聚偏氟乙烯改性膜处理油田三次采出水的抗污染特性与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题从研究油田三次采出水水质特点出发,以解构和建构理论为指导,通过研究考察超滤过程的宏观现象,辅以微观液-固界面的相互作用深入剖析,阐明了油田三次采出水对超滤膜污染的影响因子及污染机制,建立了油田采出水的超滤膜污染模型,优化了运行工艺条件,并提出了相应的污染控制措施。为TiO_2/Al_2O_3-PVDF超滤膜在油田采出水的实际应用提供重要的理论基础和技术支持。
     首先,对比研究了不同操作压力、料液浓度、温度、pH值、矿化度等条件下,PVDF膜及纳米改性TiO_2/Al_2O_3-PVDF膜处理油田采出水时主要有机物的截留率及透水量。结果表明,渗透液中乳化液(O/W)的浓度在0.5mg/L以下,可达油田低渗透层回注要求。进而,通过响应曲面法优化分析了超滤去除水中主要污染物过程中的最佳操作条件,结果显示,操作压力对超滤过程的通量衰减起最主要作用;在此基础上确定的改性膜超滤过程的通量预测模型,可为其在采出水处理中的实际应用提供理论参考。
     其次,通过研究采出水中两种典型的高分子污染物在超滤膜上的吸附性能,发现亲水性有机物阴离子型聚丙烯酰胺(APAM)给改性膜造成的污染相对严重,疏水性的O/W相对较轻。通过考察两种膜对APAM及O/W的静态吸附,发现两种膜对二者的吸附等温线分别为Langmuir-Freundlich型和Redlich-Peterson型;且APAM在两种膜上的吸附能力均随pH的升高而降低,随温度的升高而升高;阳离子对两种膜吸附APAM的影响较大,吸附作用的相对大小为Na~+<K~+<Ca~(2+),阴离子作用不显著。在pH值2.0~12.0的范围内,O/W在两种膜上的吸附量随pH值的升高先升高后降低;随温度的升高而降低;阴、阳离子的加入均促进了O/W吸附量的增加。说明改性膜抗污能力的提升是具有针对性的。
     再次,通过对比分析不同运行模式下超滤通量衰减过程,建立了不同膜阻力对超滤通量衰减贡献的数学模型。得出:膜孔堵塞过程发生迅速且持续时间短,主要发生在超滤开始的前4min,但该过程造成的通量衰减却十分显著;凝胶层形成包括三个阶段,即浓差极化阶段、凝胶层形成阶段及凝胶层稳定阶段,此过程需经过30min完成,所得凝胶形成模型可以较好的对该过程进行模拟;以污染物-膜的静态吸附为基础,建立的吸附污染阻力引起的通量衰减数学模型可以很好的解释超滤过程中慢污染情况,该部分阻力引起的通量衰减在超滤后期起主导作用,且该过程持续时间较长。经典的“Cake”模型对整个超滤过程进行模拟,随超滤时间的延长适应性变差;故此,建立了基于各因素之间内在关系的白金汉模型,该模型能够简单、有效的模拟不同废水的超滤过程。
     第四,以前期实验为基础,以管式膜组件的形式,将改性PVDF膜和PVDF原膜应用于油田采出水的处理过程中,考察了操作压力对两种超滤膜透水性能的影响及出水水质随时间的变化趋势。结果表明:高压操作仅对增大膜的初始通量具有较明显的作用,低压操作则能更好地降低膜污染,维持膜通量的相对稳定。对比两种膜处理采出水出水发现,运行稳定后,两种膜的出水水质差别不大,渗透液浊度均低于0.5NTU;含油量均小于0.6mg/L;含聚量均小于0.2mg/L;TOC值小于170mg/L。
     最后,研究了油田采出水超滤过程的临界通量。结果表明,压力较低、pH中性、温度303K时,系统存在一个较低的临界通量,长期运行时,临界通量与非临界通量下的产水量相当,但膜污染缓慢、能耗大大降低。针对油田采出水中的不同污染物,研究了不同的物理-化学组合清洗方法,其中,水力冲洗、反冲、机械刮除的效果不佳,而化学方法中的NaClO(1%)的清洗效果较好,其次是HCl(1%)和十二烷基硫酸钠(SDS,0.5%),不建议采用超声波清洗。同样的清洗条件,改性膜的通量恢复明显高于原膜。
This subject started from the characteristics of oil field produced water, based onthe theory of deconstruction and construction, through examination of themacro-phenomenon of the ultrafiltration process, supplemented by micro-liquid-solid interface interaction in-depth analysis to clarify the impact factors andmembrane fouling mechanism of this UF process. Moreover, membrane foulingmathematic models and corresponding pollution control measures were also carriedout. Thus, this study can provide an important theoretical basis and a technicalsupport for the practical application of TiO_2/Al_2O_3-PVDF ultrafiltration membranein the oilfield produced water.
     Firstly, the comparative study of operating pressure, feed concentration,temperature, pH, salinity and other conditions on the rejection rate of the mainorganic matter and permeate flux have been carried out. The results show that theO/W concentrations in permeate liquid was lower than0.5mg/L, which achieved thestandard of rejection in the low permeability layer of earth. Furthermore, theultrafiltration process operating conditions were optimized by the response surfacemethodology (RSM), indicating that the operating pressure played a determined roleon the relative flux decline. Since then, the relative filtration flux prediction modelsfor different types of the modified membrane was investigated, which can provide atheoretical reference for the practical application of oil field produced water.
