深井采掘水力凿岩机冲击凿岩效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展矿业、修筑铁路、水电建设等都离不开巷(隧)道、涵洞等地下工程的大量掘进。这些工程的开挖,在相当长时期内仍将以钻爆法施工为主。因此,凿岩机具在矿山建设、隧道掘进等地下工程的施工装备中仍占有重要地位。回顾整个凿岩机具发展史,在很长一段时期内风动凿岩机曾占据主导地位,但受其能源、结构限制,风动凿岩机效率低,能耗高,噪声、粉尘污染严重等问题难以有效解决;近几十年,节能、高效的液压凿岩机得到了蓬勃发展,但诸如废油排放与环境污染、泄漏与清洁、易燃与安全、资源枯竭和成本等仍是其难以解决的问题。而近几年,倡导清洁生产及低碳经济,致使深部岩体工程对采掘作业安全、环保、节能、高效要求越来越高,发展安全、环保、节能、高效的水力凿岩机成为趋势。
     在深井采掘作业中,水力凿岩机可以直接利用采掘面与地面之间高度差产生的巨大水力落差势能,使整个矿山采掘作业的能源和采掘成本大为降低,且消除了废油排放与环境污染、泄漏、易燃等一系列液压凿岩机所无法避免的弊端,其安全、环保、节能、高效的优势更加明显。而到目前,所试制的水力凿岩机总体能量利用率低下问题,成为困扰其工业应用的关键问题所在。鉴于此,本文以国家高技术研究发展计划(863计划)——水势能直接驱动的深部金属矿采掘技术与装备项目为依托,以试制的SYYG65型导轨式水力凿岩机样机为主要研究对象,开展了如下工作:
     基于实验需求,自行开发建成了水力采掘实验系统,为水力凿岩机冲击凿岩效率实验研究提供了完备的实验平台。实验系统包括水压动力泵站、导轨及凿岩台架等机械部分、性能测试及数据采集处理系统等。可模拟深井高压水环境,直接对水力凿岩机及水力潜孔冲击器(DTH)等水力破岩机具开展性能测试和试验研究。
     从水力凿岩机凿岩工作原理出发,针对其能量的转化与传递,分析出凿岩机总体凿岩效率的高低,主要取决于凿岩机冲击机构及冲击凿入这两大系统的能量转化及传递效率。
     通过对水力凿岩机冲击机构工作原理的分析,阐述了其不同于一般液压机械的独有特点,指出这一特殊水力机械在数学模型的建立,冲击速度、瞬态流量等参数的测试等方面都面临棘手的问题;分析指出采用非线性数值模拟则是一种简单易行和动态、综合、比较符合客观实际的研究方法,并首次采用非线性仿真工具——SimHydraulics液压传动和控制系统构筑搭建了后控式水力凿岩机冲击系统流体/机械混合实物动力仿真模型,建模过程避免了对系统运行状态转换的考虑,简单有效地实现了活塞和阀芯在水压力作用下的耦合计算。编制完成了相应的数据后处理函数模块,实现了活塞行程及运动循环辨识、测试数据整理计算、结果输出、自动循环计算等一系列功能,并通过凿岩机运行实验验证了该模型的有效性。
     利用建成的水力采掘实验系统开展了凿岩机不同工作压力下的冲击性能实验、不同蓄能器参数下的冲击性能实验及冲击器前后腔压力和活塞位移测试三项实验,与相应的仿真结果相结合,针对该SYYG65型水力凿岩机,指出可以通过增大高压水进水口口径、增大前腔与配流阀的连接导水管径、改变信号孔位置、选取蓄能器合适的充气压力及有效容积等途径来提高系统的能量利用率。
     应用波动力学对凿岩机冲击凿入系统进行了简要分析,引入应力波的峰值系数及能量分布矩两个品质因数,用于衡量实测的活塞冲击应力波形。通过冲击实验发现,从应力波的能量分布矩及峰值系数来看,随着冲击压力的升高,均表现出波形偏离矩形波形,不利于能量向岩石传递;当冲击压力继续升高到一定范围后,两个品质因数均表现出了局部较优值,表明对于凿岩机来说冲击压力也会对应力波形产生影响,并存在最优冲击压力。
     利用水力采掘实验系统开展凿岩机凿岩实验测试,并采用通径分析方法对实验数据进行了分析研究,发现在冲击压力变化不大的情况下,要想获得理想的凿岩速度,必须同时保持较高推进压力和钎杆转速,而推进压力又会通过对钎杆转速反向作用于凿岩速度;总体来说,对凿岩速度的影响由大到小依次为:推进压力与钎杆转速的共同作用、钎杆转速直接作用及推进压力直接作用。
     在以上研究成果基础上,对水力凿岩机冲击器、蓄能器等相关结构参数做了相应调整,经对关键零部件重新选材加工后,装配成功SYYG65-B型导轨式水力凿岩机。经性能测试及凿岩实验,该机在冲击压力9.124MPa下单次冲击能≧85J,能量利用率≧20%,凿岩速度(?) 420mm/min,基本达到设计要求;在冲击压力9.61MPa时,同时保持较高推进压力(0.95MPa)和较高钎杆转速(157.4r/min)时,得到最大凿速449mm/min相比原SYYG65样机,能量利用率有近10%的提高,凿岩速度每分钟提高200多毫米,其冲击凿岩效率得到明显提高。
Development of mining, construction of railways, and the hydropower construction etc. involve large-scale excavations of underground engineering such as tunnels, culverts etc. Drilling and blasting is still the main construction method for underground engineering in a long time. Therefore, the rock drilling equipments is still vital for mines, tunnels and other underground constructions. Reviewing the history of the rock drilling equipments, the pneumatic rock drill was mostly used; however, its usage is limited by its energy and structural problems, low efficiency, high energy consumption, serious noise, dust pollution and other disadvantages. Over the past several decades, highly effective and energy-saving hydraulic rock drill has been developing vigorously. But problems such as waste oil emission and pollution, leakage and clean, inflammability and security, resource exhaustion and cost are still hard to be solved. Especially in recent years, cleaner production and low-carbon economy was proposed, which causing high demand for safety of deep rock mass engineering, environmental protection, energy-saving and efficiency. Thus, the development of the water powered percussive rock drill was promoted.
