纳米ZnO的功能化改性及其对染料污染物的光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术具有处理效率高,不存在二次污染等特点,对难降解有机污染物具有明显的优势,被认为是一种极具前途的环境污染深度净化技术。纳米氧化锌(纳米ZnO)作为一种重要的半导体光催化材料,在有机污染物光催化降解方面显示出良好的应用前景。由于纳米ZnO存在光生电子空穴对复合几率高、量子产率低、易光腐蚀等问题,限制了其推广应用。如何提高纳米ZnO的光催化活性,拓展其光响应范围是目前光催化领域的研究热点。
     本文首先采用超声辅助技术制备了六方纤锌矿结构纳米ZnO,采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外—可见光谱(UV-Vis)等表征手段,对制备的纳米ZnO进行结构表征,以弱酸性艳红B (C.I. Acid Red249, AR249)为模型污染物,对其光催化活性进行了评价。研究表明,“声空化”作用产生的瞬时高温高压促进了醋酸锌与一缩二乙二醇之间的酯消除反应,形成Zn(OH)2,进一步脱水、成核,形成纳米ZnO。所得纳米ZnO对弱酸性艳红B具有很好的光降解效果,在紫外光辐照120min后,0.8g/L纳米ZnO可将20mg/L弱酸性艳红B完全降解。
     采用直接沉淀法制备了ZnO-SnO2复合光催化材料,研究了煅烧温度、Sn/Zn摩尔比、反应物浓度、反应温度对复合材料的光催化活性的影响。研究表明,当Sn/Zn摩尔比为1:4,Zn2+浓度为0.12mol/L,室温制备,700℃煅烧2h所得材料的光催化活性最佳,其光催化活性明显高于纯ZnO。
     以醋酸锌为原料、一缩二乙二醇为溶剂,在氧化石墨存在条件下,采用多元醇法制备ZnO/氧化石墨烯(ZnO/rGO)复合材料。采用傅立叶红外光谱(FTIR)、X射线衍射(XRD)、拉曼光谱、透射电镜(TEM)、紫外—可见(UV-Vis)漫反射光谱等手段对材料进行了表征,并对ZnO/rGO复合材料的形成机理进行了探讨。在高温作用下,一缩二乙二醇可将氧化石墨还原,形成类石墨(rGO)层状结构;同时,Zn2+水解、成核,在rGO层间形成ZnO纳米粒子,最终形成ZnO/rGO复合材料。光催化实验表明,rGO结构中的共轭大π键有利于提高有机染料在催化剂表面的吸附性能,提高材料的光催化活性;rGO良好的导电性,可有效促进光催化过程中光生电子一空穴的分离,减少载流子复合几率,抑制材料的光腐蚀。
     采用化学氧化法制备了聚间苯二胺/ZnO(PMPD/ZnO)复合材料,采用XRD、FTIR、TEM、UV-vis漫反射光谱对材料进行了表征,以弱酸性艳红B为模型污染物对材料的紫外光催化活性和可见光催化活性进行了评价。研究表明,ZnO纳米粒子只具有紫外光催化活性,而PMPD/ZnO复合材料同时具有紫外光和可见光催化活性;而且PMPD/ZnO复合材料具有很好的光催化稳定性,无论是在UV辐照下还是在可见光辐照下,PMPD/ZnO (1/80)复合材料重复使用5次后,对弱酸性艳红B的光催化活性仍保持在75%以上。
In recent years, semiconductor photocatalytic oxidation is considered as a promising technology for the degradation of persistent organic pollutants, and can mineralize organic pollutants into more biologically degradable and less toxic substances. Zinc oxide (ZnO), as an important semiconductor, exhibits a promising prospect of application in the photocatalytic degradation of organic pollutants. However, because of the quick recombination of charge carriers, low quantum yield, poor response to solar light and critical drawback of photocorrosion. the utilization of ZnO is limited severely. Therefore, how to enhance the photocatalytic activity of ZnO, improve its response to visible light and inhibit its photocorrosion are receiving more and more scientific interests.
     In this paper, ZnO nanopowder was firstly synthesized from zinc acetate and diethylene glycol via an ultrasound assisted non-hydrolytic sol-gel process. The samples were characterized by X-ray diffraction (XRD). Transmission electron microscopy (TEM) and UV-Vis spectroscopy. The photocatalytic activity of prepared zinc oxide was evaluated by photocatalytic degradation of C.I. Acid Red249(AR249) under UV irradiation. The acoustic cavitations produced by ultrasonic waves could generate high pressure and temperature followed by high rate of cooling, which facilitated the ester-elimination reaction between zinc acetate and diethylene glycol. After dehydration and nucleation, the zinc oxide nanopowder formed. The prepared ZnO nanopowder showed good photocatalytic activity. After120min UV irradiation,20mg/L AR249was almost decomposed in the presence of0.8g/L ZnO nanopowder.