     Secondly, the adsorption performance of two kinds of membranes with two typesof different pollutants (APAM and O/W) was discussed. It was found that theTiO_2/Al_2O_3-PVDF membrane was polluted by the hydrophilic organic APAM wasmore serious than PVDF membrane, while the contrary results was got by O/W. Theadsorption isotherms of APAM-membrane and O/W-membrane adsorption systemwere Langmuir-Freundlich type and the Redlich-Peterson type, respectively.Moreover, the adsorption capacity of APAM by the two membranes was inverselyproportional to the pH value, while proportional to temperature. Cations have anobvious effect on this adsorption of APAM, and the relative capacity was: Na~+     Through comparative analysis of flux attenuation caused by the pollutants in thedifferent operating mode, the mathematical models on the major membraneresistance contribute to the ultrafiltration flux attenuation have been set up. Thenthe conclusions were drawn as: the membrane pore blocking occurs rapidly, lastinga very short time of about4min, but caused a significant flux decline; Gel layerformation consists of three phases, namely concentration polarization stage, the gellayer forming stage, and the stable gel layer stage, which needs about30min, andhas a significant contribution on flux attenuation; The adsorption fouling resistancemodel based on the static adsorption of the pollutants-membranes, can be used toexplain the slow pollution phenomenon of permeate flux decline process, and, thiskind of resistance plays a determined role in the late stage with a longer duration,nearly equal to the static adsorption equilibrium time. It was found that, theadaptability of the classic “Cake” model is getting worse with ultrafiltration timeextended when simulate the entire UF process. Thus, the "Buckingham" modelbased on the intrinsic relationship between the factors were established; although itis very simple, it is effective in simulating different wastewater UF process.
     Thirdly, on the basis of previous experiments, the form of a tubular membranemodule was used in oilfield produced water treatment process. The effects ofoperating pressure on the performance of the two ultrafiltration membranespermeable flux and water quality trends over time were investigated, and the resultsshow that high-pressure can only effect on the initial flux, while low-pressureoperation can reduce the membrane fouling, and maintain the relative stability ofthe membrane flux. After comparing the qualities by the two membranes, it wasfound that the water qualities by the two films has no obvious difference, theturbidity in the penetration was lower than0.5NTU, TOC value lower than170mg/L,O/W and APAM concentration was lower than0.6mg/L and0.2mg/L, respectively.
     Finally, the critical flux of oilfield produced water by dead-end ultrafiltrationprocess was investigated. The results show that the system has a relative low criticalflux with low pressure, neutral pH, temperature30°C, etc. The permeate water production was nearly the same between the system running with critical flux andun-critical flux with a long-running, however, membrane fouling slowed down andthe energy consumption decreased in critical flux model operation. For differentpollutants, different physical-chemical combination of cleaning methods werestudied, which, the effect of hydro washing, recoil, mechanical scrape was poor;while, cleaning by NaClO (1%), followed by HCl (1%) and SDS (0.5%) has ansignificant effect. Moreover, ultrasonic (US) cleaning was not recommended. Withcertain cleaning method, the modified membrane flux recovery was significantlyhigher than the original membrane.
引文
[1]窦茂卫,苏保卫,高学理,等.油田采出水膜法处理技术应用研究进展[J].环境科学与技术,2011,34(8):124-130
    [2]吕慧. PVDF纳米改性膜制备及其对采油废水处理效能研究[D].哈尔滨工业大学市政工程硕士论文,2007:1-4
    [3]马云香.改性离子交换膜降低采油废水矿化度试验研究.[D].哈尔滨工业大学市政工程硕士论文,2010:5-10
    [4]罗跃,赵素娟,刘清云,等.纳滤技术在油田调驱配聚中的应用进展[J].当代化工,2011,40(8):847-848,855
    [5]吉程,王旭.聚合物驱采油废水的处理技术研究进展[J].辽宁化工,2011,40(7):684-687
