典型石油石化用低合金钢湿H_2S应力腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油天然气储运、石油炼制加工及其它相关工业的机械和设备,广泛选用低合金钢制作,一般都处于湿H2S腐蚀环境中。近年来随着我国石油深度开采和中东进口石油量的增加,由湿H2S引起的低合金钢应力腐蚀开裂问题愈加突出,成为相关生产部门、科研机构研究和解决的重要课题,由于应力腐蚀开裂影响因素的复杂性,需要开展进一步的深入研究和探讨。
     本文选取三种典型石油、石化用低合金钢材料(换热器管束用钢08Cr2AlMo、输油输气管线用钢X70、压力容器用钢16MnR)作为实验研究对象。采用慢应变速率拉伸腐蚀实验研究08Cr2AlMo钢、X70钢母材及其焊接接头湿H2S应力腐蚀开裂;采用电化学腐蚀测试方法研究16MnR钢湿H2S应力腐蚀开裂;对16MnR钢焊接接头表面纳米复合化学镀层和表面纳米复合电镀层在湿H2S环境中抗应力腐蚀破坏进行实验研究。在研究过程中借助于金相显微镜、扫描电子显微镜、能谱仪、电化学工作站等先进测试技术,进行微观组织、成分、形貌的观察与测试;同时应用数理统计、回归分析等数学方法及计算机技术进行量化和模拟处理,建立了相应的数学模型。
     本文主要研究结果如下:
     1.运用均匀设计法,对08Cr2AlMo钢、X70钢母材及其焊接接头在具有不同H2S浓度、Cl-浓度、pH值和温度等介质参数的湿H2S腐蚀环境中进行慢应变速率拉伸腐蚀实验,通过扫描电镜分析试样断口的微观形貌,定性确定其应力腐蚀敏感性,并根据实验结果计算在各实验环境下的应力腐蚀敏感指数。运用回归分析软件,建立08Cr2AlMo钢、X70钢母材及其焊接接头各自应力腐蚀敏感指数与实验介质参数(H2S浓度、Cl-浓度、pH值和温度)之间关系的交互型数学模型。
     2.X70钢母材和焊接接头的慢应变速率拉伸腐蚀实验结果显示,X70钢焊接接头的应力腐蚀敏感性高于母材,且断裂部位均发生在热影响区或焊缝区,表明X70钢焊接接头对应力腐蚀比母材更敏感,为研究管线钢H2S应力腐蚀开裂提供一个重要的观测点。
     3.通过动电位快慢扫描技术,测试16MnR钢在不同H2S浓度、Cl-浓度、pH值、温度时的极化曲线,研究H2S浓度、Cl-浓度、pH值、温度不同时,16MnR钢的电化学腐蚀行为;针对16MnR钢在不同湿H2S环境下的应力腐蚀敏感电位区间,建立了16MnR钢在各种影响因素下的安全运行图。
     4.测试16MnR钢在不同应力、应变作用下的电化学极化曲线,研究不同慢应变速率拉伸条件下的应力、应变对16MnR钢在湿H2S环境中极化曲线的影响;研究外加电位对16MnR钢的应力-应变曲线及敏感性影响,进而判断16MnR钢发生湿H2S应力腐蚀开裂的可能性及相关机理。
     5.通过实验优选纳米复合化学镀和纳米复合电镀的最佳工艺配方,研究各因素对镀层中纳米TiO2含量、沉积速度和镀层密度的影响,利用金相显微镜、扫描电镜和能谱仪对表面纳米化处理前后的样品组织结构形貌进行表征;通过恒载荷拉伸实验,研究16MnR钢焊接接头经表面纳米复合化学镀和表面纳米复合电镀后的试样抗湿H2S应力腐蚀性能。研究结果表明:纳米复合化学镀层的抗湿H2S应力腐蚀性能是普通化学镀层的1.7倍,纳米复合电镀层抗湿H2S应力腐蚀性能是普通电镀层的1.5倍,纳米复合化学镀抗湿H2S应力腐蚀性能优于纳米复合电镀。本文为纳米复合化学镀和纳米复合电镀在湿H2S环境下运行设备上的应用提供了科学依据。
     作者认为,针对低合金钢进行的上述研究工作,以及获得的规律性认识,对于解决湿H2S环境下运行设备的应力腐蚀开裂问题,提供了很好的科学依据,具有重要的参考价值。
Many machinery and equipments of petroleum natural gas storage and transportation, petroleum refine process and other correlation industries selected the low alloy steels widely, which used in wet hydrogen sulfide environment. Recently, along with the deepness exploitation of nation crude oil and increase of Middle East crude oil importation, the wet hydrogen sulfide (H2S) stress corrosion cracking of low alloy steels were extruded increasingly and became the key problem for production branch and scientific research institution to be studied and resolved. As the complexity of stress corrosion influence factors, some problems deserved to be lucubrated and discussed.