     In deep mining operations, the enormous power source born in high fall between surface and underground can be utilized by the water powered percussive rock drill directly. So the cost for power source and excavations was largely decreased, and lots of defects such as waste oil emission, pollution, leakage, inflammability etc. which the hydraulic rock drill can not avoid were eliminated. Water powered percussive rock drill have obvious advantages such as safety, environmental protection, energy-saving, high efficiency, up to now, its key limitation for industrial application is low energy efficiency. Based on the above considerations, the track-type water powered percussive rock drill SYYG65 is researched funded by national high technology research and development program (namely 863 Program)—water directly powered excavation techniques and equipments in deep metal mine. The main researches contain the followings.
     The water powered excavation test set-up was developed, and a complete experimental platform was constructed for the research on percussive drilling efficiency of water powered percussive rock drill. The whole system contains hydraulic power section, guideway, drilling bench and other mechanical parts, test and data acquisition system etc. The experimental set-up can be used to simulate deep high-pressure hydraulic environment. And the performances of the water powered excavation implements such as water powered percussive rock drill and water powered down-the-hole hammer (DTH) etc. can be directly measured and studied by this experimental system.
     From the drilling principle of the water powered percussive rock drill, according to the energy transformation and transmission, the main factors affecting the efficiency of rock drill were found, namely the energy transformation and transmission of the impact system and percussive penetration system.
     From the working principle of the impact system of the water powered percussive rock drill, its characteristics which are different from the general hydraulic machinery were described. It is hard to establish mathematical model for this special waterpower machinery, and the impact velocity, instantaneous flow and other parameters were still hard to measure. Thus, it was proposed that nonlinear numerical simulation is a simple, dynamic, integrated, and reality accordant method for researching the impact system. And a dynamic simulation model of water-powered percussive rock drilling system was built by SimHydraulics toolbox, and then the fluid/mechanical hybrid simulation was realized. The simple and effective coupling calculation of piston and valve core under the water pressure was carried out by avoiding transition of the running state of the system. Some post-processing functions were compiled to realize the identification of the piston stroke and motion cycle, data record and calculation, result output, loop computing and some other functions, and the efficiency of SimHydraulics dynamical simulation on water-powered percussive rock drilling system was validated.