     The ZnO-SnO2photocatalyst was prepared by directly precipitation method. And the effects of calcination temperature, Sn/Zn molar ratio, the concentration of reactant and reaction temperature on their photocatalytic activity were discussed. The results showed when Sn/Zn molar ratio was1:4, the concentration of Zn2+was0.12mol/L, the calcination temperature and time was700℃and2h, the photocatalytic activity of ZnO-SnO2composite materials was best, which was higher than that of pure ZnO.
     ZnO/reduced graphene oxide (ZnO/rGO) composites were prepared through thermal decomposition of zinc acetate precursor in the presence of graphene oxide. The as-prepared samples were characterized by Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Raman, UV-Vis diffuse reflectance spectroscopy (DRS). The formation mechanism of ZnO/rGO composites was proposed. Under high temperature, the graphene oxide was reduced by diethylene glycol (DEG). Simultaneously, Zn2+hydrolyzed, nucleated and consequently formed ZnO on the surface of layered graphene sheets. The promotion of charge transportation and separation resulting from the interaction between ZnO and rGO improved the photocatalytic activity of ZnO/rGO composites and inhibited the photocorrosion of ZnO.
     Poly(m-phenylenediamine)/ZnO (PMPD/ZnO) composites were successfully synthesized by chemical oxidative polymerization method. Powder X-ray diffraction (XRD), Fourier-transform infrared spectra (FTIR), Transmission electron microscope (TEM) and UV-vis (UV-vis) spectra were used to characterize the prepared PMPD/ZnO composites. Their photocatalytic activities were evaluated by the degradation of C.I. Acid Red249(AR249) aqueous solution under UV and visible light irradiations. Results showed that PMPD/ZnO composites exhibited good photocatalytic activities under UV and visible light irradiations, whereas neat ZnO had only ultraviolet light photocatalytic activity. Moreover, PMPD/ZnO composites had better photocatalytic stabilities. After five successive cycles, their photocatalytic activities for degradation of AR249were still over75%of that for the first cycling run under UV and visible light irradiations.
引文
[1]奚旦立,马春燕.印染废水的分类、组成及性质[J].印染,2010,(14):51-53.
    [2]丁绍兰,李郑坤,王睿.染料废水处理技术综述[J].水资源保护,2010,26(3):73-78.
    [3]冯凯,邱木清.生物法处理染料废水的研究与进展[J].工业水处理,2009,29(2):19-21.
    [4]段建田,魏世强,刘峰.半导体二氧化钛光催化氧化的研究进展[J].化学工业与工程技术,2008,29(5):30-35.
    [5]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [6]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238:37-38.
    [7]Carey J H., Lawrence J., Helle M.,et al. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J].Bulletin of Environmental Contamination and Toxicology.1976,16(6):697-701.
    [8]Frank S N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Journal of the American Chemical Society.1977,99(1):303-304.
    [9]Naldoni A., Bianchi C L., Pirola C., et al. Porous TiO2 microspheres with tunable properties for photocatalytic air purification [J]. Ultrasonics Sonochemistry,2013,20 (1):445-451.
    [10]Vorontsov A V., Besov A S., Parmon V N. Fast purification of air from diethyl sulfide with nanosized TiO2 aerosol, Applied Catalysis B: Environmental,2013,129:318-324.
    [11]Han Z N, Chang V W C., Zhang L., et al. Preparation of TiO2-Coated Polyester Fiber Filter by Spray-Coating and Its Photocatalytic Degradation of Gaseous Formaldehyde[J]. Aerosol and Air Quality Research,2012,12(6):1327-1335.
    [12]古政荣,陈爱平,戴智铭,古宏晨,陶国忠.活性炭-纳米二氧化钛复合光催化空气净化网的研制[J].华东理工大学学报(化学与生化工程专辑),2000,26(4):367-371.
    [13]吴延鹏,王晓东,马重芳.太阳能光催化—导光管北京夏季晴天降解甲醛的实验研究[J].光学学报,2008,28(12):2408-2415.
    [14]许太明,陈刚,牛炳晔.等离子体与光催化复合空气净化技术研究[J].环境工程学报,2007,1(2):105-107.
