松辽盆地深层储层岩石学特征及次生孔隙形成热力学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随地层深度的增加,火山岩的孔渗不受深度的影响,显示了火山岩岩性较为致密而压实作用并不能发挥很大作用的特性,而碎屑岩则比较明显地随深度降低物性变差。在松辽盆地的2500m、3000m 和3500m 和南部的2000m 和2500m 左右,出现五个渗透率和孔隙度的高值区。初步分析上述几个高值区应该是次生孔隙及火山气孔发育带。
    松辽盆地深部储层岩石学特征表明:松辽盆地碎屑岩类型主要为岩屑长石砂岩和长石岩屑砂岩。火山岩在北部主要分布在营城组和火石岭组。松辽盆地南部火山岩主要在营城组和火石岭组中发育,岩性以玄武岩为主,其次为安山岩和流纹岩。次生孔隙主要发育于岩屑长石砂岩和长石岩屑砂岩中,为研究次生孔隙的热力学形成机制提供了岩石学证据。
    油田水特征:作为深层主要储层的泉头组、登娄库组和营城组,在水型和平均矿化度上存在差异。泉二段在北部的平均矿化度较低,反应了一种破坏的沉积环境,而在南部的平均矿化度较高,显示了较好的封闭条件。泉一段、登娄库组、营城组,作为深层的主力储层,平均矿化度较高,呈较好的封闭性,水型也是以反映较为封闭条件的NaHCO3型为主。我们推测应当是水岩反应形成次生孔隙,从而使得这些地层可作为良好的储集体。松辽盆地北部的登娄库组和营城组,随着深度的变化,矿化度的高值、ph 的低值与碎屑岩、火山岩的孔、渗高峰区对应较好,这里的孔渗高峰区是指的3000m 和3500m 的次生孔隙发育带。
    对油田水的资料进行了分析,对油田水进行了离子活度的计算,利用热力学方法对长石、浊沸石、碳酸盐和高岭石的溶蚀热力学计算结果表明:长石中主要是钙长石和钾长石的溶蚀形成次生孔隙,而钠长石的溶蚀贡献不大。浊沸石的溶蚀在松辽盆地非常重要,特别是在松辽盆地北部深层储层中较为发育,是松辽盆地北部的3000m 左右次生孔隙形成的主要成因。方解石溶蚀只发生在温度较低的地层中,即多发生于成岩阶段的早期,在松辽盆地较为发育,呈现多期次形成、溶蚀的特性。通过计算可知高岭石的溶蚀对于次生孔隙形成也具有一定的贡献。
    结合镜下观察、前人资料以及本次所做的热力学分析,绘制了松辽盆地溶蚀模式图。其中,次生孔隙的形成主要是由于长石和浊沸石的溶蚀所形成。
With the increase of depth, the porosity and permeability of volcanic is not influenced by depth. Evidently, clastic rock’s porosity and permeability become worse with the depth. Sandstone and rhyolite have better character. Yingzheng group and Quantou group are the main reservoir. At the 2500m, 3000m, 3500m, there appears three sections with high porosity and permeability. At the south of Songliao basin, volcanic breccia has better character. At the 2000m, 2500m, there appears two sections with high porosity and permeability. We think these sections are all high secondary pores belt.
    The character of deep reservoir rock in Songliao Basin: In the north of Songliao Basin, the clastic rock are mainly lithic arkose and lithic sandstone. The volcanic rock mainly located at Yincheng group and Huoshiling group. And the main reservoir is volcanic rock in Yingcheng group. In the south of Songliao Basin, the sandstone mainly covers lithic arkose and lithic sandstone. And the volcanic rock include basalt, andesite and rhyolite. Like north of Songliao Basin, the volcanic rock mainly distributed at Yingcheng group and Huoshiling group.
    Through studying on detailed oil water data, we found there are difference between north pf Songliao basin and south of Songliao basin. Quan 1 section and Denglouku group and Yingcheng group, as main reservoir, all have high degree of mineralization. And the type of water is NaHCO3. We inferred that it is the reaction between water and rock which form secondary pores. The area of high degree of mineralization value, low ph value is corresponds to high porosity and permeability.