     Three experiments for water powered percussive rock drill were done on the water powered excavation test set-up, which are impact performance test under the different working pressure, tests of the impact properties about different accumulator, synchronous tests about the pressure of front and back cavity and the displacement of the piston. Combining with the corresponding simulation results, some measures for improving the energy efficiency of the impact system were pointed out for SYYG65, which are larger diameter of the high-pressure water inlet; larger aqueduct diameter connected the front cavity with the port valve; different place of the signal orifice; appropriate inflation pressure and effective volume for the accumulator.
     The percussive penetration system of the water powered percussive rock drill was analyzed with the wave mechanics. The stress peak coefficient and the moment of energy distribution were introduced to evaluate the measured stress waveform. From the impact experiment, some conclusions were found. The stress peak coefficient and the moment of energy distribution were increased with the increasing of impact pressure; and the waveform is deviated from the rectangular wave, which is unfavourable for the energy to transfer from drill to rock. However, as the impact pressure reaches to a certain range, the stress peak coefficient and the moment of energy distribution present a local extremum. Results show that impact pressure also has the effect on stress waveform, and has an optimal impact pressure.
     The drilling experiment was done on the water powered excavation testing set-up. Testing data was analyzed by the Path Coefficient Analysis. Result shows that the high propulsion pressure and the high rotational speed of the drill steel are both needed for an ideal drilling speed. But the propulsion pressure has an indirectly reverse influence on the drilling speed through the rotational speed of the drill steel. In general, the impact effects for drilling speed in turn are the interaction of propulsion pressure and rotational speed of the drill steel, the rotational speed of the drill steel, the propulsion pressure.
     Based on the results mentioned above, some structural parameters of water powered impacter and accumulator were improved. Some key parts of the rock drill were over-manufactured. And the track-type water powered percussive rock drill SYYG65-B was developed successfully. The performance test and the rock drilling test showed that some parameters can reach a certain value under 9.124 MPa water pressure, such as single impact energy (?)85J, energy efficiency(?)20%, drilling speed(?)420mm/min, which are basically consistent with the design requirements. When the impact pressure was 9.61 MPa, keeping the propulsion pressure at 0.95MPa and rotational speed of the drill steel at 157.4r/min at the same time, the drilling speed could reach the maximum value of 449mm/min. Compared with the SYYG65, the energy efficiency of the SYYG65-B is improved nearly 10%, it can drill 200mm longer per minute than the SYYG65, and the percussive drilling efficiency was improved obviously.
引文
[1]周爱民.我国硬岩矿山凿岩爆破工艺与装备进展[J].凿岩机械气动工具,2009(4):50-54
    [2]伍颖,张时忠.试论水力凿岩机[J].矿山机械,2000,(2):25
    [3]甘海仁.杨永顺.我国凿岩机械现状[J].凿岩机械与气动工具,2006,(1):16-28.
    [4]张玉成.凿岩机械气动工具行业概况、差距及发展方向[J].2000,(3):23-33
    [5]黎永泉.从中国专利看我国凿岩机械技术的发展[J].凿岩机械与气动工具,1998,(2):49-50
    [6]朱建新,何清华,郭勇等.液压凿岩设备现状及其发展思路[J].凿岩机械气动工具,1999,(2):21~24.
    [7]周志鸿,闫建辉,刘连华.支腿式液压凿岩机的新进展[J].凿岩机械气动工具,2002,(2):16~18.
    [8]王新华,魏源迁,李剑锋等.水压传动技术发展的现状及其应用前景[J].机床与液)压,2003(6):3-7.
    [9]宋跃卫译.水力和气动手技式凿岩机比较试验.矿业快报[J].2001,(3):11-13.