     This paper selected three representative low alloy steels that widely used in petroleum and petrifaction industry, they were heat exchangers tube steel 08Cr2AlMo, oil and natural gas pipeline steel X70 and pressure vessel steel 16MnR. Through the slow strain rate testing(SSRT) and corrosion testing, the H2S stress corrosion behavior of 08Cr2AlMo steel, X70 pipeline steel and its welded joints were presented. Based on the electrochemistry corrosion testing, the H2S stress corrosion behavior of 16MnR was discussed, and the corrosion cracking behavior of 16MnR steel welded joints surface made of nanometer composite chemistry plating and nanometer composite electrochemistry plating in wet H2S environment were tested and studied. Besides, Some advanced testing techniques such as the metallurgical microscope(MM), scanning electron microscope(SEM), energy dispersive spectrum(EDS) and electrochemistry station were also used for observing and testing the microcosmic structure, component and surface morphology. Simultaneity, the methods of numerical value calculating, regression analysis and computer embedded the studies too. Some mathematical models were established.
     The conclusions of this research can be generalized as:
     1. Based on the uniformity design method, the SSRT of 08Cr2AlMo steel, X70 base metal and its welded joints steel in different concentration of H2S, concentration of Cl- , pH and temperature were tested. After analysed the microcosmic morphology by SEM, determined the nature of stress corrosion sensitivity and calculated the stress corrosion sensitivity index in different examination environment. Based on the regression analysis software, the intercross mathematics model of stress corrosion sensitivity index of 08Cr2AlMo steel , X70 base metal and X70 welded joints steel and medium parameters (concentration of H2S, concentration of Cl-, pH and temperature)were established.
     2. The differenences of X70 base metal and its welded joints in SSRT corrosion testing were: the stress corrosion sensitivity index of X70 welded joints priority to the base metal, and the rupture position existed in heat affected zone(HAZ) and welding line, which can be indicated that the stress corrosion sensitivity of X70 welded joints priority to the base metal even more, which provided an observation point for investigating the pipeline steels H2S stress corroion cracking further.
     3. The polarization curves of 16MnR steel in different concentration of H2S, Cl-, pH and temperature were tested by vitue of zeta potential speed scaning technics. The electrochemistry corrosion behavior of 16MnR steel in different concentration of H2S, Cl-, pH and temperature were studied. Based on the different wet H2S stress corrosion sensitivity potential section of 16MnR steel, the static state safegy function figure of 16MnR steels in different influence factors was constructed.
     4. The polarization curves of 16MnR steel in different stress and strain states were tested, the influences of stress and strain on 16MnR steel in H2S environment were studied, and the influences of potential on the 16MnR steel stress-strain curve and sensitivity were also described. The possibility of 16MnR steels wet H2S stress corrosion cracking and correlation mechanisms were also investigated.
     5. In this paper, the excellent constitutes and technics of nanometer composite electroless plating and nanometer composite electroplating were selected by examnination. An investigation was made on the effects of various factors on the plating nano-TiO2 content, aggradation velocity and plating density, and the organize and structure morphology of samples disposed or not were performed by means of metallurgical microscope(MM), scanning electron microscope(SEM). The H2S stress corrosion performance of 16MnR welded joints treated with surface nanocrystallization were investigated by constant load tensile examination. The results of this study showed that the stress anticorosion of nanometer composite electroless plating is the 1.5 times of general plating, nanometer composite electroplating is the 1.7 times of general plating, and the wet H2S stress anticorosion of nanometer composite electroless plating was higher than the nanometer composite electroplating, which the value exceeded the national standards. This paper provided a science basis on nanometer composite electroless plating and nanometer composite electroplating applied for run equipments in wet H2S environment.
     The author considered that what we studied on the low alloy steels and the rules from the examination provided a science basis to solve the stress corrosin cracking of equipments in wet H2S environment, and also had the significant reference value.
引文
[1]徐兆畅.当前中国石油供求形势分析[J].广州市经济管理干部学院学报,2004,6(4):1~7.