    [6]李建新,王虹,杨阳.膜技术处理印染废水研究进展[J].膜科学与技术,2011,31(3):145-148
    [7] A.S. Cassini, I.C. Tessaro, L.D.F. Marczak, et al. Ultrafiltration of wastewaterfrom isolated soy protein production: A comparison of three UF membranes[J]. Journal of Cleaner Production,2010,18(3):260-265
    [8] E. O. Akdemir, A. Ozer. Investigation of two ultrafiltration membranes fortreatment of olive oil mill wastewater [J]. Desalination,2009,249(2):660-666
    [9] S. Barredo-Damas, M.I. Alcaina-Miranda, A. Bes-Piá, et al. Ceramicmembrane behavior in textile wastewater ultrafiltration [J]. Desalination,2010,250(2):623-628
    [10]张军彩,谷宝累.膜技术在水处理和污水资源化应用的新进展[J].河北建筑工程学院院报,2011,29(2):35-37
    [11] R. H. Peiris, H. Budman, C. Moresoli, et al. Development of a speciesspecific fouling index using principal component analysis of fluorescenceexcitation–emission matrices for the ultrafiltration of natural water anddrinking water production [J]. J. Membr. Sci.2011,378(1-2):257-264
    [12]刘书孟.油田三次采油污水处理技术及回注问题研究[D].上海交通大学环境工程博士论文,2007:7-11
    [13]吴爱兵,孔繁钰,胡海修,等.膜技术在含油废水处理中的应用及研究现状[J].重庆石油高等专科学校学报,2003,5(4):35-37
    [14] K. Rayat, F. Feyzi. Influence of external electric field on the polarity ofwater droplets in water-in-oil emulsion phase transition [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2011,375(1-3):61-67
    [15]蔡钊荣,油田含油污水回用及处理技术[D].中国海洋大学应用化学硕士论文,2006:5-10
    [16] M. Mousavichoubeh, M. Shariaty-Niassar, M. Ghadiri. The effect ofinterfacial tension on secondary drop formation in electro-coalescence ofwater droplets in oil [J]. Chemical Engineering Science,2011,66(21):5330-5337
    [17]徐根良,曾静,翁建庆.含油废水处理技术综述[J].水处理技术,1991,17(1):1-12
    [18] D.K. Han. On concepts, strategies and techniques to the secondarydevelopment of China's high water-cut oilfields [J]. Petroleum Explorationand Development,2010,37(5):583-591
    [19]陆金仁,王修林,单宝田,等,采油污水生物处理技术[J].环境污染治理技术与设备,2004,5(11):65-69
    [20]. C. Stefanovi, T. Bolan a, M. Lu a, et al. Multi-criteria decision makingdevelopment of ion chromatographic method for determination of inorganicanions in oilfield waters based on artificial neural networks retention model[J]. Analytica Chimica Acta,2012,716(24):145-154
    [21] A. Fakhru’l-Razi, Alireza Pendashteh, Zurina Zainal Abidin, et al.Application of membrane-coupled sequencing batch reactor for oilfieldproduced water recycle and beneficial re-use [J]. Biores. Techno.2010,101(18):6942-6949
    [22] S. Den, G. Yu, Z. Jiang, et al. Destabilization of oil droplets in producedwater from ASP flooding [J]. Colloi. Surf. A: Physicochem. Eng.2005,252(2-3):113-119
    [23]任广萌.聚合物驱采油污水深度净化技术的研究[D].哈尔滨工业大学环境工程博士论文,2006:7-9
    [24] F. Bayati, J. Shayegan, A. Noorjahan. Treatment of oilfield produced waterby dissolved air precipitation/solvent sublation [J]. J. Petroleum Sci. Eng.2011,80(1):26-31
    [25]王利平,胡原君,刘晓红,等.改性磁性材料处理油田废水的研究[J].中国给水排水,2008,24(5):44-47
    [26]周琰,金晓英,王清萍,等.高岭土处理油田废水的试验研究[J].金属矿山,2009,(400)10:144-147
    [27] Y. Zhang, Y. Liu, R. Ji. Dehydration efficiency of high-frequency pulsed DCelectrical fields on water-in-oil emulsion [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,373(1-3):130-137
    [28]吴松,张翼,于婷,等.钕掺杂Ti/TiO2电极的制备并用于油田废水的降解实验研究[J].材料开发与应用,2009,24(5):52-56
    [29]杜荣光.油田废水处理技术研究与应用新进展[J].给水排水,2011,37(3):49-55
    [30] M. Lu, X. Wei. Treatment of oilfield wastewater containing polymer by thebatch activated sludge reactor combined with a zerovalent iron/EDTA/airsystem [J]. Biores. Techno.2011,102(3):2555-2562
    [31]闻岳,黄翔峰,裘湛,等.水解酸化-缺氧生物法处理油田废水的机理[J].中国环境科学,2006,26(3):288-292
    [32] G. Li, S. Guo, F. Li. Treatment of oilfield produced water by anaerobicprocess coupled with micro-electrolysis [J]. J. Membr. Sci.2010,22(12):1875-1882
    [33] H. Falahati, A.Y. Tremblay. Flux dependent oil permeation in theultrafiltration of highly concentrated and unstable oil-in-water emulsions [J].J. Membr. Sci.2011,371(1-2):239-247
    [34]汪琳,胡克武,冯兆敏.自来水厂超滤膜技术的研究进展[J].膜科学与技术,2011,31(5):107-111
