木聚糖酶在速生杨制浆过程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以速生杨为纤维原料,对速生杨树干和枝桠材进行了纤维形态观察和化学成分分析,并进行了比较。研究探讨了不同种木聚糖酶在速生杨酶促磨浆、酶促打浆、酶法改性和辅助漂白等制浆过程中的作用效果,优化了酶处理工艺条件,并对经过和未经过酶处理的纸浆纤维形貌、木素含量和结构的变化进行了分析。
     实验结果显示:不同品种速生杨树干材的纤维长度、纤维粗度和长宽比均好于枝桠材。树干材的综纤维素含量均高于枝桠材,树干材的灰分、1% NaOH抽出物、苯醇抽出物和酸不溶木素均低于枝桠材。速生杨枝桠材的纤维特性指标符合制浆条件的要求,可作为造纸原料来开发利用。
     在意大利黑杨枝桠材P-RC APMP磨浆过程中,二段磨浆前进行木聚糖酶预处理可以降低磨浆能耗3%~8%,降低后续打浆能耗5%~9%。酶预处理纸浆的白度提高1.0%ISO~2.3%ISO,纸浆的物理性能指标略有变化。三段磨浆前进行酶预处理可以降低磨浆能耗4%~8% ,降低后续打浆能耗5%~13% ,酶处理纸浆的白度提高0.9%ISO~1.2%ISO,纸浆物理强度指标略有提高。三段磨浆前酶预处理的酶促磨浆效果好于二段磨浆前酶预处理;木聚糖酶AU-PE89的酶处理效果好于木聚糖酶51024;木聚糖酶AU-PE89最佳用量为20IU·g-1和30IU·g-1。
     在混合速生杨P-RC APMP磨浆过程中,三段磨浆前进行木聚糖酶AU-PE89预处理可以降低磨浆能耗6%~10%,降低后续打浆能耗4%~8%。酶预处理纸浆的白度提高1.7%ISO ~1.9%ISO,裂断长提高2%~18%,撕裂指数提高8%~11%,耐破度提高3%~27%,耐折度提高50%。木聚糖酶AU-PE89较适宜的用量为20IU·g-1和30IU·g-1。
     在速生杨APMP浆和P-RC APMP浆的打浆过程中,木聚糖酶51024预处理APMP浆的打浆能耗下降10%~18%,纸浆白度提高2.2%ISO,裂断长提高10%,撕裂指数提高10%,耐破指数提高21%,耐折度提高50%。酶预处理P-RC APMP浆的打浆能耗降低10%~17%,白度提高1.9%ISO,裂断长提高9%,耐破指数提高12%,耐折度提高75%。
     在意大利黑杨枝桠材P-RC APMP浆的打浆过程中,木聚糖酶51024预处理明显改善纸浆的打浆性能,打浆能耗降低22%~40%。酶处理纸浆的白度提高1.7%ISO,裂断长提高6%,撕裂指数提高7%,耐破指数提高4%,耐折度提高67%,返黄值降低。
     用木聚糖酶AU-PE89对速生杨APMP浆进行预处理可明显改善纸浆的滤水性,经过和未经过打浆的纸浆打浆度分别降低3.0°SR~12.0°SR和0.5°SR~6°SR,酶处理纸浆的撕裂指数提高3%~16%,返黄值降低4%~15%,纸浆白度、裂断长和耐破指数略有变化。高用量下酶处理效果较好。酶处理纸浆的戊聚糖含量降低1.64%,纤维素含量和Klason木质素含量相对提高。
     木聚糖酶AU-PE89可以改善速生杨APMP浆的滤水性能和留着性能,助留助滤作用明显。木聚糖酶AU-PE89最佳助滤条件为:pH值7.0,酶用量1.5IU·g-1,温度45℃,时间30min和浆浓0.5%。此处理条件下,速生杨APMP浆的打浆度下降4.5oSR,动态滤水时间t3缩短2.8s,Zeta电位(负值)降低0.6mv,细小组分留着率提高61.3%,AKD施胶效果略有上升。
     木聚糖酶AU-PE89辅助漂白效果好于AU系列木聚糖酶。对于速生杨KP浆HP和DP短程序漂白,木聚糖酶AU-PE89预处理可以提高漂白浆的白度1.1%ISO~3.1%ISO,当混合速生杨KP浆漂白至相近白度时,节省漂白药剂用量14%~33%。
     对于速生杨NaOH-AQ浆,增加木聚糖酶处理段的(OO)DXP和(OO)XDED两种ECF漂白程序可使速生杨NaOH-AQ浆漂白至85%ISO以上的白度,其中(OO)XDED漂白程序可使纸浆白度达到88.8%ISO。TCF漂白程序(OO)QXP可获得80%ISO以上的白度。
     纤维质量分析仪分析结果表明,经过木聚糖酶处理的速生杨APMP浆和P-RC APMP浆的纤维长度增加,纤维宽度和细小纤维数量减小,纤维扭结指数增大,这有利于提高纸浆物理强度。
     在扫描电镜下观察,未经过木聚糖酶处理的纸浆纤维比较挺硬,细小纤维较少,纤维分丝帚化程度较低。经过酶处理的纸浆纤维较柔软,纤维表面有较多凹陷,出现分丝帚化现象,木聚糖酶能够使纤维细胞壁变得疏松,使纤维柔软松散,易于磨浆和打浆。
     原子力显微镜观察表明,木聚糖酶处理的速生杨纸浆纤维表面微细纤维纹理清晰,纤维表面较粗糙,凸凹程度增加,纤维表面部分木聚糖被木聚糖酶降解,更多微细纤维裸露,纤维更容易产生分丝帚化,这是木聚糖酶处理能降低磨浆和打浆能耗,提高纸浆白度和物理强度的原因。
     X射线衍射表明,酶处理使纤维素结晶度有所提高。红外光谱显示,经过木聚糖酶处理的纸浆羟基增加,木聚糖含量有所降低,部分木素溶出,纸浆易于润胀,水化程度提高,纸浆白度增加。
The fiber morphology observation and chemical composition analysis of both fast-growing poplar trunk wood and brushwood were investigated in this thesis as well as the fibers characteristics comparison of these two kinds of wood. Different xylanases were used and the effectiveness was tested and studied during the fast-growing poplar pulping process including enzyme-boosting refining, enzyme-boosting beating, enzymatic modification and enzymatic assistant bleaching. This thesis optimized the treatment conditions, and analyzed the changes of fiber morphology, chemical structure and lignin molecular weight during the xylanase treatment as well.