    [15]Dalrymple O K., Stefanakos E., Trotz M A., et al. A review of the mechanisms and modeling of photocatalytic disinfection[J]. Applied Catalysis B:Environmental, 2010,98(1-2):27-38.
    [16]Gaya U I., Abdullah A H., Hussein M Z., et al. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder[J]. Desalination,2010,263:176-182.
    [17]Gaya U I., Abdullah A H., Zainal Z., et al. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions:intermediates, influence of dosage and inorganic anions [J]. Journal of Hazardous Materials,2009,168:57-63.
    [18]Pardeshi S K., Patil A B. A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy[J]. Solar Energy, 2008,82(8):700-705.
    [19]Pardeshi S K., Patil A B. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide [J]. Journal of Hazardous Materials, 2009,163:403-409.
    [20]Sobana N., Muruganandam M., Swaminathan M. Characterization of AC-ZnO catalyst and its photocatalytic activity on 4-acetylphenol degradation[J]. Catalysis Communications,2008,9:262-268.
    [21]Priya M H., Madras G. Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry,2006,178(1):1-7.
    [22]Shen X T, Zhu L H, Li J., et al. Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity [J]. Chemical Communications,2007, (11):1163-1165.
    [23]Neppolian B., Choi H C., Sakthivel S., et al. Solar/UV-induced photocatalytic degradation of three commercial textile dyes [J].Journal of Hazardous Materials, 2002,89(2-3):303-317.
    [24]Alinsafi A.,Evenou F., Abdulkarim E M., et al. Treatment of textile industry wastewater by supported photocatalysis[J]. Dyes and Pigments,2007,74(2):439-445.
    [25]Sobana N., Swaminathan M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO [J]. Separation and Purification Technology,2007,56(1):101-107.
    [26]Rao A N., Sivasankar B., Sadasivam V. Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst[J]. Journal of Molecular Catalysis A:Chemical 2009,306(1-2):77-81.
    [27]刘林梅.水环境中典型抗生素的光降解研究[D].中山大学,硕士论文,2006.
    [28]Dimitrakopoulou D., Rethemiotaki I., Frontistis Z., et al. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis[J]. Journal of Environmental Management.2012,98:168-174.
    [29]Reza P H., Ali H M. Photocatalytic degradation of some beta-lactam antibiotics in aqueous suspension of ZnS nanoparticles[J]. Desalination and Water Treatment, 2013,51(13-15):2617-2623.
    [30]Elmolla E S., Chaudhuri M. Degradation of amoxicillin. ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process[J].Journal of Hazardous Materials,2010,173(1-3):445-449.
    [31]Paola C., Claudio M., Marco P., et al. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Appllied Catalysis B:Environmental, 2004,53(1):63-69.
    [32]Hu L H., Flanders P M., Miller P L., et al. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis [J]. Water Research,2007,41(12):2612-2626.
    [33]Hidaka H. Photodegradation of surfactants with T1O2 semiconductor for the environmental wastewater treatment [J]. Proceedings of the Indian Academy of Sciences-Chemical Sciences,1998,110(3):215-228.
    [34]陈士夫,赵梦月,陶跃武.玻璃纤维负载Ti02光催化降解有机磷农药[J].环境科学,1996,17(4):33-38.
    [35]Mrowetz M., Selli E.Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions[J].Journal of Photochemistry and Photobiology A:chemistry,2006,180(1-2):15-22.
    [36]Rao A N., Sivasankar B., Sadasivam V. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst [J]. Journal of Hazardous Materials, 2009,166 (2-3):1357-1361.
    [37]Barakat M A., Chen Y T., Huang C P. Removal of toxic cyanide and Cu(II) ions from water by illuminated TiO2 catalyst[J]. Applied Catalysis B:Environmental,2004, 53(1):13-20.
    [38]Kajitvichyanukula P., Ananpattarachaia J., Pongpom S. Sol-gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process[J].Science Technology Advanced Materials, 2005,6(3-4):352-358.
    [39]Yang G C C.,Chan S W. Photocatalytic reduction of chromium (VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation[J]. Journal of Nanoparticle Research,2009,11(1):221-230.
    [40]Paramasivam I., Macak J M., Schmuki P. Photocatalytic activity of TiO2 nanotube. layers loaded with Ag and Au nanoparticles[J]. Electrochemistry Communications,2008,10(1):71-75.
    [41]Alexander O., David A J., Mintcho T., et al. Enhancement of MTBE photocatalytic degradation by modification of TiO2 with gold nanoparticles [J]. Catalysis Communications,2007,8(5):821-824.
