内置铁炭厌氧反应器处理印染废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水具有有机污染物浓度高、脱色困难、水质变化大和难生物降解等鲜明特点,在我国属于难处理的工业废水之一,经济、有效的印染废水处理技术已经成为当今环保行业普遍关注的课题。本文研究学习了国内外印染废水的处理现状,介绍了目前应用的各种物理、化学、生物处理技术。针对单独应用铁炭微电解法处理印染废水易生锈、板结和厌氧生物法易酸化、脱色率低等缺点,提出了内置铁炭厌氧生物处理组合工艺,并研究了不同COD浓度和染料(活性艳红X-3B)浓度的偶氮染料模拟废水在内置铁炭厌氧组合工艺下的处理效果及其降解机理,同时结合实际染料废水的处理情况和反应器内微生物种群分析,进而综合比较衡量本工艺的可行性。根据本课题的实验研究和理论分析,可以得出如下结论:
     1、利用内置有铁炭的UASB反应器处理活性艳红X-3B染料废水,染料脱色率高,COD去除率高,并且反应器运行稳定,而UASB反应器相比较效果较差。当X-3B浓度小于200mg/L时,内置有铁炭的反应器R1其COD、色度去除率分别为51.1%和96.2%,高于对比反应器R2的42.5%和68.7%,且其出水pH稳定。处理高染料浓度废水R1仍有85%的色度去除率,R2效果较差,出水pH为4.9明显酸化;处理高进水COD浓度R1保持90%以上色度去除率,高于R2的75%,且反应体系厌氧环境稳定,ORP值较低。在进水COD1500mg/L、X-3B100mg/L条件下, R1其色度、COD平均去除率分别为91.7%和53%,高于对比反应器R2的43.8%和32%,同时经紫外光谱分析发现R1出水其特征吸收峰值明显降低或消失,X-3B结构得到有效破坏。
     2、通过对比R1、R2反应器处理实际印染废水的情况发现铁炭的加入使R1反应器色度、COD去除率分别提高22%和21%,达到82%和63%,同时出水BOD5/COD提高到0.28,与R2相比较B/C增加了0.17,有利于下一步好氧生物处理。同时观察内部铁屑的表面形态,其具有明显的金属光泽,说明铁炭的加入更能保持反应器厌氧环境;另一方面通过采用荧光原位杂交的方法对R1、R2反应器内污泥微生物群落分析,发现R1内甲烷的含量明显多于R2,而产酸菌的含量则少于R2,这也证明了上述论断。改变反应器水利停留时间和回流比等运行参数发现,内置有铁炭的反应器具有更好的承受能力,能更有效的抑制反应器的酸化。
The printing wastewater is one of the refractory wastewater because its distinctive characteristics of high pollutant level, difficulty to discoloration, water quality fluctuation and difficult to degradation. How to dispose the printing wastewater with economical and effective processing technology has become a universal problem concerned by the environmental protection field today. The article elaborated the status quo of the dye wastewater treatment from home and abroad, introducing various physical, chemical and biological treatment technologies at present. Since the iron chipping micro-electrolysis method has the problems of rust, easy to harden in treating dyeing wastewater and the shortcomings of acidification, low removal rate of color using anaerobic biological methods, we put forward the process of the built-in zero valent rion (ZVI)-anaerobic treatment and studied the treatment effect and degradation mechanism of this process when it was employed to treat the simulative dying wastewater with different COD and X-3B concentrations. We also researched the effects of treating the actual dying wastewater and microbial populations of the reactor to comprehensively comparing and measuring the feasibility of this technology. According to the experimental study and theoretical analysis, we can draw the following conclusions:
     1. The decolorization and COD removal efficiencies were perfect and the reactor was stable with built-in iron ZVI-UASB (R1) treating reactive red X-3B dye wastewater, while the UASB (R2) reactor was less effective compared to R1. When the X-3B concentration was less than 200mg/L, the COD and color removal rate were 51.1% and 96.2% respectively, higher than the R2 reactor which was 42.5% and 68.7%, and the pH of effluent was stable. The COD removal rate was still 85% with high X-3B concentration of wastewater in the R1, however, the treatment of dye wastewater wasn't effextive in the R2 reactor and the effluent pH was 4.9 which mean serious acidification. The R1 maiatained more than 90% color removal rate with high influent COD concentration, higher than the 75% in the R2, and the anaerobic environment of the reactor system was stable, ORP value was also lower. The COD and color removal rate was 91.7% and 53% respectively, higher than the R2 43.8% and 32% with the influent COD concentration of 1500mg/L and X-3B concentration of 100mg/L. X-3B structure has been effectively destroyed because the characteristic absorption peak of the effluent was significantly decreased or disappeared by UV spectroscopy.