    [35] A. Lobo, á. Cambiella, J.M. Benito, et al. Ultrafiltration of oil-in-wateremulsions with ceramic membranes: Influence of pH and crossflow velocity[J]. J. Membr. Sci.2006,278(1-2):328-334
    [36] M. Belkacem, M. Bahlouli, A. Mraoui, K. Bensadok. Treatment of oil-wateremulsion by ultrafiltration: A numerical approach. Desalination,2007,206(1-3):433-439
    [37]黄维菊,魏星.膜分离技术概论[M].北京:国防工业出版社,2007:1-13
    [38]董洁.基于模拟体系定量构效(QSAR)与传质模型和动力学分析的黄连解毒汤超滤机理研究[D].南京中医药大学中药药剂学科博士论文,2009:4-6
    [39] C. F. Lin, A. Y. Lin, P. S. Chandana, et al. Effects of mass retention ofdissolved organic matter and membrane pore size on membrane fouling andflux decline [J]. Water Res.2009,43(2):389-394
    [40]范国庆.水处理中恒流超滤分离过程的污染特性研究[D].西安建筑科技大学环境工程硕士论文,2008:7-14
    [41]慰娜.超滤过程中过滤类型分布的数学模拟[D].西安建筑科技大学环境工程硕士论文,2009:7-9
    [42]许振良,李鲜日,周颖.超滤-微滤膜过滤传质理论的研究进展[J].膜科学与技术,2008,28(4):1-8
    [43] A. Beicha, R. Zaamouche, N. M. Sulaiman. Dynamic ultrafiltration modelbased on concentration polarization–cake layer interplay [J]. Desalination2009,242:138-148
    [44] M. Shirato,T. Aragaki,E. lritani. Blocking filtration laws for filtration ofpower-law non-Newtonian fluids [J]. Chem. Eng. Jpn,1979,12:162
    [45]谷和平.陶瓷膜处理含油乳化废水的技术开发及传递模型研究[D].南京工业大学化学工程博士论文,2003:31-33
    [46]徐佳.超滤作为海水淡化预处理工艺的应用研究和Monte Carlo模拟
    [D].中国海洋大学海水利用技术博士论文,2008:17-20
    [47] F. Meng, S. Chae, A. Drews, et al. Recent advances in membrane bioreactors(MBRs): Membrane fouling and membrane material [J]. Water Res.2009,43(6):1489-1512
    [48] A. Saxena, B. P. Tripathi, M. Kumar, et al. Membrane-based techniques forthe separation and purification of proteins: An overview [J]. Advances inColloi. Interf. Sci.2009,45(1-2):1-22
    [49] E. Iritani, N. Katagiri, T. Kawabata, et al. Chiral separation of tryptophan bysingle-pass affinity inclined ultrafiltration using hollow fiber membranemodule [J]. Separation and Purification Technology,2009,64(3):337-344
    [50] D. Sarkar, A. Sarkar, M. Chakraborty, et al. Transient solute adsorptionincorporated modeling and simulation of unstirred dead-end ultrafiltrationof macromolecules: An approach based on self-consistent field theory [J].Desalination,2011,273(1):155-167
    [51] S.G. J. Heijman, M. Vantieghem, S. Raktoe, et al. Blocking of capillaries asfouling mechanism for dead-end Ultrafiltration [J]. J. Membr. Sci.2007,287:119-125
    [52] J. Fernández-Sempere, F. Ruiz-Beviá, P. García-Algado, et al. Visualizationand modelling of the polarization layer and a reversible adsorption processin PEG-10000dead-end Ultrafiltration [J]. J. Membr. Sci.2009,342:279-290
    [53]李辉,王树立,赵会军.水处理工业中超滤膜应用的问题探讨[J].过滤与分离,2007,2:35-38
    [54]刘荣娥.膜分离技术应用手册[M].北京:化学工业出版社,2001:1-8
    [55] N.K. Saha, M. Balakrishnan, M. Ulbricht. Polymeric membrane fouling insugarcane juice ultrafiltration: role of juice polysaccharides [J].Desalination,2006,189:59-70
    [56] M. Tiranuntakul, P.A. Schneider, V. Jegatheesan. Assessments of criticalfluxin a pilot-scale membrane bioreactor [J]. Bioresource Technology,2011,102(9):5370-5374
    [57] H. Bouzid, M. Rabiller-Baudry, L. Paugam, et al. Impact of zeta potentialand size of caseins as precursors of fouling deposit on limiting and criticalfluxes in spiral ultrafiltration of modified skim milks [J]. J. Membr. Sci.2008,314(1-2):67-75
    [58]齐鲁,田家宇,梁恒,等.粉末活性炭/污泥回流工艺强化膜前预处理的研究[J].中国给水排水,2010,26(7):50-53
    [59] S. Mozia, M. Tomaszewska, A.W. Morawski. Application of anozonation-adsorption-ultrafiltration system for surface water treatment [J].Desalination.2006,190(1/2/3):308-314
    [60] H. Falahati, A.Y. Tremblay. Flux dependent oil permeation in theultrafiltration of highly concentrated and unstable oil-in-water emulsions [J].J. Membr. Sci,2011,371(1-2):239-247
    [61] X.S. Yi, W.X. Shi, S.L. Yu, et al. Isotherm and kinetic behavior ofadsorption of anion polyacrylamide (APAM) from aqueous solution usingtwo kinds of PVDF UF membranes [J]. J. Hazard. Mater.2011,189:495-501