     The results showed that the fiber length and fiber coarseness of poplar trunk wood are better than that of branch wood as well as the ratio of fiber length to width (L/W). The holocellulose content of poplar trunk wood is higher than that of brushwood, however, the ash contenct, 1% NaOH extracted substances content, benzene-alcohol extracted substances extent and acid-insoluble lignin content are lower than that of brushwood. The fiber characteristics of brushwood have reached the pulping requirement, which indicates that this fast-growing poplar brushwood can be developed as material for pulp and paper making industry.
     Xylanase pretreatment before the second refining stage during Italian black poplar branch wood P-RC APMP process can reduce the refining energy consumption by 3 % ~ 8 % as well as 5%~9% for following beating energy consumption. In addition, the resulting pulp brightness can be improved by 1.0%ISO~2.3%ISO with minor change of pulp strength properties. Xylanase pretreatment before the third refining stage can reduce the refining energy consumption by 4 % ~ 8 % as well as 5%~13% for following beating energy consumption. The resulting pulp brightness is improved by 1.0%ISO~2.3%ISO with minor improvement of pulp strength properties. The application of xylanase before the second refining stage is better than that before the third refining stage. Among different xylanases used in this study, the AU-PE89 is best, and the optimal dosage of AU-PE89 is 20IU·g-1 and 30IU·g-1 respectively.
     The AU-PE89 xylanase pretreatment before the third refining stage during the mixed fast-growing poplar P-RC APMP process can reduce the refining energy consumption by 6%~10% and lower the following beating energy consumption by 4%~8% with the improvement of 1.7%ISO~1.9%ISO resulting brightness, 2%~18% breaking length, 8%~11% tear index, 3%~27% burst index and 50% folding endurance. The optimal dosage of AU-PE89 is 20IU·g-1 and 30IU·g-1.
     During the beating of mixed fast-growing poplar APMP and P-RC APMP, the 51024 xylanase pretreatment for APMP pulp can reduce 10%~18% beating energy consumption with the improvement of resulting brightness by 2.2% ISO, breaking length by 10%, tear index by 10%, burst index by 21% and folding endurance by 50%. The xylanase pretreatment for P-RC APMP pulp can decrease 10%~17% beating energy consumption with the improvement of 1.9%ISO brightness, 9% breaking length, 12% bursting index and 75% folding endurance.
     During the beating of Italian black poplar branch wood P-RC APMP pulp, the 51024 xylanase pretreatment can obviously improve the pulp beatability, and the beating energy consumption can be reduced by 22%~40% as well. The brightness, breaking length, tear index, burst index and folding endurance of pretreated pulp can be improved by 1.7%ISO, 6%, 7%, 4%, and 67% respectively. In addition, the treated pulp has lower PC number.
     The AU-PE89 xylanase pretreatment for fast-growing poplar APMP pulp can obviously improve the drainage capability. The beating degree of pretreated pulp decreased by 3.0°SR~12.0°SR and 0.5°SR~6°SR respectively for the beated pulp and non-beated pulp. The tear index of pretreated pulp is improved by 3%~16%, and the PC number decreased by 4%~15% with minor change of brightness, breaking length and burst index. Compared with the unpretreated pulp, the pretreated pulp has 1.64% lower pentosan content, and higher reversely cellulose content and Klason lignin content.
     The xylanase AU-PE89 treatment for fast-growing poplar APMP pulp can obviously improve the drainage capability and retention capability. The optimal treatment conditions for improving the pulp drainage are pH 7.0, AU-PE89 1.5IU·g-1, 45℃, 30min and 0.5% pulp consistency. Based on the optimal treatment conditions, the beating degree of treated pulp decreased by 4.5oSR, the dynamic drainage time reduced by 2.8s, Zeta potential (minus) reduced by 0.6mV, the retention of fines increased by 61.3%, the effect of AKD sizing promoted a little, and the breaking length, bursting index, and the tearing index increased by 6.2%, 9.5%, and 4.0% respectively.
     The bleach boosting effects of AU-PE89 xylanases are better than that of AU xylanases. For DP and HP bleaching sequences,the AU-PE89 xylanase pretreated pulp can has 1.1%ISO~3.1%ISO higher brightness than that of unpretreated pulp. At the condition of reaching similar brightness, the AU-PE89 xylanase pretreated pulp can can save 14%~33% bleaching chemicals.
     For fast-growing poplar Kraft pulp, the AU-PE89 can give better assistant bleaching effectiveness. The resulting pulp brightness can be improved by 1.8%ISO~2.7%ISO at the optimal treatment condition of pH 7.0. For fast-growing poplar NaOH-AQ pulp, both (OO)DXP and (OO)XDED, xylanase-including bleaching sequences, can make the resulting pulp brightness higher than 85% ISO. Especially the (OO)XDED bleaching sequence can give the resulting pulp 88.8% ISO brightness. For the TCF bleaching, the (OO)QXP can give the pulp higher than 80%ISO brightness.
     The fiber quality analysis showed that, compared with the untreated pulp, both the xylanase-treated poplar APMP and P-RC APMP have longer fiber length, higher fiber kink index, smaller fiber width, and lower fines content, which benefits the improvement of pulp strength properties.
     The SEM observation indicated that the xylanase-untreated pulp has stiffer fiber, less fines and lower fibrillation extent. In addition, the xylanase-treated fibers are softer and has higher fibrillation extent compared with the untreated fiber, and there are many hollows on the fiber surface. The xylanase treatment looses the fiber cell wall and softens the fiber so as to be easy for refining and beating.