     2. Comparing the effects of treating the actual dye wastewater, the COD and color removal rate were increased by 22% and 21%, reaching to 82% and 63% by adding iron clip and carbon to the UASB. At the same time, the BOD5/COD of effluent increased to 0.28, compared with 0.16 of the R2 which is conducive to aerobic biological treatment in the next step. It was found that the surface of the internal iron clip was obvious no rust and had metallic luster which indicated that the addition of iron to the anaerobic reactor can effectively maintain the environment. On the other hand, the analysis of microbial communities in the sludge using fluorescence in situ hybridization (FISH) method showed that the methanogens in the R1 was more than R2, while the acidogens was less than R2 which also proves the above conclude. The built-in ZVI-UASB process has better capacity and could effectively inhibit the acidification with parameter changes of different hydraulic remain time and reflux ratio.
引文
[1]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997.
    [2]Wong Y X, Yu J. Laccase-catalyzed decolorization of synthetic dyes [J]. Water Research,1999,33:3512-3520.
    [3]戴日成,张统等.印染废水水质特征及处理综述[J].给水排水,2000,26(10)32-34.
    [4]张统.污水处理工艺及工程方案设计[M].建筑工业出版社,2000.
    [5]汪晓军,黄瑞敏,谭清良.印染废水污染控制[J]环境科学与技术,2002,25:29-30.
    [6]青维昌.染料行业废水处理现状和展望[J].染料工业,2002,39(6):35-39.
    [7]Frijters C T M J, Vos R H, Scheffer G, et al. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system [J].Water Research,2006,40:1249-1257.
    [8]朱虹,孙杰,李剑超.印染废水处理技术[M].北京:中国纺织出版社,2004.
    [9]江苏省纺织印染废水一级达标排放现场会会议材料[C].江苏省环保厅.2004.
    [10]景晓辉,尤克非,丁欣宇等.印染废水处理技术的研究与进展[J]南通大学学报(自然科学版),2005,4(3):18-22.
    [11]Sponza D T, I(?)ik M. Reactor performances and fate of aromatic amines through decolorization of Direct Black 38 dye under anaerobic/aerobic sequentials [J]. Process Biochemical,2005,40(1):35-44.
    [12]程薇.过氧化氢催化体系对染料废水的处理研究[D].南京:南京工业大学,2002.
    [13]唐受印.废水处理工程[M].北京:化学工业出版社,1995.
    [14]王作敏.印染废水污染对劳动河水生生态系统的影响[J]中国环境监测,2005,21:71-74.
    [15]李庄高.浓度染料废水(含偶氮染料废水)处理技术的研究[D].湖南:湖南大学,2001.
    [16]钱崇濂 国外非致癌染料研究进展[J].纺织导报,2005,2:68-70.
    [17]周明耀编.环境有机污染物与致癌物质[M],四川大学出版社,1992.
    [18]李艳平.水解酸化/好氧氧化移动床生物膜工艺处理印染废水研究[D].哈尔滨:哈尔滨工业大学,2006.
    [19]董丽丽.有机染料废水处理的新技术研究[J].云南环境科学,2002,21(3):49-51.
    [20]Hong J Y, Huang S D, Removal of Organic Dye (Direct Blue) from synthetic Wastewater by Adsorprtive Bubble Separation Techniques [J]. Eovironment Science Technology, 1993,27(6):1169-1175.
    [21]张建英,朱利中,占启范等.改性膨润土混凝剂Scpb处理印染废水[J].环境污染防治,1994,16(2):18-39.
    [22]姜方新,兰尧中.印染废水处理技术研究进展[J].云南师范大学学报,2002,22(2):24-27.
    [23]宫克.改性膨润土对工业废水的脱色[J].沈阳大学学报,2002,14(4):104-105.
    [24]蔡冬鸣,李圭白等.锰砂与粉末活性炭对印染废水脱色的研究[J].给水排水,2004,30(12):51-55.
    [25]Sen S, Demirer G N. Anaerobic treatment of real textile wastewater with a fluidized bed reactor [J]. Water Research,2003,37:1868-1878.