    [10]Wills. J. Advances in Water powered rock drilling[J].CIM Bulletin, (93),1041. Jun.,2000:150-151.
    [11]Brindeau. Mac. Successful Break though with water[J]. Sulzer Technical Review,1994(1):15-19.
    [12]Paraszczak J. Evaluation of the potential of mining with water water-powered jackleg drills[J]. Mining Engineering, Mar,1996:68-72.
    [13]J.Kunsemiller. Development of a seawater hydraulic rock drill[J].1991,3.
    [14]Siuko M., Kemppainen T. Development of water hydraulic Extractor tool Iter[J]. Proceeding of the sixth Scandinavian International Conference on Fluid Power,Volume 2(2):687-698.
    [15]Kunsemiller, S. A.Black.Seawater hydraulics:A kulti-function tool system for US navy construction drives[J]. Naval facilities engineering command, Alexandria, Virginia,1991,5
    [16]Paraszczak J. Compariative experiment between water-powered jackleg drill and pneumatic drills[J]. Mining Engineering,1994(8):999-1002.
    [17]Pearse.GHydro-power at Kloof[J].Mining Magazine,1990,(11):436-437.
    [18]李庆元等.南非的矿业(上)[J].有色金属,1993,(2).
    [19]高战敏译.南非金矿井的深度开采技术[J].国外金属矿山,1997,(6):29-34
    [20]孔键译.液压凿岩机来到加拿大[J].国外金属矿山,1995,(10):61.
    [21]石恩元.支架式水力凿岩机[J].世界采矿快报,1995,11(1):10-13
    [22]罗亮光.水压凿岩设备技术评议会在湖南举行[J].凿岩机械气动工具,1996,(1):22
    [23]薛军.液动冲击器与液压凿岩机的比较与启示[J].探矿工程,1994,(2):39.
    [24]刘德顺,岳文辉,伍先明,朱萍玉.冲击凿岩机动力学融合设计[J].湘潭矿业学院学报.2003,(9):33-35.
    [25]伍先明,刘德顺.水力凿岩机的结构设计与试制[J],机床与液压.2007,(5):119-121
    [26]伍先明.YTS-25型支腿式水压凿岩机[J].矿山机械,2002,(8):64-65.
    [27]黄良沛.YST25水压凿岩机配流阀的性能研究[J].湘潭矿业学院学报,2003,(3):49-53
    [28]黄良沛.YST25水压凿岩机蓄能器的参数设计[J].湘潭矿业学院学报,2003,(6):10-12
    [29]岳文辉,刘德顺,伍先明等,环境友好型全水压冲击凿岩机动力学建模与数值仿真[J].中国程科学.2007(8):57-61
    [30]伍先明,刘德顺.水力凿岩机冲击部件结构形状、轴向推力、转钎角度与凿岩效率的试验研究[J].振动与冲击.2007(8):154-157.
    [31]赖邦钧.支腿式水压凿岩机的探讨与优化[J].凿岩机械气动工具,2004,(4):41-47
    [32]周梓荣,李夕兵,刘迎春.水力凿岩机及其冲击机构关键技术[J].矿冶工程.2004(8):14-17.
    [33]周梓荣,李夕兵,刘迎春.支腿式水力凿岩机的研究与试验[J].中国机械工程.2004(7):1236-1239
    [34]周梓荣.水压凿岩机及其冲击结构关键技术[J].矿冶工程,2004,(4):14-17.
    [35]Li Xibing, Zhou Zirong.Comparative Analysis and Development Trend of Rock Drill [J]. ENGINEERING SCIENCES,2005,3(3):81-84
    [36]杨曙东,李壮云,朱玉泉.水压传动的主要课题与研究进展.中国机械工程2000(9):1070-1073
    [37]柯坚.水压与压动技术的最新研究动态.机床与液压.2001,(2):12-14.
    [38]Esmaeil Varandili.Properties of tap water as a hydraulic pressure medium.The sixth Scandinavian international conference on fluid power,Finland,Tampere, 1999,5(2):113-128.