     AFM observation showed that xylanase treatment made the microfibril texture on fiber surface more clearly, the surface of fiber became more coarse, and the smoothness of fiber surface decreased. Part of xylan on fiber surface was degraded by xylanase during the treatment and more microfibrils were exposed. The fibers treated by xylanase are easier to be splitted and broomed, which was responsible for the decrease of refining/beating energy consumption and the increase of pulp brightness and physical strength.
     XRD analysis indicated that degree of crystallinity of fiber increased after the xylanase treatment. In addition, the IR spectrum showed that the hydroxyl group content increased, however, the xylan content decreased. Part of lignin dissolved out from the fibers so that the pulp brightness increased and the pulp treated by xylanase is easier to be swollen.
引文
[1]余贻冀.现代制浆造纸技术的发展(一)采用新技术的时代背景和取得的主要效果[J].纸和造纸, 2003, (1): 5-6
    [2]罗松山.中国推进林浆纸一体化政策透视[J].中国林业产业, 2008, (8): 46-48
    [3]世界各国林纸一体化发展状况[J].新远见, 2007, (11): 83
    [4]曹朴芳.实施林纸一体化工程发展我国现代化造纸工业[J].造纸信息, 2004, (4): 14-15
    [5]全国林纸一体化工程建设“十五”及2010年专项规划[J].中华纸业, 2004, 25(3): 6-13
    [6]蒙刚.林纸一体化提升我国造纸业竞争力[J].中小企业科技, 2006, (10): 50-51
    [7]顾民达.我国林纸一体化工程正在加快发展[J].造纸信息, 2004, (1): 22-25
    [8]顾民达.关于加快发展木材造纸的几点看法[J].中华纸业, 1999, 20(4): 5-9
    [9]张智光.多视角下的林纸一体化体系结构研究[J].中国造纸, 2008, 27(1): 67-71
    [10]余贻冀.实施全国林纸一体化工程建设的前景展望[J].纸和造纸, 2005, (1): 9-10
    [11]崔平.林纸一体化:我国林纸结合的发展方向[J].林业经济, 2008, (6): 27-31
    [12]庚晋.林纸一体化:造纸工业的根本出路[J].上海造纸, 2004, 35(1): 11-14
    [13]蔡朝清.山东省林浆纸一体化的现状、问题与对策[J].中华纸业,2006,26(2):20-22
    [14]李敖夫.湖南林纸一体化的现状、问题及对策浅议[J].造纸信息, 2004, (7): 13-15
    [15]林文耀.福建省林纸一体化进展情况[J].纸和造纸, 2007, 26(5): 83-85
    [16]梁成军,尹少华,廖志明.湖南省林纸一体化产业发展规划概要[J].中华纸业, 2006, 27(9): 23-27
    [17]谢来苏,詹怀宇主编.制浆原理与工程[M].中国轻工业出版社, 2001, 213,1-2
    [18] Folke.J, Broderson.L.Historic. Aspects of Orangochlorines in Relation to the Pulp Industry[C]. 1996 International Environmental Conference and Exhibits. TAPPI Press. Atlanta. 1996:163-163
    [19] Retthauer. E.W. Kraus. H.W., Dodmenico. A. Dioxin Perspectives.Plenum Press[J].New York and London, 1991
    [20]陈嘉川.二恶英与纸浆造纸工业[J].中华纸业, 2000, 21(4): 50-51
    [21] Gullichsen J. Bleaching the Scandinavian situation. International Pulp Bleaching Conference ( IPBC) [M] .1998. Helsinki. Finland
    [22]蒲云桥.湿地松深度脱木素蒸煮和ECF漂白及其机理研究.华南理工大学博士学位论文. 2000
    [23] Ala-kaila. kari; Reilama Ismo. Step-wise Delignification Response in An Industrial Two-stage Oxygen-alkali Delignification Process[C]. 2000 International Pulp Bleaching Conference: Oral Presentations. 2000, Washington, USA p 117-121
    [24] Kishino. M..Ohi. H. Low Chlorine Dioxide Bleaching of Kraft Pulp Using Nitrous Acid Treatment[J]. Mokuzai Gakkaishi/Journal of the Japan Wood Research Society. 2001, 47(4): 344-349
    [25]吴贵辉.中国能源现状及发展趋势[J].农电管理, 2007: 10-11
    [26]刘秉钺,曹光锐.制浆造纸节能技术[M].北京:中国轻工业出版社, 1999: 1-2
    [27]杨立明,黄仕荣.草竹浆混合漂白与打浆的生产实践[J].纸和造纸, 2005, (2): 23-24
    [28]陈新泉,张赣霞,刘耿.进口浆板打浆特性研究[J].造纸科学与技术, 2001, (6): 35-36
    [29]刘示亮,李世扬.厚壁长纤维浆种打浆方式的新探索[J].黑龙江造纸, 2000, (2): 12-13
    [30]刘示亮,李广胜.中浓打浆过程中的新现象及其意义[J].纸和造纸, 2003, (9): 9-10
    [31]詹怀宇,刘秋娟,陈嘉川,等.制浆原理与工程[M].北京:中国轻工业出版社, 2008: 377-379
    [32] Sadhvir Bissoon, Lew Christov, Suren Singh. Bleach boosting effects of purified xylanase from Thermomyces lanuginosus SSBP on bagasse pulp[J]. Process Biochemistry, Vol.37(2002): 567–572
    [33] Li X.T., Jiang Z.Q., Li L.T., et al. Kusakabe.characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp[J]. Bioresource Technology 96 (2005) 1370–1379
    [34] Shatalov A.A., Pereira H. Effect of xylanases on peroxide bleachability of eucalypt (E. globulus) kraft pulp[J]. Biochemical Engineering Journal 40 (2008) 19–26
    [35] Oltus E., Mato J., Bauer S., et al. Enzymatic hydrolysis of waste paper[J]. Cellulose Chem.and Techonol., 1987, 21(6): 663-672
    [36]隋晓飞.微生物对机械法制浆磨浆能耗的影响[D].山东轻工业学院硕士学位论文, 2008: 69-70
    [37] Yerks J.,William D.. Process for the digestion of cellulosic material by enzymatic action of trametes suaveolens[P].U.S.3406089,1998.-10-15
    [38]赵玉林,陈中豪.半纤维素酶在制浆造纸工业的应用研究进展[J].中国造纸学报,2001 ,16(2):146-159
    [39] Nagarajan R.. Evaluation of drainage improvement by enzyme—polymer treatment[C]. Tappi proceeding, 1996 Papermakers conference, 475
    [40] Park J M.. Deinking of used paper by modified cellulase with polymer[J]. Biotechnol. Bioeng., 1998, 15(5): 593-598.