    [42]倪守高,王玲,薛建军,孙海波,雷斌,金丹萍.载Pt-TiO2纳米管阵列制备及其光电催化性能[J].材料科学与工程学报,2008,126(14):579-581.
    [43]孙彦红,张敏,杨建军.双金属核壳结构负载型Au@Ag/TiO2催化剂的制备及表征,无机化学学报,2009,25(11):1965-1970.
    [44]Ullah R., Dutta J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles [J]. Journal of Hazardous Materials,2008,156 (1-3):194-200.
    [45]Wu C, Shen L, Yu H G, et al. Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties [J]. Materials Research Bulletin,2011,46 (7):1107-1112.
    [46]傅天华,高倩倩,刘斐,代华均,寇兴明Fe-Ni共掺杂ZnO的制备及其光催化降解甲基橙活性[J].催化学报,2010,31(7):797-802.
    [47]Yamashita H., Harada M., Misaka J., et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry,2002,148(1-3):257-261.
    [48]Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(13):269-271.
    [49]Zhang Z Z., Wang X X., Long J L., et al. Nitrogen-doped titanium dioxide visible light photocatalyst:Spectroscopic identification of photoactive centers [J]. Journal of Catalysis,2010.276 (2):201-214.
    [50]Ohno T., Akiyoshi M.. Umebayashi T., et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Applied Catalysis A:General,2004,265(1):115-121.
    [51]Chen S F., Zhao W., Zhang S J.,et al. Preparation, characterization and photocatalytic activity of N-containing ZnO powder [J]. Chemical Engineering Journal,2009,148(2-3):263-269.
    [52]Yamaki T., Umebayashi T., Sumita T., et al. Fluorine-doping in titanium dioxide by ion implantation technique [J]. Nuclear Instruments and Methods in Physics Research B,2003,206:254-258.
    [53]Zhang H R., Tan K Q., Zheng H W., et al. Preparation, characterization and photocatalytic activity of TiO2 codoped with yttrium and nitrogen [J]. Materials Chemistry and Physics,2011,125(1-2):156-160.
    [54]Cao G X., Li Y G., Zhang Q H., et al. Synthesis and characterization of La2O3/TiO2-xFx and the visible light photocatalytic oxidation of 4-chlorophenol[J] Journal of Hazardous Materials,2010,178(1-3):440-449.
    [55]Xie J M., Jiang D L., Chen M., et al. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects;2010,372(1-3):107-114.
    [56]Wu X H., Su P B., Liu H L., et al. Photocatalytic degradation of Rhodamine B under visible light with Nd-doped titanium dioxide films[J].Journal of Rare Earths,2009,27(5):739-743.
    [57]樊慧娟,白雪峰.水热合成CdS/TiO2复合光催化剂及其催化分解硫化氢制氢[J].石油化工,2009,38(4):438-443.
    [58]Chen L C., Huang C M., Hsiao M C.,et al. Mixture design optimization of the composition of S, C, SnO2-codoped TiO2 for degradation of phenol under visible light[J]. Chemical Engineering Journal,2010,165(2):482-489.
    [59]Kernazhitsky L., Shymanovska V., Gavrilko T G P., et al. Optical and photocatalytic properties of titanium-manganese mixed oxides [J]. Materials Science and Engineering B,2010,175(1):48-55.
    [60]刘阳,王晟,王驹,等.WO3/TiO2纳米棒复合材料的制备及其光催化活性[J].催化学报,20]0,31(4):485-489.
    [61]Foletto E L., Jahn S L., Fatima R D., et al. Hydrothermal preparation of Zn2SnO4 nanocrystals and photocatalytic degradation of a leather dye [J]. Journal of Applied Electrochemistry,2010,40(1):59-63.
    [62]Ranjit K T., Willner I. Iron(III) Phthalocyanine-Modified Titanium Dioxide:A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants [J]. The Journal of Physical Chemistry B,1998,102:9397-9403.
    [63]Salinas-Guzman R R., Guzman-Mar J L., Hinojosa-Reyes L., et al. Enhancement of cyanide photocatalytic degradation using sol-gel ZnO sensitized with cobalt phthalocyanine [J].Journal of Sol-Gel Science and Technology,2010,54(1):1-7.
    [64]Liao G Z., Chen S., Quan X., et al. Remarkable improvement of visible light photocatalysis with PANI modified core-shell mesoporous TiO2 microspheres[J]. Applied Catalysis B:Environmental,2011,102(1-2):126-131.
    [65]Zhu Y F., Dan Y. Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange[J].Solar Energy materials and Solar Cells,2010,94(10):1658-1664.
