南海南部晚第四纪以来的古气候古环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对南海南部86GC沉积柱状样进行了较高分辨率的微体古生物分析、浮游有孔虫稳定碳氧同位素分析、元素地球化学分析、矿物学分析、粒度分析和AMS~(14)C测年等,并获取了许多可信的数据。在对这些古环境、古气候指标综合分析的基础上,得出了一些有意义的认识。
     86GC沉积柱状样涵盖了过去约31 ka B.P.以来南海南部的沉积历史。在这段地质历史时期内,29 ka B.P.之前为MIS3期(未见底),18.5~29 ka B.P.为末次盛冰期(LGM);11.5~18.5 ka B.P.为末次冰消期;11.5 ka B.P.以来为全新世。
     由于冰期-间冰期气候变化引起的海.陆变迁、通道启闭和上升流活动等,造成南海南部海区的沉积环境发生改变。其中在末次冰期期间,海洋生态环境较差;同时由于水域封闭,水体流通状况较差,海底的沉积环境基本上为还原状态。冰后期海洋生态环境趋好,生物产率提高;并且由于水体交换作用的加强,海区深层水的含氧量也增加。
     自MIS3晚期以来,南海的南部海区以及为其提供陆源碎屑沉积的南海南部的陆-岛地区,古气候和古环境都发生了明显变化。其中,MIS3的气候、环境条件较为适宜。LGM的气候条件最差,尤以在大约26~28 ka B.P.之间最差,而在传统所认为的LGM(18~24 ka B.P.)期间并非气候条件最差时期。不过,即使是末次冰期的极盛期,当时当地的气温仍然较高,热带气候可能在当地依然盛行,气候状况的变差只是相对于当地的间冰期阶段而已。末次冰消期和全新世期间的气候似乎非常不稳定,推测可能与厄尔尼诺影响有关系。再者,在86GC柱状样中记录的一些气候突变事件,可能与北半球高纬地区发现的8k事件、YD事件及H事件(H1~H3)分别有关。综合分析认为,南海南部热带区域晚第四纪的气候变化可能主要受低纬过程的控制,但同时也有高纬区的影响。
This paper presents the records of planktonic foraminifera (PF) census, stable carbon and oxygen isotopes of PF G.ruber (white), element geochemical analysis, mineralogical analysis, grain size and AMS~(14)C dating from the deep-sea sediments of core 86GC in the southern South China Sea (SCS). The 1.68m long profile covers the last ca. 31,400 years including the late part of Marine Oxygen Isotope Stage 3 (MIS 3, before 29 ka B.P.), the Last Glacial Maximum (LGM, ca. 18.5-29 ka B.P.), the Termination I (ca.11.5-18.5 ka B.P.) and the Holocene (since 11.5 ka B.P).
     The paleoenvironment changes, the close or open of the straits and the occurrence of upwelling induced by the glacial-interglacial climate changes, together led to changes in the sedimentary environment. During the last glaciation, the ecologic environment of the southern SCS was bad. At the same, owing to the closed water condition, the depositional environment at the sea bottom was dominated by reduction condition. When it came to the postglacial period, ecologic environment of the southern SCS got better and the water mass changes were enhanced. As a result, the oxygen content in the deep water also increased.
     Since the late MIS3, the paleoclimate in the southern SCS and its detrital sediments source areas had suffered obvious changes. During the MIS3, the paleoclimate was generally favorable. The worst climatic condition occurred during the LGM, especially during its early part (ca.26 - 28 ka B.P.) which we defined as the maximum of the LGM in our studied area. While between 18 and 24 ka B.P, that is, the period of LGM defined by the early studies, the climate in our studied area was not as bad as that during the early LGM. Nevertheless, the tropical climate had probably still prevailed in the adjacent land and islands of the southern SCS even during the LGM, although there had been temperature fall more or less.
     The climate during the last glacial and the Holocene was changeable in all probability, which, we suppose, was potentially associated with frequent occurrence of ENSO. Furthermore, five distinct climate events are identified in our studied area, which may correlate with the well-known climate events in high latitude including the Heinrich events (H3-H1), the Younger Dryas (YD) and the 8 200 event.
     Based on the tradeoff analysis, we deduce that the climate changes during the late quaternary in the tropic zones of the southern SCS were mainly controlled by the low -latitude processes, but born the imprints of the high-latitude processes at the same time.
引文
1.安芷生,符淙斌.全球变化科学的进展[J].地球科学进展,2001,16(5):671-680.
    2.鲍才旺,薛万俊.南海主要海山海槽的地形地貌特征.广州:广东省地图出版社,1990.
    3.卞云华,汪品先,郑连福.南海北部晚第四纪浮游有孔虫的溶解作用旋回[A].南海晚第四纪古海洋学研究[C].青岛:青岛海洋大学出版社,1992,261-273.
    4.陈木宏,涂霞,郑范,等.南海南部近20万年沉积序列与古气候变化关系[J].科学通报,2000,45(5):542-548.