    [39]唐向阳.纯水液压系统的现状与未来.液压与气动.2000,(4):5-6
    [40]J.Y.Chien. The dirt on environmentally friendly fluids. Hydraulic and Pneumatics,1995,49(5):46-48.
    [41]Erik Trost mann. Water Hydraulic Control Technology[J]. Marcel Dekker Inc. New York. USA,1996:35-38.
    [42]Samland U. and Hausher G. The Use of New Materials in Water Hydraulics[J]. Proc.of 4th Scandinavian Int Conf. on Fluid Power. Tampere. Finland. Sept, 1995:955-964
    [43]Terava J. Kuikko T and Vilenius M. Development of Sea Water Hydraulic Power Pack.Proc.of 4th Scandinavian Int Conf on Fluid Power, Tampere, Finland, Sept.1995:978-991
    [44]王东,李壮云.水液压系统的特性及关键技术的研究分析[J].现代机械,2000, (4):45-4
    [45]Brain Hollingworth. Water hydraulic in its Historical Content. Proc.4th Scandinavian Int. Conf. On Fluid Power. Sept.,1995:842-858.
    [46]George E.Totten,John V.Sherman.Current needs and developments in hydraulic fluid technologies.Proceedings of the 5th JFPS international symposium on fluid power,Vol 2:395-400, NARA,2002:11-13.
    [47]A.L.Hitchcox. Water hydraulics continues steady growth. Hydraulics and Pneumatics,1999,52(12):31-32.
    [48]K.Y.Li.A.Note on the Lubrication of Composite Slippers in Water-Based Axial Piston Pumps and Motors.Wear[J].1991,(147):431-437
    [49]李志国,李夕兵,周梓荣,甘海仁.深部金属矿水压凿岩机关键技术[J].矿冶工程,2010,30(3):27-31
    [50]周梓荣,赖帮钧,罗亮光.环形微间隙压力水流动特性及计算公式的研究[J].凿岩机械气动工具,2007(1):61-64.
    [51]周梓荣,彭浩舸,曾曙林.环形间隙中泄漏流量的影响因素研究[J].润滑与密封.2005(1):7-9.
    [52]周梓荣,李夕兵,刘迎春.环形缝隙中压力水的流动规律研究与试验[J].中国机械工程,2005,16(11):1008-1012.
    [53]伍先明,刘德顺.水压冲击器的泄漏及密封[J].润滑与密封,2002(6):64-68.
    [54]Tuomas G.Water powered percussive rock drilling process analysis modeling and numerical simulation [Ph. D. Thesis][D]. Lulea, Sweden:Department of Civil and Environmental Engineering Lulea University of Technology, 2004:6-15.
    [55]Tuomas GTest Bench for Water Powered DTH Hammers[R]. Sweden:Lulea University of Technology,2004.
    [56]Tuomas G. Effective use of water in a system for water driven hammer drilling[J]. Tunneling and Underground Space Technology.2004(19):69-78.]
    [57]艾青林,周华,杨华勇.纯水液压试验台的信号采集与处理[J].工程设计,2002,9(2):94-96.
    [58]杨曙东,贺小峰,李壮云,等.海水液压泵试验台设计研究[J].液压与气动,1997(6):11-12.
    [59]Yang Shudong,Yu Zuyao, He Xiaofeng,et al.Study on Flippers for Raw Water Hydraulic Axial Piston Pumps and Motors[C]//Proc.of the 3rd Int. Symposium on Fluid Power Transmission and Control. Harbin China Sept.1999:191-196.]
    [60]刘忠,伍劲松,李伟.液压冲击机械测试原理与方法及试验研究[J].中国机械工程,2007,18(15):1769-1772.
    [61]郭孝先,张立刚.液压凿岩机性能与试验方法的系统性研究[J].凿岩机械气动工具.1999(4):42-47.]
    [62]IS2787-1984(E),Anncx C.Proccdure for measurement of impact energy by the strain gauge methed.12~14
    [63]天水凿岩机械气动工具研究所.GB/T 5621-2008,凿岩机械与气动工具性能试验方法[S].北京:中国标准出版社,2008.