    [66]Xu S H., Li S Y., Wei Y X., et al. Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation[J].Reaction Kinetics Mechanisms and Catalysis,2010,101(1):237-249.
    [67]Liang H C., Li X Z. Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films[J].Applied catalysis B:Environmental,2009,86(1-2):8-17.
    [68]Patil A B., Patil K R., Pardeshi S K. Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO[J]. Journal of Hazardous Materials,2010,183(1-3):315-323.
    [69]Jin C F., Yuan X., Ge W W., et al. Synthesis of ZnO nanorods by solid state reaction at room temperature[J].Nanotechnology,2003,14 (6):667-669.
    [70]Zhu Y., Zhou Y X. Preparation of pure ZnO nanoparticles by a simple solid-state reaction method[J]. Appllied Physics A:Materials Science & Processing, 2008,92(2):275-278.
    [71]Tani T., Madler L., Pratsinis S E. Homogeneous ZnO nanoparticles by flame spray pyrolysis[J]. Journal of Nanoparticle Research,2002,4(4):337-343.
    [72]Marinkovic Z V.,Milosevic O. The nature of structural changes in nanocrystalline ZnO powders under linear heating conditions[J]. Journal of the European Ceramic Society,2004,(24):1929-1933.
    [73]EI-shall M S., Slack W., Vann W., et al. Synthesis of nanoscale metal oxide particles using laser vaporization/condensation in a diffusion cloud chamber [J]. Journal of Physical Chemistry,1994,98(12):3067-3070.
    [74]王东辉,商世广,杜慧敏.纳米ZnO的可控生长及光致发光性能[J].西安邮电学院学报,2011,16(3):45-48.
    [75]Dai Y, Zhang Y, Li Q K., et al. Synthesis and optical properties of tetrapod-like zinc oxide nanorods [J]. Chemical Physics Letters,2002,358(1-2):83-86.
    [1]Khataeea A R., Pons M N., Zahra O. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation:Influence of dye molecular structure[J]Journal of Hazardous Materials,2009,168(1):451-457.
    [2]Sobana N., Swaminathan M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO[J]. Separation and Purification Technology,2007,56(1):101-107.
    [3]Pardeshi S K., Patil A B. A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy[J].Solar Energy,2008,82 (8):700-705.
    [4]Marto J., Marcos P S., Trindade T., et al. Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles [J]. Journal of Hazardous Materials,2009,163 (1):36-42.
    [5]Zhang G K, Shen X, Yang Y Q. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity [J]. Journal of Physical Chemistry C,2011,115(15):7145-7152.
    [6]Akyol A., Yatmaz H C., Bayramoglu M. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions[J]. Applied Catalysis B:Environmental, 2004,54(1):19-24.
    [7]Kaniou S., Pitarakis K., Barlagianni I., et al. Photocatalytic oxidation of sulfamethazine [J]. Chemosphere,2005,60(3):372-380.
    [8]Chatzitakis A., Berberidou C., Paspaltsis I., et al. Photocatalytic degradation and drug activity reduction of Chloramphenicol[J]. Water Research,2008,42 (1-2):386-394.
    [9]Palominos R A., Mondaca M A., Giraldo A., et al. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J]. Catalysis Today, 2009,144(1-2):100-105.
    [10]Sakthivel S., Neppolian B., Shankar M V., et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2[J].Solar Energy Materials and Solar Cells,2003,77(1):65-82.
    [11]Pan Z W., Dai Z R., Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001,291(9):1947-1949.
    [12]Oner M., Norwig J., Meyer W H., et al. Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer [J]. Chemistry of Materials,1998,10 (2):460-463.
    [13]Moafi H., Shojaie A F., Zanjanchi M A. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide [J]. Thin Solid Films, 2011,519 (11):3641-3646.
    [14]Yu J G., Yu X X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres [J]. Environmental Science & Technology,2008,42(13): 4902-4907.
    [15]Jiang Y Q., Li F F., Sun R., et al. A Simple solvothermal route towards the morphological control of ZnO and tuning of its optical and photocatalytic properties [J]. Science China Chemistry,2010,53(8):1711-1717.
    [16]Hu X L., Gong J M., Zhang L Z., et al. Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing[J]. Advanced Materials,2008,20(24):4845-4850.
    [17]Trentler T J., Denler T E., Bertone J F., et al. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions[J]. Journal of the American Chemical Society,1999,121(7):1613-1614.
    [18]Joo J., Yu T., Kim Y W.. et al. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals [J]. Journal of the American Chemical Society,2003,125 (21):6553-6557.