    [41]周亚军,张栋基,李甘霖.漂白高得率化学机械浆综述[J].中国造纸, 2005, 24(5): 53-56
    [42]袁平.纤维素酶和半纤维素酶对纤维改性的研究进展[J].中国造纸, 2001, (4): 55
    [43]候小红,赵剑宏.纤维的酶法改性技术[J].国际造纸, 2006, 25(4): 14
    [44]姜云,张升友.利用生物酶降低磨浆能耗[J].国际造纸, 2007, 26(3): 35-37
    [45]余贻冀.现代制浆造纸技术的发展(二)现代造纸工业已应用的一些主要新技术[J].纸和造纸, 2003, (2): 6-10
    [46]周学飞,刘柏林,李元禄.制浆漂白技术新进展[J].纤维素科学与技术, 1999, 3: 54-61
    [47]陈嘉翔.制浆技术的发展近况[J].纸和造纸, 1996, (3): 4-6
    [48] Harter N.. Extended delignification in kraft cooking-a new report[J]. Sventsk Paperstidn, 1978, 81(15): 483-484
    [49]黄干强.深度脱木素的原理及其在连续蒸煮器中的应用[J].中华纸业, 1999, 5: 32-35
    [50]瑞典克瓦纳公司技术交流资料. 1997年5月,北京
    [51]陈嘉翔.低固形物蒸煮液蒸煮的兴起与发展[J].中国造纸, 1998, 17(3): 54-57
    [52]陈嘉翔.超高得率制浆[J].纸和造纸, 1993(1): 4
    [53]罗松年, J.L.Valade,章杰. CTMP制浆工艺及其应用概况[J].国外造纸, 1989, 8(6): 20-23
    [54] Cannel E., Cockram R.. The future of BCTMP[J]. Pulp&Paper, 2000, 74(5): 56
    [55] Black N. P.. Success convinces millar western to USA alkaline peroxide process b1eached chemithermormechanical Pulp[J]. Tappi J., 1990: 99
    [56] Jones T. G.. Comparison of the Chemimechanical Pulping Properties of New Zealan Grown Eucalyptus Fastigata, E.Nitens And E.Regnans[J]. Appita J., 2001, (1): 77
    [57] Xu E. C.. P-RC alkaline peroxide mechanical pulping of hardwood, Part 1: Aspen, Beech, Birch, Cottonwood and Maple[J]. PPC, 2001, 102(2): 44
    [58]孔凡功.三倍体毛白杨碱性过氧化氢化学机械浆的研究[D].山东轻工业学院硕士学位论文. 2003: 6-8
    [59]陈振华.三倍体毛白杨特性及其制浆造纸[J].中国造纸学会第十届学术年会论文集, 2001: 138-141
    [60]陈嘉川,杨桂花,刘玉.速生杨制浆技术与原理[M].北京:科学出版社, 2008: 69-72
    [61]庞金宣,郑世锴,刘国兴,等.窄冠型杨树新品种的选育[J].林业科技通讯, 2001, 4: 8-9
    [62]庞志强.不同品种和树龄速生杨纤维形态和制浆性能研究[D].山东轻工业学院硕士学位论文. 2004: 75-82
    [63]庞志强,陈嘉川,杨桂花.不同树龄窄冠杨黑11纤维形态与制浆性能[J].中国造纸, 2007, (9): 15-21
    [64]袁佳贞.杨树制浆造纸的研究与发展[J].江苏造纸, 1989, 4: 51-58
    [65]雷晓春,陈嘉川,林鹿,等.几种速生材APMP制浆性能探讨[J].中国造纸, 2006, (1): 22-25
    [66]胡宗渊.我国造纸纤维原料问题探讨[J].纸和造纸, 2006, (增刊)25: 1-3
    [67]胡宗渊.我国造纸工业亟需认真应对原料的短缺[J].造纸信息, 2006, (3): 7-9
    [68]陈德平.低龄杨木带皮枝桠材的应用实践[J].中华纸业, 2006, 27(2): 50
    [69]陈德平.意杨边角料的应用实践[J].中华纸业, 2008, 29(8): 76-77
    [70]赵竟,刘浩田.混合枝桠材生产打字纸[J].北方造纸, 1997, (1):55
    [71]陈华武.阔叶木枝桠材的应用[J].纸和造纸, 1995, (5): 13-15
    [72]杨维民,刘宝林,胡宝英.利用枝桠材生产凸版纸的实践[J].甘肃轻纺科技, 1996, (3): 17-18
    [73]曾广植.木、竹的树龄、相对密度及小径材、枝桠材等对纸浆强度影响的实验评述[J].纸和造纸, 2005, (5): 69-71
    [74]蒋忠道,许元春.阔叶枝桠材制BCTMP配抄新闻纸实验[J].黑龙江造纸, 2001, (1): 14-15
    [75]陈嘉翔.高效清洁制浆漂白新技术[M].北京:中国轻工业出版社, 1992: 161-162,180-181
    [76] Kishino. M.. Low Chlorine Dioxide Bleaching of Kraft Pulp Using Nitrous Acid Treatment[J]. Mokuzai Gakkaishi/Journal of the Japan Wood Research Society, 2001, 47(4): 344-349
    [77] Guay D., Cole B. W., Fort Jr., et a1. Mechanisms of oxidative degradation of carbohydrates during oxygen delignification [C]. ISWPC, 1999: 89
    [78] Gierer J., EK M., Jansbo K., et a1. A Study on the selectivity of bleaching with oxygen-containing Species[J]. Holzforsehung, 1989, 43(6): 391
    [79] Torbjon R., Gierer J., Yang E.Q., et al. Involvement of oxygen-derived free radicals in chemical and biochemical degradation of lignin [C]. ACS Symposium Series, 2001, 785: 255
    [80] Gierer J., Torbjom R., Yang E.Q.. Formation and involvement of radicals in oxygen delignification studied by the autoxidation of lignin and carbohydrate model compounds[J].Journal of Wood Chemistry and Technology, 2001, 21(4): 313
    [81]林远球.化学浆氧脱木素动力学及其应用[J].纸和造纸, 1995, (1): 10-11
    [82] Yokoyama T., Matsumoto Y., Meshitsuka G.. Reaction selectivity during alkaline oxygen delignification of pulp[C]. 2nd ISEIPP,Emerging technologies of pulping and papermaking, South China University of Technology Press, 2002, Guangzhou, China, 11
    [83] Ala-kaila. K., Reilama I.. Step-wise Delignification Response in An Industrial Two-stage Oxygen-alkali Delignification Process. 2000 International Pulp Bleaching Conference: Oral Presentations. 2000, Washington, USA p 117-121
    [84] McDonough T.J.. Recent advances in bleached chemical pulp manufacturing technology; Extended Delignification, Oxygen Delignification, Enzyme Applications, ECF and TCF Bleaching[J]. Tappi J., 1995, 78(3): 55-62