    [62] B. Sarkar, S. De. Prediction of permeate flux for turbulent flow in cross flowelectric field assisted ultrafiltration [J]. J. Membr. Sci.2011,369(1-2):77-87
    [63]孙丽华.以超滤膜为核心的组合工艺处理地表水试验研究[D].哈尔滨工业大学市政工程博士论文,2008:18-19
    [64] R. Shpiner, S. Vathi, D.C. Stuckey. Treatment of oil well “produced water”by waste stabilization ponds: Removal of heavy metals [J]. Water Res.2009,43(17):4258-4268
    [65] B. Wang, T. Wu, Y. Li, et al. The effects of oil displacement agents on thestability of water produced from ASP (alkaline/surfactant/polymer) flooding[J]. Colloi. Surf. A: Physicochem. Eng. aspects,2011,379(1-3):121-126
    [66]丁健.具有IPN结构的复合超滤膜在华北油田的应用研究[J].工业水处理,2000,20(3):21-23
    [67]赵晴.纳米Al2O3/TiO2改性PVDF超滤膜的制备与应用研究[D].哈尔滨工业大学市政工程学科博士论文,2009:37-64
    [68]镇祥华,于水利,庞焕岩,等.超滤膜处理油田采出水用于回注的试验研究[J].环境污染与防治,2006,28(5):329-333
    [69]王立国,高从,王琳,等.核桃壳过滤-超滤工艺处理油田含油污水[J].石油化工高等学校学报,2006,19(2):23-26
    [70]镇祥华,于水利,梁春圃,等.超滤与电渗析联用降低油田采出水矿化度中试试验研究[J].环境污染治理技术与设备,2006,7(7):15-19
    [71]许浩伟,王谦,李海军,等.溶汽气浮-超滤-反渗透深度处理油田污水及回用[J].水处理技术,2011,37(5):107-109
    [72]潘振江,高学理,王铎,等.双膜法深度处理油田采出水的现场试验研究[J].水处理技术,2010,36(1):86-89
    [73]徐英,李永发,李阳初,等.用聚砜和磺化聚砜超滤膜处理含油污水的研究[J].石油大学学报(自然科学版),2007,21(2):67-70
    [74] X. Wang, Z. Wang, Y. Zhou, et al. Study of the contribution of the mainpollutants in the oilfield polymer-flooding wastewater to the critical flux [J].Desalination,2011,273(2-3):375-385
    [75] Y. Lu, H. Sun, L.L. Meng, et al. Application of the Al2O3-PVDFnanocomposite tubular ultrafiltration (UF) membrane for oily wastewatertreatment and its antifouling research [J]. Sep. Purif. Technol.2009,66(2):347-352
    [76] E. Yuliwati, A.F. Ismail. Effect of additives concentration on the surfaceproperties and performance of PVDF ultrafiltration membranes for refineryproduced wastewater treatment [J]. Desalination,2011,273(1):226-234
    [77] E. Yuliwati, A.F. Ismail, T. Matsuura, et al. Characterization ofsurface-modified porous PVDF hollow fibers for refinery wastewatertreatment using microscopic observation [J]. Desalination,2011,283(1):206-213
    [78] O. Yahiaoui, H. Lounici, N. Abdi, et al. Treatment of olive mill wastewaterby the combination of ultrafiltration and bipolar electrochemical reactorprocesses [J]. Chem. Eng. Pro: Process Intensification.2011,50(1):37-41
    [79] M. akmakce, N. Kayaalp, I. Koyuncu. Desalination of produced waterfrom oil production fields by membrane processes [J]. Desalination,2008,222(1-3):176-186
    [80] J. S. Maguire-Boyle, A. R. Barron. A new functionalization strategy for O/Wseparation membranes [J]. J. Membr. Sci.2011,382(1-2):107-115
    [81] J. Surh, Y. G. Jeong, G. T. Vladisavljevi. On the preparation oflecithin-stabilized oil-in-water emulsions by multi-stage premix membraneemulsification [J]. J. Food Eng.2008,89(2):164-170
    [82] M. Ebrahimi, D. Willershausen, K. S. Ashaghi, et al. Investigations on theuse of different ceramic membranes for efficient oil-field produced watertreatment [J]. Desalination,2010,250(3):991-996
    [83] S. Muthukumaran, D. A. Nguyen, K. Baskaran. Performance evaluation ofdifferent ultrafiltration membranes for the reclamation and reuse ofsecondary effluent [J]. Desalination,2011,279(1-3):383-389
    [84]张学东.陶瓷膜与改性PVDF超滤膜处理采油废水试验研究[D].哈尔滨工业大学市政工程学科硕士论文,2008:30-64
    [85]徐俊,于水利,孙勇,等.降低含聚采油废水矿化度的超滤实验研究[J].哈尔滨商业大学学报(自然科学版),2007,23(1):36-39
    [86]王北福,于水利,镇祥华,等.超滤处理含聚污水过程中通量衰减机理的研究[J].环境科学学报,2007,27(4):568-574
    [87] B. Chakrabarty, A.K. Ghoshal, M.K. Purkait. Ultrafltration of stableoil-in-water emulsion by polysulfone membrane [J]. J. Membr. Sci.2008,325:427-437
    [88] G. Sen, S.Ghosh, U.Jha, et al. Hydrolyzed polyacrylamide graftedcarboxymethylstarch (Hyd. CMS-g-PAM): An efficient flocculant for thetreatment of textile industry wastewater [J]. Chem. Eng. J.2011,171(2):495-501
    [89] Y.L. Su, W. Cheng, C. Li, et al. Preparation of antifouling ultrafiltrationmembranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers[J]. J. Membr. Sci.2009,329:246-252
    [90] S. Mimoune, F. Amrani, Experime ntal, study of metal ions removal fromaqueous solutions by complexation-Ultrafiltration [J]. J. Membr. Sci.2007,298:92-98