    [19]Niederberger M. Bartl M H., Stucky G D. Benzyl Alcohol and Transition Metal Chlorides as a Versatile Reaction System for the Nonaqueous and Low-Temperature Synthesis of Crystalline Nano-Objects with Controlled Dimensionality[J]. Journal of the American Chemical Society,2002,124(46):13642-13643.
    [20]Zhong X H., Feng Y Y., Lieberwirth I., et al. Facile synthesis of morphology-controlled platinum nanocrystals[J]. Chemistry of Materials,2006,18 (10):2468-2471.
    [21]Zhang Z H., Zhong X H., Liu S H., et al. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio[J]. Angewandte Chemimie-International Edition,2005,44 (22):3466-3470.
    [22]Zhong X H., Feng Y Y. Zhang Y L., et al. Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals[J]. Small,2007,3(7):1194-1199.
    [23]Alammar T., Mudring A V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid[J]. Materials Letters,2009,63 (9-10):732-735.
    [24]何寿杰,哈静,王云明,侯志青.超声化学在纳米材料制备中的应用[J].化学通报,2008,71(11):846-851.
    [25]邓崇海,胡寒梅,黄显怀.超声化学合成多角星形氧化锌[J].无机化学学报,2009,25(3):469-473.
    [26]Chen C Y., Li Q., Nie M., et al. An efficient room-temperature route to uniform ZnO nanorods with an ionic liquid [J]. Materials Research Bulletin,2011,46 (6): 888-893.
    [27]Joo J., Kwon S G, Yu J H., et al. Synthesis of ZnO nanocrystals with cone, hexagonal cone and rod shapes via non-hydrolytic ester elimination sol-gel reations[J]. Advanced Materials,2005,17 (15):1873-1877.
    [28]Rao A N., Sivasankar B., Sadasivam V. Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst[J]. Journal of Molecular Catalysis A:Chemical,2009,306 (1-2):77-81.
    [29]Bansal P., Sud D. Photodegradation of commercial dye, Procion Blue HERD from real textile wastewater using nanocatalysts[J]. Desalination,2011,267 (2-3): 244-249.
    [30]Gupta V K., Jain R., Agarwal S., et al. Photodegradation of hazardous dye quinoline yellow catalyzed by TiO2[J]. Journal of Colloid and Interface Science,2012,366(1):135-140.
    [31]Ruya R O., John L F. Investigation of the photocatalytic activity of Ti02-polyoxometalate systems [J]. Environmental Science & Technology, 2001,35(15):3242-3246.
    [1]Pare B., Jonnalagadda S B., Tomar H., et al. ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation[J]. Desalination,2008,232 (1-3):80-90.
    [2]Chen C C., Fan H J., Jan J L. Degradation pathways and efficiencies of acid blue 1 by photocatalytic reaction with ZnO nanopowder [J]. Journal of Physical Chemistry C,2008,112(31):11962-11972.
    [3]Lin D D., Wu H., Zhang R., et al. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers[J].Chemistry of Materials,2009,21(15):3479-3484.
    [4]Chen T W., Zheng Y H., Lin J M., et al. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry [J]. Journal of the American Society for Mass Spectrometry,2008,19(7):997-1003.
    [5]Pawinrat P., Mekasuwandumrong O., Panpranot J. Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes[J]. Catalysis Communications,2009,10(1 0):1380-1385.
    [6]Salinas-Guzman R R., Guzman-Mar J L., Hinojosa-Reyes L., et al. Enhancement of cyanide photocatalytic degradation using sol-gel ZnO sensitized with cobalt phthalocyanine[J] Journal of Sol-gel Science and Technology,2010,54(1):1-7.
    [7]Yu J G., Xiong J F., Cheng B., et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Applied Catalysis B:Environmental,2005,60,211-221.
    [8]Yu J G., Qi L F., Jaroniec M. Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets[J]. Journal of Physical Chemistry C,2010,114(30):13118-13125.
    [9]Ksibi M., Rossignol S., Tatibouet J M., et al. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light[J].Materials Letter,2008,62,4204-4206.
    [10]Jong H P., Sungwook K A J. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting[J]. Nano Letters,2006,6(1): 24-28.
    [11]Woan K., Pyrgiotakis G., Sigmund W. Photocatalytic Carbon-Nanotube-TiO2 Composites[J]. Advanced Materials,2009,21(21):2233-2239.
    [12]Yu J G, Zhang J., Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution[J].Green Chemistry,2010,12(9):1611-1614.
    [13]李怀祥,夏荣花,姜正伟,陈姗姗.TiO2-SnO2复合粉体光催化降解亚甲基蓝[J].山东师范大学学报(自然科学版),2007,22(4):77-80.