    [85]陈克复.中高浓制浆技术与装置[M].广州:华南理工大学出版社,1994: 133-134, 136-143
    [86]黄义寿.氧脱木素段的运行及其改造思路[J].西南造纸, 2004, (6): 37-39
    [87]安国兴.纸浆氧脱木素技术的现状和发展趋势[J].中国造纸, 1998, (4):58-62
    [88]陈嘉翔.制浆化学[M].北京:轻工业出版社, 1990: 344-350
    [89]凯西J.P..制浆造纸化学工艺学[M].北京:轻工业出版社, 1988, Volume ?: 675-677
    [90] Van Heiningen A.R.P., Kang G.J., Reeve D.W., et al. The impact of methanol-based by-products in chlorine dioxide solution on pulp bleaching[J]. Pulp & paper Canada, 1999, 100(4): 42-46
    [91] Solomon K., Bergman H., Huggett R., et al. A review and assessment of the ecological risks associated with the use of chlorine dioxide for the bleaching of pulp[J]. Pulp & paper Canada, 1996, 97(10): 35-44.
    [92] Alan E., Stinchfield, Michael G.. Woods, Reduction chlorinated organic compounds from beaching kraft mills through first stage substitution of chlorine diode for chlorine[J]. Tappi Journal, 1994, 78(6):117-125.
    [93] Ni Y., Kubes G.T., Van Heiningen. A.R.P.. Reduction of the Formation of Organically Bound Chlorine during ClO2 Bleaching[J]. Journal of Pulp and Paper Science, 1994, 20(4): J103
    [94] Teder A., Torngren A. Reduction of AOX in DC bleaching by addition of chorine ions[J]. Journal of Pulp and Paper Scince, 1995, 21(3): J86
    [95] Reeve D.W., Weishar K.M., Li L.. Process modifications to decrease orgnochlorine Formation during Chlorine Dioxide Delignification[J]. Journal of Pulp and Paper Science, 1995, 21(6): J197
    [96] Lachenal D., Joncourt M.J., Froment P. et al. Reduction of the formation of AOX during chlorine dioxide bleaching[J]. Journal of Pulp and Paper Scince, 1998, 24(1): 14-17
    [97] David J., Hamilton J.S., James E.. Interacion of hydrogen peroxide and chlorine dioxide stages in ECF bleaching[J]. Tappi journal, 1998, 6:23-25
    [98] Marie J. J., Pierre F.. Reduction of AOX formation during chlorine dioxide bleaching[J]. Tappi journal, 2000,(1): 34-37
    [99] Axegard P., Bergnor E., Monica E.K., et al. Bleaching of softwood kraft pulps with H2O2, O3and ClO2[J]. Tappi Journal, 2000, 79(1): 113-119
    [100] Elsander A., Ek M., Gellersedt G.. Oxalic acid formation during ECF and TCF bleaching of kraft pulp[J]. Tappi Journal, 2000, 83(2):73-77
    [101] Strom M., Bergnor Gidnert E., Mellander P.. Shive and knot elimination with TCF and ECF bleaching sequences[J]. Tappi Journal, 1998, 81(6): 163-169
    [102] Pryke. D.C. Elemental Chlorine-Free Grows as Bleaching Method[J]. Distribution Management, 1996, 37(5): 32-34
    [103]陆士平,陆关兴.二氧化氯漂白系统中FRP设备耐蚀树脂的检测与验证[J].中国造纸, 1998, (7): 7-9
    [104] Hakkarainen T.. Factors controlling pitting of stainless steels under wet deposits in splash zones in chlorine dioxide bleaching[J]. Pulp & paper Canada, 1999, 100(4): 55-58
    [105]郑志宁.提高二氧化氯得率达生产实际[J].中国造纸, 1999, (4): 18-19
    [106]王少光,陈嘉川,杨桂花,等. NaOH-AQ麦草浆二氧化氯漂白的工业生产试验[J].中国造纸, 2005, 24(5): 34-37
    [107]覃程荣.非木材纸浆对环境友好的漂白新技术及其机理的研究[D].华南理工大学博士学位论文. 2004, 5
    [108]黄干强.螯合作用与过氧化氢漂白[J].广东造纸, 1996, (5): 12-16
    [109] Mathur I., Dawe R.. Using on-site-produced alkaline peroxide for pulp bleaching[J]. Tappi J., 1999, 82(3): 157-164
    [110] Do J. S., Yeh W. C.. Paired electrooxidative degradation of phenol with in situ electrogenerated hydrogen peroxide and hypochlorite[J]. J. Appl. Electrochem., 1996, 26(3): 673-678
    [111] Mathur I., Dawe R. D. On-site produced alkaline peroxide for TCF pulp. International Non-chlorine Bleaching Conference Proceedings[J]. Miller Freeman. Orlando. 1996, 31(2): 231-234
    [112]林鹿,詹怀宇.纸浆漂白生物技术[M].北京:中国轻工业出版社, 2002: 152,166,174,205,339
    [113]朱韵.生物技术在制浆造纸工业中的应用与研究进展[J].技术与市场, 2009, 16(3): 59-60
    [114]黄莉.生物酶技术在造纸工业中的应用前景广阔[J].福建轻纺, 2005, 6: 6-8
    [115]姚光裕.生物技术在制浆造纸工业中的应用[J].造纸信息, 2001, No4: 17
    [116] Viikari L., Ranua M., Kantelinen A., et al. Bleaching with enzymes[C]. Proc 3rd Int. Conf. on Biotechnology in the Pulp and Paper Industry. Stockholm, 1983, Sweden, 67
    [117] Bajpai P., Bajpai P. K.. Biotechnology in the Pulp and Paper Industry–a Route to Energy Conservation Pira Technology Series Pira International: 1998.