    [2]李鹤林.天然气输送钢管研究与应用中的几个热点问题.石油管工程应用基础研究论文集[M].北京:石油工业出版社,2001.
    [3]冯耀荣,霍春勇,李鹤林,等.天然气输送管线钢管性能要求与质量控制及管材选用探讨.石油管工程应用基础研究论文集[M].北京:石油工业出版社,2001.
    [4] Ken jiro Kom ai.Failure analysis and prevention in SCC and corrosion fatigue cases[J].Int.J.Fatigue,1998,20(2):145-154.
    [5]张亦良,王晶,张伟.硫化氢环境中低周疲劳裂纹扩展速率da/dN的研究[J].压力容器,2006,23(2) :12~13.
    [6]廖景娱.金属构件失效分析[M].北京:化学工业出版社,2003.
    [7]胡钢,许淳淳,池琳.X70钢在Na2CO3/ NaHCO3溶液中的表面膜性能研究[J].北京化工大学学报,2004,31(3):15~17.
    [8]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001.
    [9]黄永昌.金属腐蚀与防护原理[M].上海:上海交通大学出版社,1989.
    [10]任凌波,任晓蕾.压力容器腐蚀与控制[M].北京:化学工业出版社,2003.
    [11] R.N.Parkins.Slow strain rate testing-25 years experince, Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications[C]. ASTM STP1210, Russell D.Kane, Philadephia,1993:7-21.
    [12] R.N.Parkins.Development of slow strain rate testing and Stress corrosion cracking: slow strain rate technique,its implications[C].ASTM STP665,American Society for Testing and Materials,Philadephia,1979:5-25.
    [13] J.H.Payer, W.E.Berry, W.K.Boyd. Evaluation of slow strain-rate stress corrosion tests results , Stress corrosion cracking : slow strain rate technique[C].ASTM STP665,American Society for Testing and Materials, Philadephia,1979:61-77.
    [14]吴荫顺.金属腐蚀研究方法[M].北京:冶金工业出版社,1994.
    [15] R.N.Parkins.Predictive approaches to stress corrosion cracking failure[J].Corrosion Science,1980:147-166. [16 ]柳曾典.湿硫化氢环境用低合金高强度钢[J].石油化工设备技术,1998,19(5):57.
    [17] H.I.McHenry,D.T.Read,T.R.Shives.Failure analysis of an amine-absorberpressure vessel.Mater[J].Performance,1987,26(8):18-24.
    [18] J.E.Cantwell.LPG storage vessel cracking experience. Materials Performance,1988,27(10):79-82.
    [19]王荣贵.化工装置中钢在湿硫化氢环境下的腐蚀机理与设备选材(上) [J].化肥设计,2002,40(1):5~8.
    [20] Sardisco J.B.,Pitts R.E.Corrosion of Iron in an H2S-CO2-H2O System Mechanism of Sulfide Film Formation and Kinetics of Corrosion Reaction [J].Corrosion,1965,21(8):245-253.
    [21] TSay,L.W.,Lin,W.L..Hydrogen sulphide stress corrosion cracking of weld overlays for desulfurization reactors[J].Corrosion Science,1998,40(5):77-591.
    [22] Kane,R.D.,Joia,Small,A.L.L.T.Rapid screening of stainless steels for environmental cracking [J].Materials Performanee,1997,36(9):71-74.
    [23] Chen,S.H.,Yeh,R.T.,Cheng,T.R.Hydrogen sulphide stress corrosion cracking of TIG and laser welded 304 stainless steel [J].Corrosion Science,1994,36(12):2029-2041.
    [24]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999.
    [25] L.W.Tsay , W.C.Lee , R.K.Shiue , J.K.Wu . Notch tensile Properties of laser-surfaee-annealed 17-4pH stainless steel in hydrogen-related environments [J].Corrosion Science,2002,44(1):2101-2118.
    [26] Berkowitz B.J,Horowitz H. The Role of in the Corrosion and Hydrogen Embrittlement of Steel[J].Joural of Electrochem Society,1982,129(3):468-474.
    [27] M.S.Cayard,R.D.Kane.Large-scale wet hydrogen sulfide cracking performance: Evaluation of metallurgical, mechanical,and welding variables[J].Corrosion,1997,53 (3):227-233.
    [28]褚武扬,肖纪美,李世琼.油井管钢氢致开裂门槛值研究[J].金属学报,1998,34(10):1077~1083.