    Through analyzing the data of oilfield water, and combing thermal means, we calculated the ion activity. And calculated the formula of feldspar, zeolite, carbonate, kaolinite’s solution by thermal means, and got the balance line. Drawing the map by spot the LogK of oilfield water. We think: it is mainly the anorthite and potassium feldspar which form the secondary pores. The albite offer little contribution. The solution of zeolite is the main cause of formation of 3000m secondary pores belt in north of Songliao basin. Besides, we calculated the solution of carbonate, kaolinite. The solution of calcite occurred in stratum with low temperature, in another word, belong to the early stage of diagenesis. In the kaolinite, there can also form secondary pores.
引文
[1] Berger W H. Foraminiferal ooze: solution at depths. Science, 1967. 156~38
    [2] Blatt H, Middleton G V, Murray R C. Origin of sedimentary rocks. New Jersey Englewood Cliffs: Prentice-Hall, 1972. Inc.
    [3]Bloch S, Helmold K P. Approaches to predicting reservoir quality in sandstones, AAPG Bulletin, 1995. 79(1):97~115
    [4]Boyd R.J, Lewis. D.W. Sandstone diagenesis related to varying burial depth and temperature in Greymouth Coalfield, South Island, New Zealand of Geology and GeoPHysics, 1995. Vol. 38
    [5]Coudrain-Ribstein A, et al. Temperature-carbon dioxide partial pressure trends in confined aquifers. Chemical Geol, 1998. 145~73
    [6]Deutch C V. Journel AG. Geostatistical soft ware library and user’s Guide. Oxford: Oxford press, 1992.
    [7]Garrels R M, et al. Stability of some carbonates at 25℃and one atmosPHere total pressure. Am J Sci, 1960. 258~ 402
    [8]Galloway W E and Hobday D K. Terrigenous clastic depositional systems: application to petroleum, coal, and uranium exploration. New York: Springer-Verlag, 1983.
    [9]Galloway W E. Hydrogeologic regimes of sandstone diagenesis. In: McDonald D A and Surdam R C (eds.): Clastic diagenesis. Tulsa, The American Association of Petroleum Geologists, 1985. 3~14
    [10]Genthon P, et al. Carbonate diagenesis during thermo-convection: Application to secondary porosity generation in clastic reservoirs. Chemical Geology, 1997. 142~41
    [11]Giles M R, et al. Origin and significance of redistributional secfondary porosity. Mar Pet Geol, 1990.7~379
    [12]Gouze P, Coudrain R A.Chemical reactions and porosity changes during sedimentary diagenesis, Applied Geochemistry, 2002. 17(1): 39~47
    [13]Harris N B. Burial diagenesis of Brent Sandstones: a study of Stafjord, Hutton and Lyell Fields, In: Morton A C, Haszeldine R S et al. (eds) Geology of Brent Group, Geological Society, London, Special Publications, 1992. 61: 351~376
    [14]Hayes J B. Sandstone diagenesis –the hole truth. Society of economic paleontologists and mineraloists, 1979. 26: 127-140
    [15]Hay R L. Zeolites and zeolitic, reaction in sedimentary rocks. New York: The Geological society of America, Inc., 1966. 105-165
    [16]Helgeson H C, Delany J M, Nesbitt H W, and Bird D K. Summary ang critique of the thermodynamic properties of rock-forming minerals. Am. Jour. Science, 1978. 278-A, 1-229
    [17]Holland T J B and Powell R. An internally consistent thermodynamic data set of PHases of petrological interest. J MetamorPHic Geol, 1998. 16: 309~343
    [18]Huang W H, Keller W D. Dissolution of rock-forming silicate minerals in organic acids: Simulated first-stage weathering of fresh mineral surfaces. Amer. Miner. 1970. 55: 2076~2904
    [19]Huang W L, Longo J M. The effect of organics on feldspar dissolution and the development of secondary porosity. Chem. Geol. 1992. 98: 271~292
    [20]Jean L D, Robert F. Gibbs free energy of formation of kaolinite from solubility measurement in basic solution between 60°C and 170°C, Geochimica et Cosmochimica Acta, 1996. 60(4):
    553~564
    [21]Kafri U, et al. Hollow carbonate pebbles: a case study of selective secondary porosity generation, Neogene, Israel. Sedimentary Geology, 1996. 103: 161
    [22]Kameda A; Dvorkin J. Effects of texture and diagenesis on permeability and porosity of sandstones, Geological Society of America, 2001 annual meeting. Boston, MA, United States, 2001. Nov. 1~10