    [118] Suss H.U., Nimmerfroh N.F., Filho M.O.. TCF bleaching of eucalyptus kraft pulp: the selection of the sequence and the best conditions[J]. Journal of Pulp and Paper Science, 1997, 23(11): J517-J521
    [119] Toshiya S.. New pulp biopulping system involving manganese peroxidase immobilizem in a silica support with controlled pore sizes[J]. Appl. Environ. Microbiol., 2001, 67(5): 2208
    [120] Call H. P., Mucke I.. State of the art of enzyme bleaching and disclosure of breakthrough process[C]. Proceedings of International Non-chlorine Bleaching Conference. Amelia Island. Florida. USA. 1994
    [121] Liu Y., Chen J. C., Zhan H. Y., et al. Xylanase DWX1 bio-bleaching of NaOH-AQ wheat straw pulp. Emerging Technologies of Pulping and Papermaking. South China University of Technology Press. 2002, Guangzhou. 546-549
    [122]黄峰,陈嘉翔,高培基.桉木硫酸盐浆木聚糖酶漂白适性及纤维素酶对漂白浆质量的影响[J].中国造纸学报, 1997(2): 57-63.
    [123] Amann M., The lignozym process-coming closer to the mill[C]. Proceedings of 9th international symposium on wood and pulping chemistry. Montreal. Canada. 1997, F4-1-F4-5
    [124] Roncero M. B., Torres A. L., Colom J. F., et al. TCF bleaching of wheat straw pulp using ozone and xylanase[J]. Part A: paper quality assessment Bioresourse Technology, 2003, 87: 305-314
    [125]吴淑芳,尤纪雪,丁少军,等.木聚糖酶用于马尾松KP浆漂白的研究[J].西南造纸, 1999, (5): 7-10
    [126]李彩霞,韩善命,房桂干,等.麦草浆H2O2漂白效果的影响[J].林产化工通讯, 2000, (6): 8-11.
    [127]冯文英,李振岩,常清容,等.木聚糖酶的制备及其在麦草浆漂白中的应用[J].中国造纸, 2002, (2): 8-13
    [128]陈嘉川,杨桂花,李昭成,等.木聚糖酶在麦草浆漂白中的应用[J].中国造纸学报, 1997, (2): 47-52.
    [129]洪枫,刘明山,房桂干,等.木聚糖酶预处理对麦草化学机械浆可漂性及白度的改善[J].林产化学与工业, 2001, (3): 21-27.
    [130] Suurnakki A., Heijnesson A., Buchert J., et al. Location of Xylanase and Mannanase Action in Kraft Fibres[J]. Pulp Paper Sci., 1996, 22(1): 78-83.
    [131] Turner J. C.. Bleaching with enzymes instead of chlorine-mill trials[J]. Tappi Journal, 1992, 75(12): 83
    [132]刘瑞田,曲音波.木聚糖酶分子的结构区域[J].生物工程进展, 1998, 18(6): 26
    [133] Zimmerman W.. Bacterial degradation of hemicellulose[J]. Metal Ions Bio Sys., 1992, 28: 357
    [134]方洛云,邹晓庭,许梓荣.木聚糖酶基因的分子生物学与基因工程[J].中国饲料, 2002, (7): 11
    [135] Biely P., Mackenzie C. R., Puls J., et al. Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan[J]. Bietechnology, 1986, 4: 731.
    [136]张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报, 2002 (3): 23
    [137]胡沂淮,邵蔚蓝.木聚糖酶[J].生命的化学, 2002, 22 (3): 281.
