正电子湮灭对聚变堆用中国低活化马氏体钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低活化铁素体/马氏体钢被认为最有希望可用于第一壁/包层的结构材料。本论文的目的主要是探讨中国低活化马氏体CLAM钢的辐照损伤机理,研究的重点集中在CLAM钢辐照前的微观分析;Monte Carlo方法对辐照损伤的模拟分析;以及用慢正电子技术研究质子辐照CLAM钢时所产生的缺陷及其退火回复行为,具体内容如下:
     1. CLAM钢辐照前的微观分析
     通过对CLAM钢的金相和电镜观察,可知CLAM钢热处理工艺后得到的是板条马氏体结构,马氏体板条内聚集了大量的位错。根据经验公式以及实验数据估算出CLAM钢位错密度的数量级为109cm-2。用多普勒展宽方法研究了CLAM微结构随退火温度的变化,该钢中含单空位、双空位、位错和小空位团等缺陷,分别经不同温度而退火。
     2.辐照损伤模拟
     简要讨论了离子轰击模拟中子辐照对材料辐照损伤影响,利用SRIM程序,讨论了离子种类、能量、辐照剂量等实验参量的选择对候选结构材料的溅射率、溅射原子分布、离子能量损失、入射离子在材料中的分布以及产生的辐照损伤情况进行了分析比较,得到了有意义的结果,为接下来的实验提供了初步的理论依据。
     3.质子辐照CLAM钢
     利用慢正电子技术研究了质子辐照CLAM钢时所产生的缺陷及其退火回复行为,发现辐照在材料中产生空位团数密度随质子注量增加而增多,而其尺度增大并不明显。辐照仅产生原子尺度的空位和空位团,400℃退火可以使缺陷很好地消除。此外分析了硅对CLAM钢辐照性能的影响,实验上没有观察到硅的添加抑制了质子辐照缺陷的产生。
     最后比较了离子辐照与中子辐照,简单讨论了离子辐照实验时一般需要考虑的因素。
Reduced Activation Ferritic/Martensitic steels have been considered as the most promising candidate for the structural materials of the first wall/blanket for fusion reactor. In order to investigate radiation damage mechanism of the China low activation martensitic (CLAM) steel, the dissertation concentrated mainly on the microstructure analysis of CLAM steel and the SRIM code had been used to simulate the material radiation damage. Besides, the proton radiation damage of CLAM steel was probed by slow positron beam. They were:
     1. Microstructure analysis of CLAM steel
     The metallographic and electron microscope observation showed that CLAM steel obtains the structures of lath martensite including extensive dislocation. The dislocation density in CLAM steel was estimated to be on the order of 109cm-2. Microstructure of CLAM steel and its thermal annealing behavior had been studied by Doppler technique. There exit mono-vacancies, di-vacancies, dislocations and small vacancy clusters in steel.
     2. Simulate the material radiation damage
     The Monte Carlo code SRIM had been used to simulate the sputter yield, distribution of ions, energy of sputter atom, radiation damage of materials for bombardment by ions at different energy and different species. It would provide elementary theory for experiment.
     3. Proton irradiation defects in CLAM steel
     The proton radiation damage of CLAM steel and the annealing behavior of defect were probed by slow positron beam. It was found that the density of vacancies increased, and the size reached a saturation value, with increasing of irradiation fluence. The whole region of irradiated sample was only slightly damaged. Small vacancies and vacancy clusters were the dominant defects, and were recovered after annealing at 400℃. Besides, the effect of minor additive Si on irradiation behavior for CLAM steel was studied. The experimental results showed that additive Si can not prevent proton irradiation defects.
引文
[1]王景成.正电子湮没谱学与应用,上海钢研,1997,2:48-54.
    [2] Anderson C D. Science, 1932, 76: 1519.
    [3]郁伟中编著.正电子物理及其应用,北京:科学出版社,2003.
    [4] Tobias Wider. Temperature dependent positron trapping in cooper and aluminum tuber after tensile deformation, Phys. Rev. B, 1999, 60: 179-182.
    [5] Brandt W, Reinheimer J. Phys. Rev. B, 1970, 2: 3104.
    [6] Kontrym Sznajd G, Rubaszek A. Phys. Rev. B, 1993, 47: 6950-6960.
    [7]陈镇平,王如梅,等.正电子湮没参数及其所反映物质信息的探讨,大学物理,2005,18(2):28-33.