    [91] M. Peter-Varbanets, F. Hammes, M. Vital, et al. Stabilization of flux duringdead-end ultra-low pressure ultrafiltration [J]. Water Res.2010,44(12):3607-3616
    [92] S. Popovi, M. Djuri, S. Milanovi, et al. Application of an ultrasound fieldin chemical cleaning of ceramic tubular membrane fouled with wheyproteins [J]. J. Food Eng.2010,101(3):296-302
    [93] K.R Dobson, M. Stephenson, P.F. Greenfield, et al. Identification andtreatability of organics in oil shale retort water [J]. Water Res.1985,19(7):849-856
    [94]周洁.聚偏氟乙烯膜的亲水改性及处理低浓度含油废水的研究[D].南京理工大学环境工程硕士论文,2005:30-32
    [95]田利,邹明珠,许宏鼎,等.采油污水中部分水解聚丙烯酰胺浓度的测定[J].吉林大学学报(理学版),2003,41(2):224-227
    [96] M. J. McGuire, J. Addai-Mensah, K. E. Bremmell. Spectroscopicinvestigation of the adsorption mechanisms of polyacrylamide polymersonto iron oxide particles [J]. J. Colloi. Interf. Sci.2006,299:547-555
    [97]张忠智,高玉格,卢晓刚,等.显色法测定HPAM质量浓度的方法改进[J].石油化工高等学校学报,2007,20(1):28-30
    [98] R.S. Hyam, K.M. Subhedar, S.H. Pawar. Effect of particle size distributionand zeta potential on the electrophoretic deposition of boron films OriginalResearch Article [J]. Colloids Surf. Physicochem. Eng. Aspects.2008,315(1-3):61-65
    [99]王玉兰.好氧颗粒污泥—膜组合工艺低温条件下脱氮除磷效能[D].哈尔滨工业大学市政工程博士论文,2010:15-19
    [100]徐涛.红外光谱在化学反应过程中的应用研究[D].中国地质大学分析化学硕士论文,2009:5-9
    [101] D. Cvijovi. Another discrete Fourier transform pairs associated with theLipschitz–Lerch zeta function [J]. Applied Mathematics and Computation,2012,218(12):6744-6747
    [102]杨静.玉米秸秆纤维素酶水解研究及响应曲面法优化[D].天津大学环境化工硕士论文,2007:12-14
    [103] S. Ghafari, H. A. Aziz, M. H. Isa, et al. Application of response surfacemethodology (RSM) to optimize coagulation–flocculation treatment ofleachate using poly-aluminum chloride (PAC) and alum [J]. J. Hazard.Mater.2009,163(2-3):650-656
    [104]陈山,郭祀远,李琳,等.电超滤溶析结晶过程仿真与控制模型的建立[J].广西大学学报(自然科学版),2005,30(1):40-43
    [105] J. Hermia. Constant pressure blocking filtration laws-application topower-law non-newtonlan fluids [J]. Trans. Inst. Chem. Eng.1982,6(3):183-187
    [106] T. C. Arnot, R. Field, A.B. Koltuniewicz. Cross-flow and dead-endmicrofiltration of oily-water emulsions. Part II. Mechanisms and modelingof flux decline [J]. J. Membr. Sci.2000,169(1):1-15
    [107] H. G. Elias. An introduction to Polymer Science [M]. VCH, New York,1997.
    [108] C. W. Macosko, Rheology: Principles, Measurements and Applications [M].Wiley/VCH, Poughkeepsie: New York,1994
    [109] N. Tekin, A. Dincer, O. Demirbas Adsorption of cationic polyacrylamideonto sepiolite [J]. J. Hazard. Mater. B,2006,134:211-219
    [110] A. A. McCarthy., P. K. Walsh, G. Foley. Experimental techniques forquantifying the cake mass, the cake and membrane resistances and thespecific cake resistance during crossflow filtration of microbial suspension[J]. J. Membr. Sci.2002,201:31-45.
    [111] N. Hojo, H. Shirai, S. Hayashi. Complex formation between poly(vinylalcohol) and metallic ions in aqueous solution [J]. J. Polym. Sci. Symp.1974,47:299-307
    [112] S. Mimoune, F. Amrani, Experimental study of metal ions removal fromaqueous solutions by complexation-Ultrafiltration [J]. J. Membr. Sci.2007,298:92-98
    [113] L.J. Zeman. Adsorption effect in rejection of macromolecules byUltrafiltration membranes [J]. J. Membr. Sci.1983,15:213-230
    [114] N.T. Abdel-Ghani, A.K. Hegazy, G.A. El-Chaghaby, et al. Factorialexperimental design for biosorption of iron and zinc using Typhadomingensis phytomass [J]. Desalination,2009,249:343-347
    [115] Meet Minitab15for Windows [M]. Minitab Inc. USA,2007.
    [116] M. Janek, G. Lagaly, Interaction of a cationic surfactant with bentonite: acolloid chemistry study [J]. Colloid. Polym. Sci.2003,281:293-301.
    [117] X.H. Sun, D. M. Kanani, R. Ghosh. Characterization and theoreticalanalysis of protein fouling of cellulose acetate membrane during constantflux dead-end micro-filtration [J]. J. Membr. Sci.2008,320:372-380.
