盐运移影响的试验研究[J].节水灌溉.2008,6:4~11.
    [38]王文焰,王全九.有限土体中再分布的土壤水盐运移试验研究[J].农业工程学报.2004,20(3):40~43.
    [39]肖娟,雷廷武,江培福,等.水质对饱和土壤盐分淋洗效率的影响.太原理工大学学报.2006,37(6):642~645.
    [40]Reeve R C ,Bower C A. Use of high2salt waters as a flocculant and source of divalent cations for reclaiming sodic soils [J].Soil Sci.1960,90:139~144.
    [41]Reeve R C, Doering E J. The high salt2water dilution met hod for reclaiming sodic soil[J].Soil Sci Soc Am Proc.1960,39: 498~504.
    [42]丛日环,李小坤,鲁剑魏.土壤钾素转化的影响因素及其研究进展.华中农业大学学报.2007,26(6):907~913.
    [43]胡全才,卢朝东.不同土壤对钾的选择吸附特性[J].土壤学报.2002,39(5):707~713.
    [44]潘国营,武亚遵,唐常源,等.大型水源地开采地下水导致的盐分迁移和污染[J].水文地质工程地质.2007,(5):59~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700