    [64]煤炭科学研究总院北京建井研究所.MT/T 198-1996,煤矿用液压凿岩机通用技术条件[S].北京:中国标准出版社,1996.
    [65]宁恩渐,杨建明.凿岩机冲击凿入系统的分析[J].凿岩机械气动工具,1989,(10):40-43
    [66]唐春安.凿入过程的理论与试验研究[J].凿岩机械气动工具,1985,(1):47-53
    [67]刘亮生,子彦.冲击式凿岩机凿岩效率的优化[J].采矿技术,1992,(23):9-10
    [68]钟勇,邢军,宋守志.凿岩钎头结构与能量传递效率研究[J].金属矿山,2005,(8):18-19
    [69]杨建明.凿岩机及其冲击凿入系统的优化设计[J].南方冶金学院学报,1988,9(4):88-93
    [70]段林.优化矿山凿岩系统,提高穿孔生产效率[J].矿山机械,2007,35(6):151-152.
    [71]张国榉.冲击式凿岩与岩性特征[J],凿岩机械气动工具,2002,(.3):22-28.
    [72]Л.T.德沃尔尼科夫,曾昭华.如何提高硬岩凿岩效率[J].采矿技术,1985,(12):12-14.
    [73]杨建明.凿岩机性能参数计算模型[J].南方冶金学院学报,1988,9(2):54-60.
    [74]韩帮军,季馨.基于MATLAB的气动凿岩设备气室压力信号的计算机仿真[J].筑路机械与施工机械化,2001,18(1):10-12
    [75]杨建明.凿岩机及其冲击凿入系统的优化设计[J].南方冶金学院学报,1988,9(4):88-93
    [76]何清华,郭勇,朱建新.液压冲击机构研究·设计[M],中南工业大学出版社1995,12
    [77]黄园月.液压凿岩机冲击效率分析[J].凿岩机械气动工具,1995(2):27-31
    [78]O.Д.AДИMoB,C.A.бcoB.液压振动冲击机构理论[J],矿冶译文(采矿),1979,17(1):9~61
    [79]杨襄璧.液压凿岩机的评价指标——抽象设计变量[J],凿岩机械气动工具,1993(2):2~7.
    [80]杨襄璧.后腔回油液压凿岩机的优化设计——峰值流量最小[J],凿岩机械气动工具,1995(2):1~5.
    [81]胡均平,朱建新.液压凿岩机压力损失能耗分析[J],凿岩机械气动工具,1994(1):28~30.
    [82]何清华.液压冲击机构活塞运动的三段分析法[J]凿岩机械气动工具,1993(4):1~9.
    [83]李大诒.有阀型液压凿岩机有关问题的探讨[J],北京钢铁学院学报,1980(3):9~18.
    [84]陈定远.有阀型液压凿岩机的设计与计算[J],凿岩机械气动工具,1983(2):9~19.
    [85]陈玉凡,朱祥.钻空机械设计[M],北京:机械工业出版社,1986.
    [86]槌口正雄.油压连续打击结构。动作解析[J],日本机械学会讲演论文集,1976:107~115.
    [87]北京钢铁学院矿机教研室.液压凿岩机活塞运动规律的电子计算机模拟研究[J],北京钢铁学院学报,1980(2):29~36.
    [88]陈孝忠,陈定远.液压碎石机冲击机构计算机仿真研究[J],凿岩机械气动工具,1987(4):16~21
    [89]何清华.液压凿岩机冲击器数字仿真研究[D],长沙:中南矿冶学院,1983
    [90]刘少军.液压凿岩机冲击器系统的设计和数字仿真研究[D],长沙:中南矿冶学院,1986.
    [91]丁建中,液压凿岩机键图——状态向量分析法[D],长沙:中南矿冶学院,1986.
    [92]刘能宏,田树军.液压系统动态特性数字仿真[M],大连:大连理工大学出版社,1993.
    [93]田树军,荣文生.YYG90型液压凿岩机动态性能仿真研究[J],凿岩机械气动工具,1994(3):51~55.