    [29] Li J C M.Computer simulation of dislocations emitted from a crack[J].Scripta Metal,1986,20(11):1477-1480.
    [30] Lu H,Li M D,Zhang T C.Hydrogen-enhanced dislocation emission, motion and nucleation of hydrogen- induced cracking for steel[J].Science in China,1997,40(5):530.
    [31]褚武扬,乔利杰,陈奇志,等.断裂与环境断裂[M] .北京:科学出版社,2000.
    [32]左禹,张树霞.1Cr18Ni9Ti不锈钢在硫化氢水溶液中的台阶状应力腐蚀破裂[J].北京化工学院学报,1994,21(4):58.
    [33]郑华均,张康达,董绍平.16MnR钢在不同饱和硫化氢溶液应力腐蚀的实验研究[J].压力容器,1999,16(1):4.
    [34] W Chen,F King,E Vokes.Characteristics of near-neutral pH stress corrosion cracks in an X-65 pipeline[J].Corrosion,2002,58(3):267.
    [35] Tsai S Y,Shih H C.A statistical failure distribution and life-time assessment of the HSLA steel plates in H2S containing enviromments[J].Corrosion science,1996,38(5):705.
    [36]小若正伦(日) .金属的腐蚀破坏与防蚀技术[M] .北京:化学工业出版社,1988.
    [37]王晓燕.CF-62钢在硫化氢环境中的电化学行为和应力腐蚀研究[D] .上海:华东理工大学博士学位论文,2001.
    [38] Greer J.B..Factors affecting the sulifide stress cracking performance of high strength steels[J].Materials Performance,1975,14(3):11-22.
    [39]吕明,韩薇,付超,等.管线钢焊缝区硫化物应力腐蚀开裂与硫化氢浓度的关系[J].全面腐蚀控制,1990,4(4):8~12.
    [40] Kawashima A.,Hashimoto K.,Shimodaira S..Hydrogen electrode reaction and hydroogen embrittlement of mild steel in hydrogen sulfide solutions[J].Corrosion,1976,32(8):321-331.
    [41]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社,1990.
    [42] Staehle R.W.,Fortv A.J.,Roovan D.ED.Fundamental aspects of stresscorrosion cracking[J].Corrosion,1969,25(5):116.
    [43]赵平,安成强.H2S腐蚀的影响因素[J].全面腐蚀控制,2002,16(5):4.
    [44]张亦良,姚希梦.压力容器用钢的硫化氢应力腐蚀[J].压力容器,1998, 15(1):30~35.
    [45]薛锦.应力腐蚀与环境氢脆[M].西安:西安交通大学出版社,1991.
    [46]乔利杰.应力腐蚀机理[M].北京:科学出版社,1993.
    [47]郦建立.炼油工业中H2S的腐蚀[J].腐蚀科学与防护技术,2000,12(60):346.
    [48] D.Delafosse,T.Magin.Hydrogen induced plastieity in stress corrosion cracking of engineering systems[J].Engineering Fraeture Meehanies,2001,68(5):693-729.
    [49]兰州石油机械研究所.防止湿硫化氢环境中压力容器失效的推荐方法[J].石油化工设备,1986,11(1):1~3.
    [50]赵平.H2S腐蚀的影响因素[J].全面腐蚀控制,2002,16(3):8~9.
    [51] Snape E.Roles of composition and microstructure in sulfide cracking of steel [J].Corrosion,1968,24(9):261-282.
    [52]吕建华,关小军,徐洪庆,等.影响低合金钢材抗H2S腐蚀的因素[J].腐蚀科学与防护技术,2006,18( 2):118~121.
    [53]左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社,1985.
    [54] L. Coudrouse, et al. Carbon manganese steel plates for sour servicemicrostructure and Hydrogen Embitterment Relations IBL conference on sour service in the oil Gas and petrochemical Industries[C].London,1987:121.
    [55] R.D. Kane, M.S. Canard. Evaluation of advanced steels for sonic Resistance[J].The Materials Properties Council,1996,14(5):36-40.
    [56]卢志明.典型压力容器用钢在湿硫化氢环境中的应力腐蚀开裂研究[D] .杭州:浙江大学博士论文,2003.
    [57]奚运涛,刘道新,张晓化.X80焊管H2S环境应力腐蚀开裂行为研究[J].石油机械,2006,34(8):7~10.
    [58]蒋国光,王瑛,任云生,等.容器用钢应力腐蚀及电化学研究[J].通用机械,2007,(5):77~80.