    [8]韩荣典,翁惠民,等.慢正电子束研究N+注入金属镍中生成的缺陷,核技术,1993,16(8):449-453.
    [9]韩荣典,叶邦角,翁惠民等.慢正电子束技术的应用与发展,物理学进展,1999年第19卷第03期
    [10]翁惠民,周先意,等.慢正电子束研究薄膜、界面和近表面微观结构,物理,2000,29:308-312.
    [11] Madanski L, Rasetti F. Phys. Rev., 1950, 79:397.
    [12] Tong B Y. Phys. Rev. B, 1972, 35: 427
    [13] Mills A P, Brown B L. Slow Positron Emission form Metal Surfaces, Phys. Rev. Lett, 1978, 41: 1076-1079.
    [14] Jorch H H, Lynn K G. Positron Diffusion in Germanium, Phys. Rev. B, 1984, 30: 93-105.
    [15] Vehanen A, Saarinen K, et al. Profiling Multilayer Structures with Monoenergetic Positrons, Phys. Rev. B, 1983, 51: 1022-1023.
    [16] B.J.Ye, et al., Measurement of alpha-particle emitted from interaction of 14.6 MeV neutrons with elemental nickel. J. Nucl. Sci. Tech, 1998, 1:35.
    [17] B.J.Ye, et al., The sputtering of radioactive recoil nuclides induced by fast neutron, Journal of Applied Physics, 2000, 87: 2581.
    [18] Zinkle S J, Ghoniem N M. Operating temperature windows for fusion, Fusion. Engi. Des, 2000, 51:55.
    [19] Muroga T, Gasparotto M. Overview of materials research for fusion reactors, Fusion. Engi.Des, 2002, 61:13.
    [20]于兴哲,宋月清,等.聚变堆用结构材料的研究现状与进展,材料导报,2008,22:68-72
    [21]许增裕.聚变材料研究的现状和展望,原子能科学技术,2003,37:105-110
    [22] Q. Huang, C. Li, et al. Progress in Development of China Low Activation Martensitic Steel for Fusion Application, Journal of Nuclear Materials, 2007, 367-370: 1410- 1415.
    [23]黄群英,郁金楠,等.聚变堆低活化马氏体钢的发展,核科学与工程,2004,24:56-64.
    [24] Gasparotto M, Andreani R, et al. Survey of in-vessel candidate materials for fusion power plants-the European materials R&D Programme. Fusion. Engi. Des, 2003, 66-68: 129-137.
    [25] Femandez P, Lancha A M, et al. Metallurgical characterization of the reduced activation ferritic/martenditic steel Eurofer 97 on as-received condition. Fusion. Engi. Des, 2001,58-59:787-792.
    [26]黄群英,李春京,等.中国低活化马氏体钢CLAM研究进展,核科学与工程,2007,27(1): 41-50.
    [27]李艳芬,黄群英,等.CLAM钢冲击和拉伸性能测试与研究,原子核物理评论,2006,23(2): 151-154.
    [28]李春京,黄群英,等.中国低活化马氏体钢CLAM热等静压扩散焊接初步研究,核科学与工程,2007,27(1): 55-58.
    [29]彭蕾,黄群英,等.中国低活化马氏体钢CLAM在电子辐照下产生位错环的原位观察,原子能科学技术,2007,41:106-111.
    [30]彭蕾,黄群英,等.聚变材料数据库平台FUMDS的设计与发展,核科学与工程,2007,27(2)143-146.
    [31] Qunying Huang, et al. Corrosion Experiment in the First Liquid Metal LiPb Loop of China, Fusion Engineering and Design, 2007, 82: 2655–2659.
    [32] Yanfen Li, et al. Effects of Addition of Yttrium on Properties and Microstructure for China Low Activation Martensitic Steel (CLAM), Fusion Engineering and Design, 82:2683–2688.
    [33] LI Chunjing, et al. Interaction of CLAM Steel with Plasma in HT-7 Tokamak during High Parameter Operation, Plasma Science and Technology, 2007, 9: 484-487.
    [34]杨文斗主编.反应堆材料学,北京:原子能科学出版社,2006.
    [35]万发荣主编.金属材料的辐照损伤,北京:科学出版社,1993.
    [36] Fischer U, Chen Y, et al. Overview of recent progress in IFMIF neutronics. Fusion. Engi. Des, 2006, 81: 1195-1202.