    [94]孙树礼,田树军,徐冬梅等.基于功率键合图法的液压破碎冲击器动态特性数字仿真研究[J],凿岩机械气动工具,1997(3):23~27
    [95]刘忠,龙国键等.国内外液压冲击机械的发展研究[J],建筑机械,2003(7):29~32.
    [96]赵宏强,新型液压冲击器仿真与优化研究.凿岩机械气动工具,2001(1):12~26.
    [97]刘万灵,高澜庆.液压凿岩机换向阀的动特性分析[J].有色金属(矿山部分),1987年02期46~54
    [98]林红,杨国平,王习兵,范思源.液压冲击器回程运动和冲程运动仿真研究.机床与液压,2008,(5):156~160
    [99]杨务滋,邱海灵,苗润田.基于Simulink的液压冲击器动态仿真,凿岩机械气动工具.2005(3):40~45
    [100]唐伟.无阀液压凿岩机动态过程的仿真研究.西安科技大学硕士学位论文,2004.4:17-45
    [101]吴万荣,孟莹,杨矗,李强.基于AMESim的新型数字控制液压冲击器的仿真.机械制造与研究.2008(5):105~107
    [102]田树军,杨国权,刘能宏YYGJ90型液压凿岩机动态性能仿真研究.凿岩机械气动工具,1994(3):51~55
    [103]张庆功,周建强,吴镇江.基于虚拟样机技术的风动凿岩机设计与仿真研究,煤矿机械.2007.28(7):37~38
    [104]张庆功,张瑛,谢慧萍,基于虚拟样机技术的风动凿岩机建模与运动学仿真,煤矿机械.2008.29(10):40~41
    [105]张庆功,马晓丽,王涛.基于CAXA的YO18型风动凿岩机建模与运动仿真,科技资讯,2006,19:5~6
    [106]恒润科技http://www.hirain.com
    [107]Mathworks Corp. User guide of SimHydraulics Toolbox.2008
    [108]Noah D. Manring, Hydraulic Control Systems, John Wiley & Sons,2005
    [109]Idelchik, I.E., Handbook of Hydraulic Resistance, CRC Begell House,1994
    [110]黄永安,李文成,高小科Matlab7.0/Simulink6.0应用实例仿真与高效算法开发[M].北京:清华大学出版社,2008.
    [111]李颖,朱伯立,张威Simulink动态系统建模与仿真[M].西安:西安电子科技大学出版社,2004.
    [112]刘海昌,姜继海,Okoye Celestine基于数值方法的液压蓄能器能量损失分析[J],中国机械工程,2006,17(12):1283-1285.
    [113]朱文华.液压振动技术[M],福州:福建科学技术出版社,1984.
    [114]黎永泉.液压凿岩机设计计算的几个问题[J],凿岩机械与风动工具,1979(1):7-11.
    [115]李砚耕.阀控式液压冲击器的设计[J],凿岩机械与风动工具,1981(1):9-17
    [116]G.W.迪尔.液压凿岩机的凿岩自动化及最佳参数(于积深,鸣午译)[J].凿岩机械气动工具,1980(3):18-22
    [117]薛定宇,陈阳泉.高等应用数学问题的Matlab求解,清华大学出版社,2008:397-400
    [118]汪学清.潜孔冲击器凿入系统的波动理论分析[J].凿岩机械气动工具,2000(4):44-49.
    [119]徐小荷等著.冲击凿岩的理论基础与电算方法.沈阳:东北工学院出版社,1986.
    [120]Lundberg B. Some basic problems in percussive rock destruction, Ph. D. thesis, Chalmers Univ of Tech., Gothenburg,1971.
    [121]Hustrulid W.A, Fairhurst C. A theoretical and experimental study of the percussive drilling of rock, Part Ⅰ,Ⅱ,Ⅲ,Ⅳ, Int. J. RockMech. Min. Sci., 8:311~326,335~356,1971; 9:417~429,431~449,1972.
    [122]Ranman K.E. Rock fragmentation by cutting, ripping and impacts—some theoretical and experimental studies, Ph. D. thesis, Lulea Univ. of Tech., Sweden,1986.