    [23]Lai Xingyun, Yu Binsong, Chen Junyuan, Chen Xiaoling, Liu Jianqing, Mei Mingxiang, Jing Weiguang, Chen Suhua. 2004. Thermodynamic conditions of framework grain dissolution of clastic rocks and its application in Kela 2 gas field. Science In China (Series D), 2004. 34(1)
    [24]Loucks R G, Dodge M M, Galloway W E. Regional controls on diagenesis and reservoir quality in Lower Tertiary sandstones along the Texas Gulf Coast. In: McDonald D A and Surdam R C (eds.): Clastic diagenesis. Tulsa, The American Association of Petroleum Geologists, 1985. 15-46
    [25]Loucks R G, Bebout D G, and Galloway W E. Relationship of porosity formation and preservation to sandstone consolidation history –Gulf Coast Lower Tertiary Frio Formation. Gulf Coast Association of Geological Societies Transactions, 1977. 27: 109-120
    [26]Loucks R G. Importance of secondary leached porosity in lower Tertiary sandstone reservoirs along the Texas Gulf Coast. Gulf Coast Association of Geological Societies Transactions, 1979. 29: 164-171
    [27]Martell A E, Motekaitis R J. Coordination chemistry and speciation of Al (III) in aqueous solution. In Environmental Chemistry and Toxicology of Aluminum. (Lewis T E ed.) Lewis Publishers, 1989. 3~17
    [28]McBride EF. Importance of secondary porosity in sandstones to hydrocarbon exploration. Bulletin of the American association of petroleum geologists, 1980. 64: 742
    [29]Mcbride E F. Quartz cement in sandstone: a review, Earth Science Reviews, 1989. 26: 69~112
    [30]McBride E F, Land, L S, Mack L E. Diagenesis of colian and fluvial feldspathic sandstones, NorPHlet Formation (Upper Jurassic), Rankin County, Mississippi, and Mobile County Albama, AAPG Bulletin, 1987. 71:1019~1034
    [31]Mclaughlin, O M, Haszeldine, R S, Fallick A E, Rogers G. The case of the missing clay, aluminium loss and secondary porosity, South Brae Oilfield, North Sea, Clay Mineral, 1994. 29: 651~664
    [32]Millken K L, Mcbride E F, Land L S. Numerical assessment of dissolution versus replacement in the subsurface destruction of detrital feldspars, Frio Formation, South Texas, Journal of Sedimentary Petrology, 1989. 59: 740~757
    [33]Morse J W, et al. The dissolution kinetics of major sedimentary carbonate minerals. Earth Science Rev, 2002, 58: 51
    [34]Nagy K L, Blum A E, Lasaga A C. Dissolution and precipitation kinetics of kaolinite at 80°C and PH=3: the dependence on solution saturation state, America Journal of Science, 1991. 291(9): 649~686
    [35]Oxtoby N, Gluyas J. Discussion on aluminum loss during sandstone diagenesis, Journal of Geological Society, London, 1997. 154: 747~751
    [36]Peterson M N A, Calcite: rates of dissolution in a vertical profile in the central Pacific. Science, 1966, 154: 1542
    [37]Primmer T J, Cade C A, Evans J G, Gluyas, M S, et al., Global patterns in sandstone diagenesis: their application to reservoir quality prediction for petroleum exploration, In: Kupecz J A G, Bloch S (eds), Reservoir quality prediction in sandstones and carbonates, 1997. AAPG Memoir 69:61~77
    [38]Saigal G C. Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway, Texture and origin, J Seclim Petrology, 1988. 58: 1003~1013
    [39]Salman Bloch, Robert H, Lander Linda Bonnell. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 2002. 86(2): 301-328
    [40]Schmidt V and McDonald D A. The role of secondary porosity in the course of sandstone diagenesis. Society of economic paleontolgists and mineralgists, 1979. 26: 175-208
    [41]Schmidt V, McKonald D A, and Platt R L. Pore geometry and reservoir aspects of secondary porosity in sandstones. Bulletin of Canadian Petroeum Geologists, 1977. 27: 271-290
    [42]Siebert R M, Moncure G K , and Lahann R W. A theory of framework grain dissolution in sandstones. In: McDonald D A and Surdam R C (eds):. Clastic Diagenesis. Tulsa, Oklahoma, USA: The American Association of Petroleum Geologists,. 1985. 163~176
    [43]Smith J T, Ehrenberg S N. Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs: relationship to inorganic chemical equilibrium, Marine and Petroleum Geology, 1989. 6:129~135
    [44]Smith R M, Martell A E, Critical Stability Constants. Vol. 1, 2, 3, 4, 5. (1974, 1975, 1977, 1976, 1982) Plenum Publishing Corp. N.Y.