    [118] D. C. Montgomery. Design and analysis of experiments [M]. USA,6thEdition,2007
    [119] P.M.S.M. Rodrigues, J.C.G. Esteves da Silva, M.C.G. Antunes. Factorialanalysis of the trihalomethanes formation in water disinfection usingchlorine [J]. Anal. Chim. Acta.2007,595:266-274
    [120] H. Falahati, A.Y. Tremblay. Flux dependent oil permeation in theultrafiltration of highly concentrated and unstable oil-in-water emulsions[J]. J. Membr. Sci.2011,371(1-2):239-247
    [121] I. N. H. M. Amin, A. W. Mohammad, M. Markoma, et al. Effects of palmoil-based fatty acids on fouling of ultrafiltration membranes during theclarification of glycerin-rich solution [J]. J. Food Eng.2010,101:264-272
    [122]李干佐,郑利强,徐桂英.石油开采中的胶体化学[M].北京:化学工业出版社,2007:91-97
    [123] C. V. Nikiforidis, O. A. Karkani, V. Kiosseoglou, et al. Exploitation ofmaize germ for the preparation of a stable oil-body nanoemulsion using acombined aqueous extraction–ultrafiltration method [J]. FoodHydrocolloids,2011,25(5):1122-1127
    [124] A. El-Abbassi, M. Khayet, A. Hafidi, et al. Micellar enhancedultrafiltration process for the treatment of olive mill wastewater [J]. WaterRes.2011,45(15):4522-4530
    [125] I. Xiarchos, A. Jaworska, G. Zakrzewska-Trznadel, et al. Response SurfaceMethodology for the modelling of copper removal from aqueous solutionsusing micellar-enhanced ultrafltration [J]. J. Membr. Sci.2008,321:222-231
    [126] S.H. Shin, D.S. Kim, et al. Studies on the interfacial characterization ofO/W emulsion for the optimization of its treatment [J]. Environ. Sci.Technol.2001,35:3040-3047
    [127] A. E. Wiacek. Effect of ionic strength on electrokinetic properties of O/Wemulsions with dipalmitoylphosphatidylcholine [J]. Colloids Surf.Physicochem. Eng. Aspects,2007,302:141-149
    [128] M. Hesampoura, A. Krzyzaniakb, M. Nystr ma. The infuence of differentfactors on the stability and ultrafltration of emulsifed oil in water [J]. J.Membr. Sci.2008,325:199-208
    [129]何文,杜俊琪,刘刚.微波协同混凝处理油田回注水的研究[J].现代化工,2010,30(增刊):110-112
    [130] C. Cojocaru, G. Zakrzewska-Trznadel, A. Jaworska. Removal of cobalt ionsfrom aqueous solutions by polymer assisted ultrafltration usingexperimental design approach. part1: Optimization of complexationconditions [J]. J. Hazar. Mater.2009,169:599-609
    [131] J. Landaburu-Aguirre, E. Pongrácz, P. Per m ki, et al. Micellar-enhancedultrafiltration for the removal of cadmium and zinc: Use of responsesurface methodology to improve understanding of process performance andoptimization [J]. J. Hazar. Mater.2010,180:524-534
    [132] Minitab Release14, Design of Experiments [M]. User’s Manual, MinitabInc.2003
    [133] A. J. Chhatre, K. V. Marathe. Dynamic analysis and optimization ofsurfactant dosage in micellar enhanced ultrafiltration of nickel fromaqueous streams [J]. Sep. Sci. Technol.2006,41:2755-2770
    [134] J. Zhou, Q. Chang, Y. Wang, et al. Separation of stable oil-water emulsionby the hydrophilic nano-sized ZrO2modified Al2O3microfiltrationmembrane [J]. Sep. Purif. Technol.2010,75:243-248
    [135]李道山.三元复合驱表面活性剂吸附及碱的作用机理研究[D].大庆石油学院油气田开发工程博士论文,2002:15-17
    [136]陈虹.石油烃在土壤上的吸附行为及对其他有机污染物吸附的影响[D].大连理工大学环境科学博士论文,2009:65-73
    [137] Q. Fu, Y. Deng, H. Li, et al. Equilibrium, kinetic and thermodynamicstudies on the adsorption of the toxins of Bacillus thuringiensis subsp.kurstaki by clay minerals [J]. Applied Surf. Sci.2009,255:4551-4557
    [138] L.T. Chiem, L. Huynh, J. Ralston, et al. An insitu ATR–FTIR study ofpolyacrylamide adsorption at the talc surface [J]. J. Colloi. Interf. Sci.2006,297:54-61
    [139] K.L. Jones, C.R. O’Melia. Protein and humic acid adsorption ontohydrophilic membrane surfaces: effects of pH and ionic strength [J]. J.Membr. Sci.2000,165:31-46
    [140] M.D. Cari, S.D. Milanovi, D.M. Krsti, M.N. Teki. Fouling of inorganicmembranes by adsorption of whey proteins [J]. J. Membr. Sci.2000,165:83-88
    [141] M. Alkan, O. Demirbas, S. Celikcapa, M. Dogan, Sorption of acid red57from aqueous solution onto sepiolite [J]. J. Hazard. Mater.2004,116:135-145
    [142] Y.G. Xue, H.B. Houa, S.J. Zhua, Adsorption removal of reactive dyes fromaqueous solution by modified basic oxygen furnace slag: Isotherm andkinetic study [J]. Chem. Eng. J.2009,147:272-279
    [143] C. DO. Adsorption design for wastewater treatment [M]. Boca Raton, FL,USA: Lewis Publishers,1998
    [144] S. H. Wu, B.Z. Dong, Y. Huang. Adsorption of bisphenol by polysulphonemembrane [J]. Desalination.2010,253:22-29
    [145] Q. Zhang, Y. Gao, Y.A. Zhai, et al. Synthesis of sesbania gum supporteddithiocarbamate chelating resin and studies on its adsorption performancefor metal ions [J]. Carbohydr. Polym.2008,73(2):359-363
    [146] P. Mpofu,J. Addai-Mensah,J. Ralston. Temperature influence of nonionicpolyethylene oxide and anionic polyacrylamide on flocculation anddewatering behavior of kaolinite dispersions [J]. J. Colloid. Interf. Sci.2004,271:145-156