    [123]Nordlund E. Impact mechanics of friction joints and percussive rock drills, Ph. D. thesis, Lulea Univ. of Tech., Sweden,1986.
    [124]罗生梅,张宏林,斯建刚等.冲击凿岩的瞬态动力学及效率分析[J]兰州理工大学学报,2009,35(4):39-42
    [125]徐小荷.撞击凿入系统的数值计算方法.岩石力学与工程学报,3(1):75~ 83,1984.
    [126]赵统武.冲击钻进动力学[M].北京:冶金工业出版社,1996
    [127]李夕兵.冲击凿岩的凿入模型和凿入效率的波动力学解[J].湖南有色金属,1989,5(2):9-13
    [128]Fairhust C. Wave Mechnics of Percussive Drilling[J].Mine&Quarry Enginering,1961,27 (9):169-178,327-328.
    [129]Simon R. Transfer of the Stress Wave Energy in the Drill Steel of a Percussive Drill to the Rock. Int J Rock Mech Min Sci,1964,1;397-411.
    [130]Hustrulid W A, Fairhust C. A Theoretical and Experimental Study of the Percussive Drilling of Rock. Int J Rock Mech Min Sci,1971,8;311-333.
    [131]Hustrulid W A, Fairhust C. A Theoretical and Experimental Study of the Percussive Drilling of Rock. Int J Rock Mech Min Sci,1972,9:417-429
    [132]Lundberg B. Energy Transfer in Percussive Rock Destruction-Ⅱ.IntJ Rock Mech Sci,1973,10;401-419
    [133]李夕兵,古德生.岩石在不同加载波条件下能量耗散的理论探讨.爆炸与冲击,14(2):129~140,1994.
    [134]李夕兵,赖海辉.论应力波幅值和延续时间对破岩效果的影响.中南矿冶学院学报,20(6):595-604,1989.
    [135]冯康.数值计算方法[M].北京:国防工业出版社,1978:47-48.
    [136]林树枫.液压凿岩机性能参数的选择对钻孔速度的影响[J].凿岩机械气动工具,1993,(2):25-26
    [137]刘忠,刘卫萍.液压凿岩机推进系统建模与控制及仿真研究.湖南科技大学学报(自然科学版),2008.23(4):23~27
    [138]田文元.轻型独立回转液压凿岩机研究[博士学位论文][D].沈阳:东北大学,2005
    [139]刘少军,刘世勋.内回转式液压凿岩机的设计[J].矿山机械,1991,(8):2-6
    [140]成志强,赵统武.内回转气动凿岩机冲击和转钎机构的统一动力方程[J].矿冶工程,1994,14(4):3-7.
    [141]叶子明,杨襄璧.内回转液压凿岩机有关参数的理论探讨[J].江西有色金属,1994,8(3):12-15
    [142]刘德顺,李夕兵,朱萍玉.冲击机械动力学与反演设计[M].北京:科学出版社,2007:11-12
    [143]罗育伦.关于影响凿岩速度的几个因素[J].探矿工程(岩土钻掘工 程),1983,(1):28-29.
    [144]E.Brennsteiner;朱绍桐.冲击式液压凿岩机主要工作参数关系的研究[J].矿业工程,1980,(9):44-51.
    [145]高澜庆,刘庭楷,王保申,殷秋生.液压凿岩机主要工作参数对凿岩速度影响的试验研究[J].凿岩机械气动工具,1996,(4):52-54
    [146]王学民.应用多元分析[M].上海:上海财经大学出版社,2009.
    [147]余家林,肖枝洪.多元统计及SAS应用.武汉:武汉大学出版社,2008
    [148]Richard A.Johnson,Dean W.Wichern陆璇,叶俊(译)实用多元统计分析.北京:清华大学出版社,2008.
    [149]海因茨 K 米勒,伯纳德 S.纳.流体密封技术—原理与应用[M].北京:机械工业出版社,2002
    [150]高澜庆等.液压凿岩机理论、设计与应用[M].北京,机械工业出版社,1998.
    [151]胡均平.液压凿岩机泄漏损失能耗分析[J].矿山机械,1994,(1):17-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700