    [45]Sneider RM and King H R. Integrated rock-log calibration in the Elmworth field, Alberta, Canada: part I: reservoir rock detection and characterization. In: Masters JA (ed.), Elmworth--Case Study of a Deep Basin Gas Field, 1984. AAPG Memoir 38: 205-214
    [46]Stoessell R K, Pittman E D, 1990. Secondary porosity revisited: the chemistry of feldspar dissolution by carboxylitc acids and anions, AAPG Bulletin, 74(10): 1195~1805
    [47]Stumm W, Morgan J J. Aquatic Chemistry (2nd ed.). Wiley-Interscience. 1981.
    [48]Surdam R C, Boese S W, and Crossey L J. The chemistry of secondary porosity. In: McDonald D A and Surdam R C (eds.): Clastic diagenesis. Tulsa, The American Association of Petroleum Geologists,. 1985. 127-150
    [49]Tanger IV J C and Helgeson H C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am. Jour. Sci., 1988. 288: 19-98
    [50]Taylor J R. The influence of calcite dissolution on reservoir porosity in Miocene sandstones, Picaron field, offshore Texas Gulf coast. J Sediment Petrol, 1989. 60: 322
    [51]Welch S A, Ullman W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim. Cosmochim. Acta, 1992. 57: 2725~2736
    [52]Wilkinson M, Kitty L M, Haszeldine R S. System destruction of K-feldspar in deeply buried rift and passive margin sandstones, Journal of the Geological Society, London, 2001. 158: 675~683
    [53]Wilkinson, M, Haszeldine R S. Aluminium loss from arkoses produces diagenetic quartzites and secondary porosity: Fulmar Formation, North Sea, Journal of the Geological Society, London, 1996. 153: 657~660
    [54]William R A,Davidk D. Regional diagenetic trends in the lower Cretaceous muddy sandstone. Powder River Basin. SEPM Special Publication, 1979, (26)
    [55]Wilson M D. Reservoir Quality Assessment and Prediction in Clastic Rocks, SEPM Short Course 30. 1994.