    [147] J. Meadows, P.A. Williams, M. J. Garvey, et al. Characterization of theadsorption-desorption behavior of hydrolyzed polyacrylamide [J]. J.Colloid and Interf. Sci.1989,132:319-328
    [148]王海芳,王连军,周洁,等.改性聚偏氟乙烯膜的油吸附性研究[J].膜科学与技术,2007,27(3):44-47
    [149]芦艳.聚偏氟乙烯超滤膜纳米改性及其应用[D].哈尔滨工业大学市政工程博士论文,2007:38-46
    [150] G.B. Van den Berg, C.A. Smolders, Flux decline in ultrafiltration processes[J]. Desalination,1990,77:101-133
    [151] K. Karasu, S. Yoshikawa, S. Ookawara, et al. A combined model for theprediction of the permeation flux during the cross-flow ultrafiltration of awhey suspension [J]. J. Membr. Sci.2010,361(1-2):71-77
    [152] C. C. Ho, A. L. Zydney. A Combined Pore Blockage and Cake FiltrationModel for Protein Fouling during Microfiltration [J]. J. Colloid andInterface Sci.2000,232(2):389-399
    [153] C. Bhattacharjee, P.K. Bhattacharya. Flux decline analysis in ultrafiltrationof Kraft black liquor [J]. J. Membr. Sci.1993,82:1-7
    [154] C. Bhattacharjee, S. Datta. Analysis of polarized layer resistance duringultrafiltration of PEG-6000: an approach based on filtration theory [J]. Sep.Purif. Technol.2003,33:115-126
    [155] Q.T. Nguyen, P. Aptel, J. Neel. Characterization of ultrafiltrationmembranes. Part II. Mass Transport measurements for low and highmolecular weight synthetic polymers in water solution [J]. J. MembraneSci.1980,7:141-147
    [156] M. C. V. Vela, E. B. Rodríguez, S. á. Blanco, et al. Validation of dynamicmodels to predict flux decline in the ultrafiltration of macromolecules.Desalination,2007,204:344-350
    [157] M.. Cari, S. D. Milanovi, D. M. Krsti, et al. Fouling of inorganicmembranes by adsorption of whey proteins. J. Membr. Sci.2000,165(1):83-88
    [158] J Hermia, G Rahier. Designing a new wort filter underlying theoreticalprinciples. filtration&Separation,1990,27(6):421-422,424
    [159] B. Hu, K. Scott. Microfiltration of water in oil emulsions and evaluation offouling mechanism [J]. Chem. Eng. J.2008,136:210-220
    [160] N.H. Lee, G. Amy, J.P. Croue,et al. Identification and understanding offouling in low-pressure membrane (MF/UF) filtration by natural organicmatter (NOM)[J]. Water Res.2004,38(20):4511-4523
    [161] D. M. Kanani, R. Ghosh. A constant flux based mathematical model forpredicting permeate flux decline in constant pressure protein ultrafiltration[J]. J. Membr. Sci.2007,290:207-215
    [162]郝建英.膜技术在水处理方面的应用[J].科技情报开发与经济.2003,13(4):101-102
    [163] R. W. Field, D. Wu, J. A. Howell, et al. Critical flux concept formicro-filtration fouling [J]. J Membr. Sci.1995,100:259-272.
    [164] M. Tiranuntakul, P.A. Schneider, V. Jegatheesan. Assessments of criticalflux in a pilot-scale membrane bioreactor [J]. Bioresource Technology,2011,102(9):5370-5374
    [165] D. Navaratna, V. Jegatheesan. Implications of short and long term criticalflux experiments for laboratory-scale MBR operations [J]. BioresourceTechnology,2011102(9):5361-5369
    [166] Y. Zhang, Z. Jin, Y. Wang, et al. Study on phosphorylated Zr-doped hybridsilicas/PSF composite membranes for treatment of wastewater containingoil [J]. J. Membr. Sci.2010,361(1-2):113-119
    [167] P. R. Neal, H. Li, A. G. Fane, et al. The effect of filament orientation oncritical flux and particle deposition in spacer-filled channels [J]. J. Membr.Sci.2003,214(2):165-178
    [168] L. Defrance, M. Y. Jaffrin. Comparison between filtrations at fixedtrans-membrane pressure and fixed permeate flux: application to amembrane bioreactor used for wastewater treatment [J]. J. Membr. Sci.1999,152(2):203-210
    [169] S. Mets muuronen, J. Howell, M. Nystr m, Critical flux in ultra-filtrationof myoglobin and baker’s yeast [J]. J Membr. Sci.2002,196(1):13-25
    [170]姚金苗,王湛,梁艳莉,等.超、微滤过程中临界通量的研究进展[J].膜科学与技术,2008,28(2):69-72
    [171]芦艳,于水利,孙鸿.超滤膜处理油田采出水及污染膜的微观分析[J].化工环保,2009,29(2):139-143
    [172] M. O. Lamminen, H. W. Walker, L. K. Weavers. Mechanisms and factorsinfluencing the ultrasonic cleaning of particle-fouled ceramic membranes[J]. J. Membr. Sci.2004,237(1-2):213-223
    [173] J.P. Chen, S.L. Kim, Y.P. Ting. Optimization of membrane physical andchemical cleaning by a statistically designed approach [J]. J. Membr. Sci.2003,219(1-2):27-45
    [174] W. S. Ang, A. Tiraferri, K. Chen, et al. Fouling and cleaning of ROmembranes fouled by mixtures of organic foulants simulating wastewatereffluent [J]. J. Membr. Sci.2011,376(1-2):196-206
    [175] B. Mi, M. Elimelech. Organic fouling of forward osmosis membranes:Fouling reversibility and cleaning without chemical reagents [J]. J. Membr.Sci.2010,348(1-2):337-345
    [176] P. Blanpain-Avet, J.F. Migdal, T. Bénézech. Chemical cleaning of a tubularceramic microfiltration membrane fouled with a whey protein concentratesuspension-Characterization of hydraulic and chemical cleanliness. J.Membr. Sci.2009,337(1-2):153-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700