    [26]李胜利,李劲.用高压脉冲放电等离子处理印染废水的研究[J].中国环境科学,1996,16(1):73-76.
    [27]张彦群.复合生物技术在印染废水集中处理中的应用研究[D].南京:南京理工大学,2006.
    [28]卢建杭等.印染废水混凝脱色与染料结构及混凝剂种类间的关系[J].工业水处理,1999,7.
    [29]Giardelli G, Ranieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation [J]. Water Research,2001, 35:567-572.
    [30]Tang W T, Chen R Z. Decolorization kinetics and mechanisms of commercial dyes by Hydrogen peroxide/Rron powder system [J]. Chemosphere,1996,32(59):947-958.
    [31]杨志华,祝万鹏,王利,蒋展鹏.H2O2-O3氧化法处理染料中间体H酸和1-氨基蒽醌生产废液的研究[J].环境科学,1994,15(06):4-7.
    [32]程沧沧,胡德文,周菊香.微电解一光催化氧化法处理印染废水[J].水处理技术,2005,31(7)46-47.
    [33]姚清照,刘正宝.光电催化降解染料废水[J]工业水处理.1999,19(6):15-17.
    [34]Li X Z, Zhao Y G. Advanced treatment of dyeing wastewater for reuse [J]water Science and Technology,1999,39(10-11):249-255.
    [35]Kritikos D E, Xekoukoulotakis N P, Psillakis E, Mantzavinos D. Photocatalytic degradation of reactive black 5 in aqueous solutions:effect of operating conditions and coupling with ultrasound irradiation [J].Water Research,2007, 41:2236-2246.
    [36]高良进,程岩法.高压脉冲电凝聚浮上法处理印染废水[J].环境污染与防治,1992,14(5):10-13.
    [37]Hullebusch E D V, Gieteling J, Daele W V, Defrancq J, Lens P N L. Effect of sulfate and iron on physico-chemical characteristics of anaerobic granular sludge [J]. Biochemical Engineering Journal,2007,33:168-177.
    [38]Marcio B R, Flavio T S, Teresa C B. Paiva zero-valent iron and fenton processes for the treatment of Brazilian TNT idustry wastewater [J]. Journal of Hazardous Materials,2009,165:1224-1228.
    [39]叶亚平,唐牧,钱维兰等.动态强化微电解法处理染料废水及其机理的研究[J].环境污染治理技术与设备,2004,5(6):27-32.
    [40]Wang M X. study of Fe-C micro-electrolysis treatment of dyeing water [J]. Journal of Heilongjiang Institution of Science & Technology,2001,11(2):6-11.
    [41]Scherer M M, Richter S, Valentine R L. Chemistry and microbiology of permeable reactive barriers for in situ groundwater cleanup [J]. Critical Reviews in Microbiology,2000,26:221-264.
    [42]肖羽堂.铁屑强化传统工艺处理难讲解印染废水实践[J].给水排水,1998,24(4):37-39,
    [43]蔡固平,葛晓霞,张蕴辉.新型内电解铁屑过滤塔在印染废水工业规模处理中的应用[J].环境工程,2003,21(3):21-22.
    [44]陈灿,蒲丽梅,施汉昌.铁屑法脱色效率与染料结构的关系[J]中国环境科学,2004,23(4):376-379.
    [45]周元祥,崔康平,李湘凌,许为义.微电解对不同结构染料脱色效果的研究阴[J].环境化学,2006,25(3):367-369.
    [46]蔡天明.微电解-水解酸化/接触氧化工艺处理染料废水的研究[J].环境工程,1999,17(4):27-30.
    [47]张亚静,应金英,陈晓峰.铁炭内电解法处理印染废水[J].环境污染与防治,2000,22(5):33-36.
    [48]张守健,聂文超,王少慧.铁床-气浮-活性炭吸附法处理染料废水[J].中国给水排水,2001,17(11):43-45.
    [49]吴金义.铁炭还原法处理乡镇企业电镀综合污水.环境污染与防治[J].1989,11(1):32-35.
    [50]詹朝辉,杨晓松等.转动式微电解方法处理染料废水的研究[J].湖南有色金属,2001,17(2):39-41.
    [51]Choe S, Lee S H, Chang Y Y, et al. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0[J]. Chemosphere,2001,42:367-372.
    [52]Joo S H, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions:Effects of catalyst and stabilizer [J]. Chemosphere,2008,70:418-425.