    [59]王炳英,霍立兴,张玉凤,等.X80管线钢焊接接头SSCC研究及数值模拟[J].焊接学报,2007,28(3):73~76.
    [60] S Y Tsai and H C Shish,The use of Thermal-spray Coatings for Preventing Wet H2S Cracking in HSLA Steel Plates[J].Crrosion Prevenion&Control ,1997,22(4):13-15.
    [61]张亦良.用热喷涂技术防止湿硫化氢应力腐蚀[J].中国腐蚀与防护学报,2003,23(4):243~247.
    [62]杨晓鸿.耐H2S、CO2腐蚀新型涂料的研制与应用[J].上海化工,2002,26(15):28~29.
    [63]于晓鹏.化学镀Ni-P合金技术在换热器管束防腐中的应用[J].腐蚀与防护,2000,21(5):39~41.
    [64]韩兴平.四川输气管道的硫化物应力腐蚀与控制[J].油气储运,1997,16(10):36~39.
    [65] R. N. Kane, S. M. Wilhelm.Status of standardizati on activities on slow strain rate testing techniques[S].ASTM,STP1210,1993.
    [66] Beavers .J S, Koch G H. Limitation of the Slow Strain Rate Test for Stress Corrosion Cracking Testing[J].Cor,1992,48(3):256-264.
    [67] Powell D T, Scully J C. Stress Corrosion Cracking of Alpha Titanium at Room Temperature[J].Cor,1968,24(6):151-158.
    [68] R.D.Kane, S.M.Wilhelm. Status of standardization activities on slow strain rate testing techniques , slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications[S].ASTM STP1210,1993, 40-47.
    [69] J.H.Payer, W.E.Berry, R.N.Parkins. Application of slow strain-rate technique to stress corrosion cracking of piping steel, Stress corrosion cracking: slow strain rate technique[S].ASTM STP665,1979,222-234.
    [70]唐懿等.压力容器用材的H2S应力腐蚀研究[C].第五届全国压力容器学术会议论文集.北京,2001:5~9.
    [71]潘家祯.压力容器材料实用手册[M].北京:化学工业出版社,2000.
    [73] GB/T11060-1998.天然气中硫化氢含量的测定-碘量法[S].
    [74]方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.
    [75] Berkowitz B J, Horowitz HH. The role of H2S in the corrosion and hydro-gen embrittlement of steel[J].Journal of Electrochemical Society,1982,129(3):468-474.
    [76] Danald,W.Shannon,J.E.Boggs. Influence factors of metal corrosion in the environment containing H2S [J].Corrosion,1959,15(11):299-305.
    [77]刘增洁.2000年世界天然气市场回顾及未来展望[J].中国能源,2001,(11):13 ~16.
    [78]张帆,梁志鹏.我国天然气资源利用的主要途径[J].中国能源,2001,(5):39~41.
    [79]庞名立.中国天然气市场问题的讨论[J].中国能源,2001,(11):17~21.
    [80] H.Gaessler,G H.Vogt.Influence of yield to tensile ratio on the safety of pipelines[J].3R International,1989,28(10):165-172.
    [81] G A.HohI,G H.Vogt.Allowable strains for high strength line pipe[J].3R International,1992,31(5):696-700.
    [82]黄志潜.发展长输管道用埋弧直缝焊管适应国内外油气工业发展的需要[J].焊管,1998,21 (4):1~9.
    [83]王茂棠.大型输气管线选材的几点看法[J].焊管,2000,23(3):32~42.
    [84]李鹤林.油气输送管发展动向及国产化探讨[M].北京:石油工业出版社,1999.
    [85]王仪康.高压输气管线用钢[J].焊管,2002,25 (3):1~10.
    [86] Hans-Georg Hillenbr,Andreas liessem,Gerhard Knauf,et al.Development of large-diameter pipe in grade X100[C].Pipeline Technology Conference.Brugge Belgium,2000:469-482.
    [87] G Demofonti,G Mannucci,C.M.Spinelli. Large diameter API X100 gas pipelines:fracture propagation evaluation by full scale burst test[C].Pipeline Technology Conference.Brugye Belgium.2000:22-24.
    [88]冯耀荣,霍春勇,李鹤林,等.天然气输送管线钢管性能要求与质量控制及管材选用探讨.石油管工程应用基础研究论文集[M].北京:石油工业出版社,2001.
    [89]周德惠,谭云.金属的环境氢脆及其实验技术[M].北京:国防工业出版社,1998.