    [138] Royer J. C., Nakas J. P.. Xylanase by trichoderma longibrachiatum[J]. Enzyme Microb. Technol., 1989, 11: 405
    [139] Ogasawara I. K., Sugimoto H., Ishikawa T. T.. Purification and properties of acid stable xylanases from Aspergillus kawachii[J]. Biosei Biotech Biochem., 1992, 56: 1338
    [140] Wong K. Y., Tan L. L., Saddler J. N.. Multiplicity ofβ-1, 4-xylanases in microorganisms: functionsand applications[J]. Microbiol. Rev., 1988, 52: 305
    [141] Christalkopoulos P., Nerinckx W., Kekos D., et al. Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3[J]. J Biotechnol, 1996, 51(2): 181
    [142] Dusterhoft E. M., Linsen V.A., Voragen A.G.J., et al.. Purification from Humicola Insolens [J]. Enzyme Microb Technol, 1997, 20(6): 437
    [143] Garg A. P., Roberts J. C., McCarthy A. J.. Bleach boosting effects of cellulose-free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood kraft pulp[J]. Enzyme Microbiol Technol, 1998, 22(7): 594
    [144] Breccia J. D., Sineriz F., Baigori M. D., et al. Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens [J]. Enzyme Microb. Technol., 1998, 22(1): 42
    [145] Gupta S., Bhushan B., Hoondal C. S.. Isolation, purification and characterization of xylanase from Streptomycus sp.SG-13 and its application in biobleaching of kraft pulp[J]. J Appl. Microbiol , 2000, 88: 325
    [146] Leduc D. C., Valade J. L.. The use of xylanases in kraft pulp bleaching: a review [J]. Tappi Journal, 1994, 77: 125
    [147]刘瑞田,曲音波.木聚糖酶生物学特性及其诱导产生的研究进展[J].工业微生物, 1998(3): 38
    [148] Viikari L., Ranua M., Kantelinen A., et al. Bleaching with enzymes, Biotechnology in the pulp and paper industry [C]. Proceeding of 3rd International conference on Biotechnology in the Pulp and Paper Industry, Stockholm, Sweden, 1986, 67
    [149]陈嘉川,曲音波. G6-2细菌木聚糖酶漂白NaOH-AQ麦草浆的研究[J].中国造纸报, 2000, (15): 43
    [150] Turner J. C.. Bleaching with enzymes instead of chlorine-mill trials[J]. Tappi Journal, 1992, 75(12): 83
    [151]周学飞,陈嘉翔.桉木硫酸盐浆聚木糖酶预处理及其对H2O2漂白影响的研究[J].中华纸业, 1998, (4): 23
    [152] Sun Y. P.. Kraft bleaching plant ECF conversion: Comparison of sequence involving enzymes, ClO2, O2 and H2O2 [J]. Appita J., 1999, 52(2): 45
    [153] Shan A. K., Cooper G. D., Adolphson R.. Bleaching with Thermotoga maritima Xylanase[J]. Pulp Paper Sci., 2000, 26 (1): 8
    [154]谢来苏.制浆造纸的生物技术(第一版)[M].北京:化学工业出版社, 2003: 145-152
    [155] Kulkarni N., Shensye A., Rao M.. Molecular and biotechnological aspects of xylanase[J]. FEMS Microbiol. Rev., 1999, 23: 411
    [156] Beg Q. K., Bhushan B., Kapoor M.. Enhanced production of a thermostable xylanase from Streptomycus sp.QG-11-3 and its application in biobleaching of eucalyptus kraft pulp[J]. Enzyme Microb. Technol, 2001, 27: 459
    [157] Gupta S., Bhushan B., Hoondal C. S.. Isolation, purification and characterization of xylanase from Streptomycus sp.SG-13 and its application in biobleaching of kraft pulp[J]. J Appl. Microbiol , 2000, 88: 325
    [158] Clark T. A., Steward D., Bruce M. E., et al. Improving bleachability of radiata pine kraft pulps following treatment with hemicellulolytic enzymes[J]. Appita J., 1991, 44(6): 389
    [159] Chen C. C., Adolphson R., Dean J.F.D., et al. Release of lignin from kraft pulp by a hyperthemophilic xylanase from Thermotoga maritima[J]. Enzyme Microb. Technol., 1997, 20(1): 39-45
    [160] Wong K. K. Y., Saddler J. N.. Trichoderma xylanases, their properties and application[J], Crit. Ret. Biotechnol., 1992, 12: 413
    [161]李海龙.麦草浆木聚糖酶生物漂白的机理研究[D]. 2006: 16
    [162] Buchert J., Tenkanen M., Viikari L., et al. Role of surface charge and swelling on the action of xylanase on birch kraft pulp[J]. Tappi Journal, 1993, 76(11): 131
    [163]邬义明.植物纤维化学[M].北京:轻工业出版社, 1991: 70-74
    [164]王丹枫.纤维形态参数及测量[J].中国造纸, 2000, V1(1): 36-39
    [165]赖燕明,谢益民,伍红.纤维平均长度及其仪器法测定结果分析[J].造纸科学与技术, 2003, 22(3): 35-37
    [166]余贻骥.中国造纸原料结构的现状与展望[J].纸和造纸, 2004, (3): 17-20
    [167]盛亮,杨淑慧.三倍体毛白杨枝桠材NaOH-AQ法制浆特性[J].中华纸业, 2006, 27(1): 45-46
    [168]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003: 49-51,293-296
    [169]姚光裕.木片通过剪切/压缩能降低TMP磨浆能耗[J].造纸信息, 2008, (7): 57
    [170]沈葵忠,房桂干,刘明山,等.降低磨浆能耗的杨木化机浆制浆技术[J].中国造纸, 2002, (3): 32-36
    [171]沈葵忠,刘明山,查全馨,等.马尾松机械浆降低能耗提高强度的磨浆技术研究[J].国际造纸, 2000, 19(4): 40-42
    [172]张宏政,李新平.马尾松热磨机械浆的节能降耗[J].中国造纸, 2005, 24(3): 30-32
    [173]张升友,陈夫山,王高升,等.纤维素酶预处理降低高得率浆磨浆能耗的研究[J].中国造纸学报, 2009, 24(1): 20-24
    [174]张继颖,许跃.利用酶降低APMP磨浆能耗及改善浆料性能[J].国际造纸, 2009, 28(2): 53-57
    [175]郑睿.利用生物酶降低磨浆能耗[J].造纸化学品, 2008, 20(2): 55-59
    [176]霍建辉,刘忠,张正健.真菌酶处理杨木碱性过氧化氢机械浆节约磨浆能耗[J].国际造纸, 2008, 27(4): 58-61
    [177]姜云,张升友.利用生物酶降低磨浆能耗[J].国际造纸, 2007, 26(3): 35-39
    [178]夏京.麦草半化学浆高浓打浆试验[J].中华纸业, 2002, No1: 43-44
    [179]黄一石.分析仪器操作技术与维护[M].北京:化学工业出版社, 2005: 180-184