    [37]韩荣典,周先意,等.慢正电子探针研究离子注入硅产生的缺陷及其退火行为,核技术,1994,17(6):321-325.
    [38]彭成晓,翁惠民,等.慢正电子对ZnO中本征缺陷的研究,核技术,28:841-844
    [39]赵飞,万奎贝,等.低活化马氏体钢的微观结构与力学性能,核科学与工程,2007,27:59-63.
    [40]王景成,尤富强.用正电子湮没谱学估测金属材料中的空位浓度和位错密度,上海钢研,1999,1:17-21.
    [41]吴奕初,滕敏康.应用正电子湮没技术定量估算高纯铁形变的位错密度和空位浓度,核技术,1994,17:597-600.
    [42] Wu Yichu, Tian Zhongzhuo. Sci. Met. Mater, 1992, 27: 811.
    [43] Vehanen A, Hautojarvi, Johansson J, et al. Phys. Rev., 1982, 25: 762
    [44]普拉提.艾合买提,范志国,等.国产改进型316L不锈钢的微结构研究,原子能科学技术,2003,37:18-21.
    [45]赵法如,等.多晶纯镍中氢致缺陷及其回复行为,金属学报,1997,33:345-351.
    [46] Khanna S K, Sonnenberg K. Radiat Eff, 1981, 59: 91.
    [47] Siegel R W, et al. Point defects and defect interactions in metals, University of Tokyo Press, 1982, 533.
    [48] Dlubek G, et al. Phys Status Solidi, 1976, 34: 737.
    [49] Ziegler J F. The stopping and range of ions in solids. New York: Pergamon Press, 1996.
    [50] Ziegler J F. Nucl. Instr and Meth, 2004, 219-220:1027-1036
    [51] Sigmund P. On the Number of Atoms Displaced by Implanted Ion or Energetic Recoil Atoms. Appl. Phys. Lett, 1969, 14: 114-116.
    [52] Wang Z G, Dufour C, et al. Defect Production and Annealing Induced by Electronic Energy Loss in Pure Metal. Nucl Instr and Meth, 1998, 135:265-269.
    [53]王志光,金运范,等.金属材料中高能重离子辐照效应的理论描述,原子核物理评论,2000,17(3):152-158.
    [54]邵其鋆,霍裕昆,等.电子阻止截面对平均投影射程计算结果的影响,核技术,1995,18(12):711-716.
    [55] Biersack J P. Nucl. Instr. Meth, 1980, 174:257.
    [56]邵其鋆,霍裕昆,等.聚变堆第一壁材料溅射的计算机模拟,应用科学学报,1993,11:44-49.
    [57] Eymery J, Joud J C.Surf. Sci., 1990, 231:410
    [58]邵其鋆,霍裕昆,等.离子轰击入射角对溅射参数的影响,物理学报,1991,40:599-666.
    [59] Kinchin G H, Pease R S. The Displacement of Atoms in Solids by Radiation, Rep. Prog. Phys, 1955, 18: 1-51.
    [60] Robinson M T. Basic Physics of Radiation Damage Production, Nucl. Mate, 1994, 216: 1-28.
    [61] Wang Z G, Dufour C, et al. Modification of Defects Induced by Nuclear Collisions in Fe and Ni in Electronic Stopping Power Regime, Nucl. Instr and Meth, 1998, 146:290-295.
    [62] Audouard A, Balanzat E, et al. Atomic Displacements and Atomic Motion Induced by Electronic Excitation in Heavy ion irradiated Amorphous Metallic Alloys. Phys. CondensMatter, 1993, 5: 995-1018.
    [63]邹俊,黄群英,等.聚变驱动次临界堆第一壁材料辐照损伤的初步研究,核科学与工程,2007,27(2):147-151
    [64] Rou X, Tanaka S, et al. Fusion Engineering and Design, 1998, 39-40B, 31-38.
    [65] Allen T R, Cole J I, et al. Journal of Nuclear Materials, 2008, 376, 169-173.
    [66] Koudou K, Hasegawa A, Abe K, Journal of Nuclear Materials, 2004, 329-333, 625-656.
    [67] Kai J J, Huang W I, Chou H Y. Nuclear Materials, 1990,170:193-209.