    [90]尹成先,兰新哲,冯耀荣,等.影响油气输送管抗HIC因素探讨[J].焊管,2002, 25(5):20~24.
    [91]尹成先,刘伟,霍春勇,等.高强度天然气输送管抗氢致开裂实验研究[J].石油机械,2002,35(5):25.
    [92]尹成先,刘伟,冯耀荣.高强度感应加热弯管抗氢致开裂实验研究[J].焊管,2003, 26(1):27~29.
    [93]林雪梅.管线钢和容器钢的氢诱发裂纹[J].天然气与石油,2001,19(2):32~36.
    [94]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社,1988.
    [95]李云涛,杜则裕,陶勇寅,等.国产X70管线钢与焊接接头组织及SSCC性能[J].天津大学学报,2005,38(3):274~278.
    [96]袁志发,周静芋.实验设计与分析[M].北京:高等教育出版社,2000.
    [97]任露泉.实验优化技术[M].北京:机械工业出版社,1987.
    [98] Gabriele Rocchini . Corrosion ratemonitoring by linear polarization method [J].Corrosion,1993,34(12):2031-2044.
    [99] V.Feliu,S.Feliu.A noniterative methode for determining corrosion parameters from a sequence of polarization data[J].Corrosion,1986,42(3):151-155.
    [100] G.Rocchini.A computerized tool for corrosion rate monitoring[J].Corrosion,1987,43(6):326-330.
    [101]峁诗松,丁元,周纪芗,等.回归分析及其实验设计[M].上海:华东师范大学出版社,1981.
    [102]曹楚南.腐蚀电化学原理,第二版[M].北京:化学工业出版社,2004.
    [103]周建江,刘杏,李光福,等.X70管线钢在近中性及高pH值溶液中的电化学行为和SCC敏感性[J].腐蚀与防护,2007,28(1):1~5.
    [104]闫茂成,翁永基.环境溶液对管道钢应力腐蚀过程电化学行为的影响[J].中国腐蚀与防护学报,2005,25(1):31~38.
    [105]郭浩,李光福,周建江.外加电位对X70管线钢在近中性pH溶液中的应力腐蚀破裂的影响[J].中国腐蚀与防护学报,2004,24(4):208~212.
    [106]胡华胜,江楠.催化裂化装置再生器应力腐蚀的电化学实验研究[J].化工装备技术,2004,25 (4):37.
    [107]米运卿,周光祺.管线钢焊缝的应力腐蚀破裂研究[J].西安交通大学学报,1996,30(8):64~70.
    [108] R . N . Parkins . Predictive approaches to stress corrosion cracking failure[J].Corrosion Science,1980,20(2):147-166.
    [109]曹楚南.腐蚀电化学原理,第二版[M].北京:化学工业出版社,2004.
    [110]张文钺.金属冶金学[M].北京:机械工业出版社,1997.
    [111]王斌,李春福,贺桃娥.化学镀与油气田防腐[J].表面技术,2004,33(4):77~80.
    [112]张永忠,樊建中,张奎,等.化学镀镍层的耐蚀性[J].表面技术,1998,27(3):22~25.
    [113] Hiroki Habazki, Shao-Qien Ding, Asahi Kawashima, et al. Influence of heat treatment on stress corrosion resistance in H2S medium of Fv520(B) steel[J].Corrosion Science,1989,29(12):1319.
    [114]闫洪.现代化学镀镍及复合镀新技术[M].国防工业出版社,1999.
    [115] Efremov,A.R.Composite coating for protecting carbon steel from stress corrosion failure [J].Proteetion of Metals,1989,25(2):176-180.
    [116]曹茂盛,杨会静,刘爱东等.Ni-P-Ti纳米粒子化学复合镀工艺[J].中国表面工程,2000,48(3):42~46.
    [117]熊天英,王吉孝,金花子,等.0Cr18Ni9Ti钢焊接接头表面纳米化及接头抗H2S应力腐蚀性能的研究[J].材料保护,2005,38(1):13~19.
    [118]王吉孝,王志平,霍树斌,等.16MnR钢焊接接头表面纳米化及接头抗H2S应力腐蚀性能[J].焊接,2005,(2):13~18.
    [119] Kannan MB,Raja VS,Mukhopadhyay AK,Determination of true stress corrosion cracking susceptibility index of a high strength Al alloy using glycerin as the non-corrosive atmosphere[J].Scripta Materialia,2004,51(11):1075-1079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700