    [53]Scott J P, Ollis D F. Integration of chemical and biological oxidation processes for water treatment:review and recommendations [J]. Environment Process, 1995,14(2):88-103.
    [54]姜金生.酸化水解-接触氧化-生物炭法处理印染废水的应用[J].给水排水,199723(2):28-31.
    [55]Stolz A. Basic and applied aspects in the microbial degradation of azo dyes [J]. Applied Microbial Biotechnology,2001,56:69-80.
    [56]冯愚斌,印染废水处理设施设计实例[J].环境保护,1997,9:11-12.
    [57]Talarposhti A. M, Donnelly T, Anderson G K. Color removal from a simulated dye wastewater using a two-phase Anaerobic packed bed reactor[J]. Water Reseatch, 2001,35(2):425-432.
    [58]Manu B, Chaudhari S.Anaerobic decolorisation of simulated textile wastewater containing azo dyes [J]. Bioresource Technology,2002,82(3):225-231.
    [59]安虎仁、钱易.厌氧条件下染料的生物降解性能与染料废水处理的研究[J].化工环保,1994,14(4):200-204.
    [60]刘建荣,吴国庆等.磁态厌氧流化床处理印染废水[J].中国环境科学,1996,16(1):64-67
    [61]Frank P v d Z, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies [J]. Water Research,2005,39:1425-1440.
    [62]李茵,奚旦立.兼氧-好氧工艺处理染料废水的研究[J].环境科学研究,2003,16(2):39-2
    [63]吴慧芳,陆继来,王世和等.ABR水解/生物接触氧化处理印染废水[J].中国给水排水,2005,21(10):52-54.
    [64]闰庆松.厌氧-好氧-煤渣吸附处理偶氮染料废水研究[J].工业水处理,2000,20(7):19-22.
    [65]竺建荣,杨艳茹,安虎仁等.厌氧UASB-好氧工艺处理染料废水的研究[J].环境科学,1994,15(4):31-34.
    [66]耿土锁.生物接触氧化-生物炭流化床在毛纺印染废水深度处理中的应用[J].环境与开发,1997,12(4):28-30.
    [67]Walker G M, Weatherley L R. Biological Activated Carbon Treatment of Industrial Wastewater in Stirred Tank Reactors [J]. Chemical Engineering Journal,1999, 75:201-206.
    [68]Ueda T, Hata K, Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor [J]. Water Science Technology,1996,34:189-196.
    [69]周荣丰,肖华,卢亮等.催化铁内电解-生化法处理印染废水[J].环境科学研究,2005,18(2):73-76.
    [70]邹海燕,奚旦立.生物铁-SMBR法处理印染废水[J].印染,2005,23:9-12.
    [71]孙华,洪英,高延耀.铁炭床、复合生物反应器处理印染废水[J].中国给水排水,2001,17(5):65-67.
    [72]国家环境保护总局编.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [73]Sponza D T, I(?)ik M. Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge [J]. Enzyme and Microbial Technology,2004,34 (2,5):147-158.
    [74]Dos Santos A B, de Madrid M P, de Bok F, et al. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium [J]. Enzyme Microbial Technology.2006,39:38-46.
    [75]Beydilli M I, Pavlostathis S G, Tincher W.C. Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions [J]. Water Science Technology,1998,38(4-5):225-232.
    [76]Bromley-Challenor K C A, Knapp J S, Zhang Z, et al. Decolourisation of an azo dye by unacclimated activated sludge under anaerobic conditions [J]. Water Research, 2000,34:4410-4418.
    [77]Appels L, Baeyens J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge [J]. Progress in Energy and Combustion Science 2008,34:755-781.
    [78]Vlyssides A, Barampouti E M, Mai S. Influence of ferrous iron on the granularity of a UASB reactor [J]. Chemical Engineering Journal,2009,146:49-56.
    [79]Cooney M, Maynard N, Cannizzaro C, et al. Two-phase anaerobic digestion for production of hydrogen-methane mixtures [J]. Bioresource Technology,2007,98: 2641-2651.
    [80]Daniels L, Belay N, Rajagopal B S, et al. Bacterial methanogenesis and growth from C02 with elemental iron as the sole source of electrons [J]. Science, 1987,237:509-511.
    [81]Sekiguchi Y, Kamagata Y, Kazunori N, et al. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granulesm [J]. Applied Environment Microbiology,1999,3:1280-1288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700