    [14]王存,王鹏,徐柏庆ZnO-SnO2纳米复合氧化物光催化剂催化降解对硝基苯胺[J].催化学报,2004,25(12):967-972.
    [15]田泽,郑焘,许晶晶,等.SnO2/ZnO复合中空纤维材料的制备及其光催化性能[J].化学试剂,2012,34(5):444-448.
    [16]申利春.纳米SnO2/ZnO复合光催化剂的制备表征及其光催化活性研究[D].贵州大学,硕士论文,2008.
    [17]丁士文,张绍岩,刘淑娟,丁宇,康全影,刘燕朝.直接沉淀法制备纳米ZnO及其光催化性能[J].无机化学学报,2002,18(10):1015-1019.
    [18]Zhang H., Zong R L., Zhu Y F. Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline[J] Journal of Physical Chemistry C,2009,113(11):4605-4611.
    [1]冯洁,祝春兰.纳米ZnO的光催化性能及软化学合成研究进展[J].江西化工,2004,(1):5-10.
    [2]Rao C N R., Sood A K., Subrahmanyam K S., et al. Graphene:The new two-dimensional nanomaterial[J]. Angewandte Chemmie:International Edition[J].2009,48(42):7752-7777.
    [3]Lee C., Wei X D., Kysar J W., et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene [J]. Science,2008,321 (5887):358-388.
    [4]Katsnelson M I. Graphene:Carbon in Two Dimensions [J]. Matterials Today, 2007,10(1-2):20-27.
    [5]张晓艳,李浩鹏,崔晓莉.TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J].无机化学学报,2009,25(11):1903-1907.
    [6]Zhang H., Lv X J., Li Y M., et al. P25-Graphene Composite as a High Performance Photocatalyst [J]. ACS Nano,2010,4(1):380-386.
    [7]Stankovich S., Dikin D A., Piner R D., et al. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide [J]. Carbon, 2007,45(7):1558-1565.
    [8]Hackendorn R A., Virkar A V. Synthesis of platinum nanoclusters and eletrochemical investigation of their stability[J]. Journal of Power Sources..2013,240(15):618-629.
    [9]Yu H F., Qian D W. Characterization and photocatalytic kinetics of the ZnO powder prepared using a polyol process[J]. Particulate Science and Technology,2013,31 (5):482-487.
    [10]He G Y., Chen H Q., Zhu J W.. et al. Synthesis and characterization of graphene paper with controllable properties via chemical reduction[J]. Journal of Materials Chemistry.2011.21(38):14631-14638.
    [11]Hummers W S., Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [12]Paci J T., Belytschko T., Schatz G C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide[J]. Journal of Physical Chemistry C,2007,111 (49):18099-18111.
    [13]Park S., Lee K S., Bozoklu G., et al. Graphene oxide papers modified by divalent ions- Enhancing mechanical properties via chemical cross-linking[J]. Acs Nano,2008,2(3):572-578.
    [14]徐超.基于石墨烯材料的制备及其性能的研究[D].南京理工大学,博士论文,2010.
    [15]陈小刚,贺蕴秋,张琼,李林江,胡栋虎ZnO/RGO复合材料的结构及其光催化性能研究[J].无机化学学报,2009,25(11):1953-1959.
    [16]Yang Y., Liu T X. Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid [J]. Applied Surface Science,2011,257 (21):8950-8954.
    [17]Chen H., Muller M B., Gilmore K J., et al. Mechanically strong, electrically conductive, and biocompatible grapheme paper [J]. Advanced Materials 2008,20(18):3557-3561.
    [18]戴守愚,方炎.ZnO的变温拉曼光谱研究[J].光散射学报,2009,21(1):64-68.
    [19]刘辉,董晓楠,孙超超.石墨烯/二氧化钛复合光催化剂的制备及可见光催化性能研究[J],陕西科技大学学报,2013,31(1):23-28.
    [20]Fu D Y., Han G Y., Chang Y Z., et al. The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water[J]. Materials Chemistry and Physics,2012,132(2-3):673-681.
    [21]Lv T., Pan L K., Liu X J., et al. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction[J]. Journal of Alloys and Compounds,2011,509 (41):10086-10091.
    [22]朱声宝.C60对光催化剂的表面修饰提高其光催化性能的研究[D].清华大学,硕士论文,2007.
    [23]Wang Y J., Shi R., Lin J., Zhu Y F. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J].Energy & Environmental Science.2011,4(8):2922-2929.