    [68]祖小寿,朱莎,等. 2MeV质子辐照对Zr-4合金显微组织的影响,核动力工程,2004,25:50-53
    [69]韩荣典,郭学哲,翁惠民.物理学报,1988,37:1517-1521
    [70] Schultz P J, Lynn K G. Reviews of Modern Physics, 1988, 60(3):701
    [71]翁惠民,黄前峰,等.核技术,1998,21(2):110-112。
    [72] P J Schutz, K G Lynn. Rev. Mod. Phys, 1988, 60:701.
    [73] M Y Ye. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-Ⅰ, Nucl Mater, 2003, 313-316:72-76.
    [74] J Yu. The blistering of 316L stainless steel irradiated with energetic alpha particles at 500℃, Nucl Mater, 1992, 191-194:818-821.
    [75] J H Evans. An interbubble fracture mechanism of blister formation on helium irradiated metals, Nucl Mater, 1997, 68: 129-140.
    [76]翁惠民,黄千峰,等.低能As+注入Si(100)产生的缺陷研究,核技术,1998,21:109-112
    [77] P J Schultz, K G Lynn. Rev Mod Phys, 1988, 60:701.
    [78]李玉璞,王佩璇,等. He离子注入不锈钢中温度影响,原子能科学技术,1990,24:42-47.
    [79] Fujinami M, Suzuki R et al. Characteri-zation of H-related Defects in H-implanted Si with Slow Positrons, Applied Surface Science, 1999, 149: 188-192.
    [80]赵飞,乔建生,等.硅对地活化马氏体钢电子辐照行为的影响,原子能科学技术,2008,42:15-21.
    [81]吕广庶,蔡刚毅,等. 35CrNi3MoVA钢种硅、锰含量变化对性能的影响,北京理工大学学报,2005,25(9):843-846.
    [82]花峰,刘宪民,等.化学成分对30CrMnSiNi2A钢力学性能的影响,2003,15(3):25-29.
    [83] Nikolaeva A V, et al. The contribution of grain boundary effects to low-alloy steel irradiation embrittlement, 1995, 218: 85-93.
    [84] Gamer F A, Wolfer W G. The effect of solute addition on void nucleation. Nucl. Mater, 1981, 102: 143-150.
    [85] Brager H R, Garner F A. Swelling as a consequence of gamma prime(γ)and M23(C, Si)6 formation in neutron irradiated 316 stainless steel. Nucl. Mater, 1978, 73: 9-19.
    [86] Sekimura N, Gamer F A, et al. Silicon’s role in determining swelling in neutron irradiated Fe-Ni-Cr-Si alloys, Nucl. Mater, 1992, 191-194: 1244-1247.
    [87]俞方华,郑万辉,等.合金添加剂Si和Ti对316不锈钢辐照肿胀作用的研究,辐射研究与辐射工艺学报,1995,13:204-208.
    [88]赵飞.核聚变反应堆用低活化铁素体马氏体钢的研究,北京科技大学,2007
    [89]万发荣主编.金属材料的辐照损伤,北京:科学出版社,1993.
    [90]胡本芙,等. He对低活性Fe-Cr-Mn(W, V)合金辐照产生点缺陷行为的影响,金属学报,2004,40:955-961.
    [91]胡本芙,等. He对Fe-Cr-Ni合金和Fe-Cr-Mn合金辐照损伤的影响,核科学与工程,23:145-151
    [92] Morimura T, Kimura A, et al. Void swelling of Japanese candidate martensitic steels under FFTF/MOTA irradiation. J. Nucl. Mater, 1996, 239: 118-125.
    [93]李红梅,杨武,等.核电用奥氏体不锈钢的辐照模拟研究,腐蚀与防护,2001,22:196-201.
    [94] Was G S, Allen T. Intercomparison of microchemical evolution under various types of particle irradiation. Nucl J Mater, 1993, 205: 332-338.
    [95]王志光.利用高能离子模拟研究反应堆结构材料中的辐照效应,原子核物理评论,2006,23:155-160.
    [96]白新德,王社管,等.离子轰击中子辐照在核材料研究中的应用,原子能科学技术,1996,30:469-474.
    [97] Zhang C H, Chen K Q, et al. J Nucl Mater, 1997, 245: 210.
    [98]张晓中.压力容器用钢辐照脆化评估方法比较,核动力工程,2006,27:26-29.
    [99]王志光、金运范.金属材料中高能重离子辐照效应的理论描述,原子核物理评论,2000,17:152-158.
    [100] Dunlop A, et al. Phonon soft modes and damage production by high electronic excitations in pure metals, Europhys Lett, 1991, 15: 765-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700