    [180]杨崎峰,詹怀宇,王双飞,等.纤维的表面性能及表面分析技术[J].中国造纸学报, 2005, V20(2): 189-193
    [181] Duchesne I.&G. D. The ultrastructure of wood fiber surfaces as shown by a variety of microscopical methods-a review[J]. Nordic Pulp and Paper Research Journal, 1999, 14(2): 129-139
    [182]朱杰,孙润广.原子力显微镜的基本原理及其方法学研究[J].生命科学仪器, 2005, 3(1): 22-26
    [183] Pang L., Gray D. G.. Heterogeneous fibrillation of kraft pulp fibre surfaces observed by atomic force microscopy[J]. Journal of Pulp and Paper Science, 1998, 24(11): 369-372
    [184] Furuta T., Gray D. G.. Direct force-distance measurements on wood-pulp fibres in aqueous media[J]. Journal of Pulp and Paper Science, 1998, 24(10): 320-324
    [185] Hanley S. J., Gray D.G.. AFM images in air and water of kraft pulp fibres[J]. Journal of Pulp and Paper Science, 1999, 25(6): 196-200
    [186] Li K., Tan X., Yan D.. Middle lamella remainders on the surface of various mechanical pulp fibres[J]. Surf. Interface Anal., 2006, 38: 1328-1335
    [187] Koubaa A., Riedl B.. Koran Z.. Surface analysis of press dried-CTMP paper samples by electron spectroscopy for chemical analysis[J]. Journal of Applied Polymer Science, 1998, 61(3): 545-552
    [188] Snell R., Groom L. H., Rials T.G.. Characterizing the surface roughness of thermo mechanical pulp fibres with Atomic Force Microscopy[J]. Holzforschung, 2001, 55(5): 511-520
    [189]雷晓春,林鹿. XPS、AFM和TOF-SIMS的工作原理及其在植物纤维表面分析中的应用[J].中国造纸学报, 2006, 21(4): 97-101
    [190]陈嘉川,谢益民,李彦春等.天然高分子科学[M].北京:中国轻工业出版社, 2007: 71
    [191]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].华南理工大学出版社. 1989: 5, 20-21,142-148
    [192]刘士亮,陈中豪.磨片齿宽对短纤维中浓打浆成浆质量和打浆能耗的影响[J].中国造纸, 2006, 25(11): 9
    [193]夏京.麦草半化学浆高浓打浆试验[J].中华纸业, 2002, No1: 43-44
    [194]刘示亮.马尾松和柳桉化机浆混合打浆性能的研究[J].湖南造纸, 2004, No2: 11-13
    [195]赵玉林,陈中豪,王福君.纤维素酶在造纸工业中的应用研究进展[J].纸和造纸, 2002, 3(2): 64 -66
    [196]陈嘉川,马美云,王凤英.用木聚糖酶改善麦草浆的性能[J].纸和造纸, 1997(02): 30
    [197]袁平,余惠生,付时雨等.纤维素酶和半纤维素酶对纤维改性的研究进展[J].中国造纸, 2001, (5): 53-57
    [198]陈嘉川,曲音波.麦草浆的生物漂白与酶法改性[J].中华纸业,2001,23(2): 35-37
    [199]龚木荣,毕松林,孙建华等.复合纤维素酶提高OCC浆滤水性能[J].中国造纸, 2003, 22(1): 14-16
    [200]管斌,孙艳玲,谢来苏等.纸浆酶改性对纤维素聚合度和纤维长度的影响[J].中国造纸学报, 2000, 15(增刊): 14-17
    [201]李海龙,陈嘉川,杨桂花,等.木聚糖酶处理抑制漂白麦草化学浆返黄的研究[J].中华纸业, 2006, (3): 40-42
    [202]胡惠仁,徐立新,董荣业.造纸化学品[M].北京:化学工业出版社, 2008: 207-243
    [203]张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报, 2002, (1): 46-47
    [204] Khandeparker R., Numan M. T.. Bifunctional xylanases and their potential use in biotechnology[J]. J Ind. Microbiol. Biotechnol., 2008, 35: 635-644
    [205] Gutierrez-Correal M., Tengerdy R.P.. Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse[J]. Biotechnology Letters, 1998, 20(1): 45-47
    [206] Kango N., Agrawal S.C., Jain P.C.. Production of xylanase by Emericella nidulans NK-62 on low-value lignocellulosic Substrates[J]. World Journal of Microbiology & Biotechnology. 2003, 19: 691-694
    [207] Kalia V. C., Purohit H. J.. Microbial diversity and genomics in aid of bioenergy[J]. J Ind Microbiol Biotechnol, 2008, 35: 403-419
    [208] Jiang Z. Q., Li X. T., Yang S. Q.. Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritima on wheat straw pulp[J]. Appl. Microbiol. Biotechnol., 2006, 70: 65-71
    [209] Manimaran A., Vatsala T. M.. Biobleaching of banana fbre pulp using Bacillus subtilis C O1 xylanase produced from wheat bran under solid-state Cultivation[J]. J. Ind. Microbiol. Biotechnol. 2007, 34: 745-749
    [210] Skalsl P.B., Krabekl A., Nielsen P. H.. Environmental Assessment of Enzyme Assisted Processing in Pulp and Paper Industry[J].Int J LCA 2008, 13 (2): 124-132
    [211] Fu G.Z., Chan A.W., Minns D.E.. Preliminary Assessment of the Environmental Benefits of Enzyme Bleaching for Pulp and Paper Making[J].Int. J. LCA, 2005, 10 (2): 136-142
    [212] Turner J. C.. Bleaching with enzymes instead of chlorine-mill trials[J]. Tappi Journal,1992,75(12):83
    [213]曲音波,高培基,陈嘉川,等.麦草浆的生物漂白与酶法改性[J].中华纸业,2001,23(4): 13-15
    [214]李海龙,陈嘉川,杨桂花.麦草浆木聚糖酶预处理H D漂白研究[J].中华纸业, 2006, 28(1): 31-32.
    [215] Manimaran A., Santhosh Kumar K., Permaul K., et al. Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching[J]. Appl. Microbiol. Biotechnol., 2009, 81: 887-893
    [216] Raghukumar C., Muraleedharan U. Gaud V. R., et al. Xylanases of marine fungi ofpotential use for biobleaching of paper pulp[J]. J. Ind. Microbiol. Biotechnol., 2004, 31: 433-441
    [217] Xu Z.H., Bai Y.L., Xu X. et al. Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp.WLUN024 with wheat bran as the main substrate[J].World Journal of Microbiology & Biotechnology , 2005, 21: 575-581
    [218] Kansoh A. L., Nagieb Z. A.. Xylanase and Mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp[J]. Antonie van Leeuwenhoek, 2004, 85(2): 103-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700