    [24]Xu T G, Zhang L W., Cheng H Y, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study [J]. Applied Catalysis B:Environmental,2011,101 (3-4):382-387.
    [1]Eskizeybek V., San F., Gulce H., et al. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations[J]. Applied Catalysis B:Environmental 2012,119:197-206.
    [2]Fu H B., Xu T G., Zhu S B., et al. Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C60 [J]. Environmental Science & Technology,2008,42(21):8064-8069.
    [3]Herandez A., Maya L., Sanchez M E., et al. Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3[J]. Journal of Sol-Gel Science and Technology,2007.42(1):71-78.
    [4]Lu W W., Gao S Y., Wang J J. One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance [J]. Journal of Physical Chemistry C,2008,112(43):16792-16800.
    [5]Ullah R., Dutta J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles[J]. Journal of Hazardous Materials, 2008,156(1-3):194-200.
    [6]Chen L C., Tu Y J., Wang Y S., et al. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination [J].Journal of Photochemistry and Photobiology A:Chemistry,2008,199(2-3):170-178.
    [7]Lahiri J., Batzill M. Surface Functionalization of ZnO Photocatalysts with Monolayer ZnS [J].Journal of Physical Chemistry C.2008,112(11):4304-4307.
    [8]王辉虎.纳米氧化锌的控制制备及其光催化性能的研究[D].华中科技大学,博士论文,2006.19-22.
    [9]Han Z Y., Zhang J C., Yang X Y., et al. Synthesis and photoelectric property of poly (3-octylthiophene)/titanium dioxide nano-composite material[J]. Journal of Materials Science:Materials in Electronics,2010,21 (6):554-561.
    [10]李生英.导电聚合物半导体纳米复合材料的制备及其光催化性能研究[D].西 北师范大学,博士论文,2006,1-31.
    [11]Xu S H., Li S Y., Wei Y X., et al. Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation[J].Reaction Kinetics Mechanisms Catalysis,2010,101(1):237-249.
    [12]Lin Y M., Li D Z., Hu J H.,et al. Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-Modified TiO2 Composite[J]. Journal of Physical Chemistry C,2012,116(9):5764-5772.
    [13]Min S X., Wang F., Han Y Q. An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites [J]. Journal of Hazardous Materials,2007,42(24):9966-9972.
    [14]Li X G., Huang M R., Duan W., et al. Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations[J]. Chemical Reviews,2002,102(9): 2925-3030.
    [15]Huang M R., Lu H J., Li X G. Efficient multicyclic sorption and desorption of lead ions on facilely prepared poly(m-phenylenediamine) particles with extremely strong chemoresistance[J]. Journal of Colloid Interface Science,2007,313(1):72-79.
    [16]Zhou H H., Chen H., Luo S L., et al. Preparation and bioelectrochemical responses of the poly(m-phenylenediamine) glucose oxidase electrode[J]. Sensors and Actuators B:Chemistry,2004,101:224-230.
    [17]Duran B., Bereket G, Duran M. Electrochemical synthesis and characterization of poly(m-phenylenediamine) films on copper for corrosion protection[J]. Progress in Organic Coatings,2012,73(2-3):162-168.
    [18]Sulimenko T., Stejskal J., Proke J. Poly(phenylenediamine) dispersions [J].Journal of colloid and interface science,2001,236(2):328-334.
    [19]Eskizeybek V., San F., Gulce H., et al. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations[J]. Applied Catalysis B:Environmental,2012,119:197-206.
    [20]. Pouget J P., Hsu C H., MacDiarmid A G., et al. Structural investigation of metallic PAN-CSA and some of its derivatives[J]. Synthetic Metals,1995,69:119-120.
    [21]Feng W., Sun E H., Fujii A., et al. Synthesis and Characterization of Photoconducting Polyaniline-TiO2 Nanocomposite [J]. Bulletin of the Chemical Society of Japan,2000,73:2627-2633.
    [22]Li J., Zhu L H., Wu Y H., et al. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization[J]. Polymer,2006,47(21):7361-7367.
    [23]Zhang L W., Cheng H Y., Zong R L., et al. Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity [J]. Journal of Physical Chemistry C,2009,113(6):2368-2374.
    [24]Rao A N., Sivasankar B., Sadasivam V. Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst[J]. Journal of Molecular Catalysis A:Chemical,2009,306(1-2):77-81.
    [25]HsinWu C. Photodegradation of C.I. Reactive Red 2 in UV/TiO2-based systems:Effects of ultrasound irradiation [J]. Journal of Hazardous Materials, 2009,167:434-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700