    [56]Wollklast R, Chou L. Surface reactions during the early stages of weathering of albite, Geochimica et Cosmochinmica Acta, 1992. 56: 3113~3112
    [57]Wul L, John M L. The effect of organics on feldspar dissolution and the development of Secondary Porosity, Chemical Geology, 1992. 26(1): 98 中文参考文献
    [58]Rahman M K.一种涉及生烃能力的干酪根实用分类法. 地质地球化学,1996,6:67~72
    [59]V. 恩格尔哈特著. 沉积物和沉积岩的成因. 北京:地质出版社,1982
    [60]R.赫斯,V.施密特. 沉积成岩作用讲学讲稿汇编. 地质矿产部成都地质矿产研究所(整理,内部),1985
    [61]陈传平,梅博文.原油的油水热解产生低分子量有机酸的研究. 地球化学,1997,26(1):85~91
    [62]陈丽华,赵澄林.碎屑岩天然气储集层次生孔隙三种成因机理. 石油勘探与开发,1999,26(5):77-79
    [63]储层地球化学[M],梅博文译.西安:西北大学出版社,1992,1-29
    [64]大庆油田石油地质志编辑委员会编. 中国石油地质志(卷二、上)[M] . 北京:石油工业出版社,1993
    [65]戴金星.中国含油气盆地的无机气及其气藏. 天然气工业,1995,15(3):46~51
    [66]董玉琳.沉淀反应的热力学及动力学初探. 贵州化工,2001,26(3):32~33
    [67]杜栩,郑洪印,焦秀琼.异常压力与油气分布. 地学前缘,1995,2(3~4):137~148
    [68]傅家谟.煤成烃地球化学. 广东科技出版社,1900
    [69]傅家谟.干酪根地球化学. 广东科技出版社,1995
    [70]傅强.成岩作用对储层孔隙的影响——以辽河盆地荣37块气田下第三系为例. 沉积学报,1998,16(3):92~96
    [71]郝石生.天然气气藏的形成和保存. 北京:石油工业出版社,1995
    [72]高东.松辽盆地南部深部含气性预测研究. 吉林地质,2003,22(2):41~44
    [73]高瑞祺,蔡希源等.松辽盆地大油田形成条件与分布规律[M] . 北京:石油工业出版社,1997
    [74]郭少斌,刘玉梅.松辽盆地德惠凹陷深层含油气系统划分. 石油实验地质,2002,24(4):317~321
    [75]郭占谦.松辽盆地非生物成因气的成藏特征. 中国科学D辑,1997,27(2):143~148
    [76]郭占谦.松辽盆地深断裂在油气形成中的作用. 石油学报,1996,17(3):68~74
    [77]何兴华.松南下白垩统天然气成藏主控因素与成藏规律. 2004,25(1):75~80
    [78]黄福堂,冯子辉.松辽盆地中生界砂岩次生孔隙形成条件及预测. 大庆石油地质与开发,1999,18(1):1-4
    [79]黄福堂,邹信方,张作祥.油田水中主要酸类对储层物性影响因素研究. 大庆石油地质与开发,1998,17(3):7-9
    [80]黄福堂,邹信方,张作祥.松辽盆地北部不同类型干酪根氧化产物中有机酸成分分析及对储层结构影响研究. 石油实验地质,1995,17(2):156-166
    [81]黄福堂,冯子辉.松辽盆地中生界砂岩次生孔隙形成条件及预测. 1999,18(1):1-4
    [82]黄汲清.中国主要地质构造单位. 中央地质调查所地质门报,甲种第20号.1945
    [83]纪友亮,赵澄林,刘孟慧.东濮凹陷沙河街组碎屑岩成岩作用与有机质演化的关系. 石油与天然气地质,1995,16(2):148~155
    [84]姜洪启,邢顺诠.松辽盆地朝-长地区扶余油层砂岩中次生孔隙结构特征. 石油勘探与开发,1986,13(6):14-19
    [85]江培谟.地质热力学基础. 北京:科学出版社,1989
    [86]江文荣,周雯雯.珠三坳陷成岩作用与油气聚集. 沉积学报,1998,16(4):91~97
    [87]金强,信荃麟,王伟锋,任怀强,钱基.未成熟油藏的储层成岩作用. 石油大学学报(自然科学版), 1996,20(增刊):1~15
    [88]赖幸运等.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用. 地球科学,2004,34(1):45~53
    [89]李本亮,冉启贵,高哲荣,魏伟.中国深盆气勘探展望. 天然气工业,2002,22(4):27~30
    [90]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册. 北京:科学出版社,1985
    [91]李景坤,孔庆云,刘伟.松辽盆地北部深层气源对比. 大庆石油地质与开发,1999,18(1):5~7
    [92]李庶勤,牛克智,刘淑慧.松辽盆地北部深层气藏类型及形成条件分析. 1997,16(4):1~5
    [93]刘宝珺,张锦泉.沉积成岩作用. 北京:科学出版社,1992
    [94]刘林玉,陈刚,柳益群,邱世祥,薛祥煦.碎屑岩储集层溶蚀型次生孔隙发育的影响因素分析. 沉积学报,1998,16(2):97~101
    [95]刘洛夫,王伟华,李术元.干酪根二次生烃热模拟试验研究. 沉积学报,1995,13(增刊):147~150
    [96]刘钦甫,杨晓杰.有机酸对高岭石形成影响的模拟试验研究. 煤田地质与勘探,1996,2:6~9
    [97]罗明高.确定沉积岩成岩作用顺序的定量方法. 沉积学报,1995,13(1):88~93
    [98]罗孝俊,杨卫东,李容西,高丽萍.PH值对长石溶解度及次生孔隙发育的影响. 矿物岩石地球化学通报,2001,20(2):103~107
    [99]罗志立.地裂运动与中国油气分布[M] . 北京:石油工业出版社,1992
    [100]迈尔,A D, 孙枢.沉积盆地分析原理. 北京:石油工业出版社,1991
    [101]穆曙光,张以明.成岩作用及阶段对碎屑岩储层孔隙演化的控制. 西南石油学院学报,1994,16(3):22~27
    [102]彭大钧,李仲东,刘兴材等.济阳盆地沉积型异常高压带及深部油气资源的研究. 石油学报,1988,9(3):9~17
    [103]乔秀云,杨建国,孔惠,金玉东,万传彪.松辽盆地北参1井深层地层划分与对比. 大庆石油地质与开发,2002,21(6):13~15
    [104]邱隆伟.一种新的储层孔隙成因类型—石英溶解型次生孔隙. 沉积学报,2002,20(4):621-627
    [105]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析. 沉积学报,1994,12(3):67~75
    [106]孙吉原,单冬梅,辛仁臣.松辽盆地头台地区扶杨油层砂岩次生孔隙特征及其控制因素. 2001,25(4):11-14
    [107]孙作为,李鹏丸.物理化学. 北京:地质出版社,1979
    [108]唐黎明,何兴华.松辽盆地梨树凹陷泉头组沉积特征. 石油与天然气地质,2002,23(3):266~268
    [109]王成,邵红梅,洪淑新,潘昊,刘杰.松辽盆地北部深层次生孔隙分布特征. 大庆石油地质与开发,2004,23(5):37-39
    [110]王成,邵红梅.庆长垣以西地区中部油层组合次生孔隙研究. 大庆石油地质与开发,1999,18(5):5-7
    [111]王成,邵红梅,洪淑新,齐晓杰,刘彤艳.松辽盆地北部深层碎屑岩浊沸石成因、演化及与油气关系研究.矿物岩石地球化学通报,2004,23(3):213-218
    [112]王果寿.松辽盆地十屋-德惠地区沉积体系特征. 石油与天然气地质,2001,22(4):331~336
    [113]王钧,黄尚瑶,黄歌山,汪集旸.中国地温分布的基本特征. 北京:地震出版社,1990
    [114]王世谦,何生编译.有机质在沉积物成岩中的作用. 地质科技信息,1993,12(4):27~33
    [115]王万春.天然气、原油、干酪根的氢同位素地球化学特征. 沉积学报,1996,14(增刊):131~135
    [116]王威维尔,C.E 普拉德,张德玉.粘土矿物化学. 北京:地质出版社,1983
    [117]武汉大学,吉林大学.分析化学[M] . 北京:高教出版社,1985
    [118]伍新和,尚书争等.包裹体研究在油气勘探中的应用. 天然气勘探与开发,2000,23(3):29~34
    [119]西北大学地质系编译.碎屑岩的成岩作用. 西安:西北大学出版社,1986,86~98
    [120]肖贤明,刘祖发,刘德汉,米敬奎,申家贵,宋之光.应用储层流体包裹体信息研究天然气气藏的成藏时间. 科学通报,2002,47(12):|957~960
    [121]谢继容.砂岩次生孔隙形成机制. 天然气勘探与开发,2000,23(1):52~55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700