    5.陈木宏,颜文,涂霞,等.南海西南部近200 ka来的动力环境与东亚古季风[J].热带海洋学报,2002,21(3):38-46.
    6.陈木宏,郑范,陆钧,等.南海西南陆坡区沉积物粒级指标的物源特征及古环境意义[J].科学通报,2005,50(7):684-690.
    7.陈史坚,陈特固,徐锡桢,等.浩瀚的南海[M].北京:科学出版社,1985.
    8.成鑫荣,汪品先,黄宝琦等.南海表层沉积中有孔虫壳体的碳同位素研究及其意义[J].科学通报,2005,50(1):48-52.
    9.成鑫荣,汪品先.运用超微化石探索晚第四纪冲绳海槽上层海水垂向结构的变化[J].中国科学(D辑),1998,28(2):137-141.
    10.程鹏,高抒,李徐生.激光粒度仪测试结果及其与沉降法、筛析法的比较[J].沉积学报,2001,19(3):449-455.
    11.邓宏文,钱凯.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993,10-31.
    12.邓文峰,韦刚健,李献华.不纯碳酸盐碳氧同位素组成的在线分析[J].地球化学,2005,34(5):495-500.
    13.丁旋,方念乔,陈学方.孟加拉湾晚第四纪浮游有孔虫及其古海洋学意义[J].现代地质,1999,13(1):37-42.
    14.国家海洋局.海洋调查规范(第四分册:海洋地质调查),1975,9-88.
    15.贾国东,彭平安,房殿勇,等.南沙南部近30 ka来沉积有机质的生物输入特征[J].海洋地质与第四纪地质,2001,21(1):7-11.
    16.翦知湣,王律江,Kienast M.南海晚第四纪表层古生产力与东亚季风变迁[J].第四纪研究,1999,(1):32-40.
    17.翦知湣,陈民本,林慧玲,等.从稳定同位素与微体化石看南海南部末次冰消期古海洋变化之阶段性[J].中国科学(D辑),1998,28(2):118-124.
    18.金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读[J].海洋科学进展,2003,21(1):99-106.
    19.雷坤,杨作升,郭志刚.东海陆架北部泥质区悬浮体的絮凝沉积作用[J].海洋与湖沼, 2001,32(3):288-295.
    20.李保华,翦知湣.南沙深海区近10 Ma来浮游有孔虫群及海水温跃层演变[J].中国科学(D辑),2001,31(10):840-845.
    21.李保华,赵泉鸿,陈民本,等.南沙海区晚第四纪浮游有孔虫演化及其古海洋学意义[J].微体古生物学报,2001,18(1):1-9.
    22.李粹中.南海中部沉积物类型和沉积作用特征.东海海洋,1987,5(1-2):10-18.
    23.李粹中.南海深水碳酸盐沉积作用[J].沉积学报,1989,7:35-43.
    24.李建如,汪品先.南海20万年来的碳同位素记录[J].科学通报,2006,51(12):1482-1486.
    25.李克让.中同近海及西北太平洋气候[M].北京:海洋出版社,1993,537-663.
    26.李献华,刘颖,涂湘林,等.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱溶分解样品方法的对比[J].地球化学,2002,31(3):289-294.
    27.李学杰,江茂生.南海西沙海槽末次冰期以来浮游有孔虫与表层水温[J].中国科学(D辑),2002,32(5):423-429.
    28.李逊,孙湘君.南海南部末次冰期以来的孢粉记录及其气候意义[J].第四纪研究,1999,(6):526-536.
    29.刘宝林,王亚平,王吉中,等.南海北部陆坡海洋沉积物稀土元素及物源和成岩环境[J].海洋地质与第四纪地质,2004,24(4):17-23.
    30.刘传联,成鑫荣.从超微化石看南沙海区近2Ma海水上层结构的变化[J].中国科学(D辑),2001,31(10):834-839.
    31.刘以宣主编.南海新构造与地壳稳定性[M].北京:科学出版社,1994.
    32.刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学,1996,25(6):552-558.
    33.鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D),1998,28(3):278-283.
    34.马英军,刘从强.化学风化作用中的微量元素地球化学——以江西龙南黑云母花岗岩风化壳为例[J].科学通报,1999,44(22):2433-2437.
    35.邱燕,吴能友.南海西部海域海底沉积物石英颗粒表面结构特征[A].姚伯初,邱燕,吴能友等.著南海西部海域地质构造特征和新生代沉积[M].北京:地质出版社,1999,119-123.
    36.宋建中,于赤灵,贾国东,等.南海北部4 Ma B.P.以来古海洋变迁的长链烯酮记录[J].第四纪研究,2003,23(5):512-520.
    37.孙湘君,李逊,罗运利.末次冰期南海巽他陆架上的植被和气候[J].植物学报,2002,44(6):746-752.
    38.孙有斌,高抒,李军.边缘海陆源物质中对环境敏感的粒度组分的初步分析[J].科学通报,2003,48(1):83-86.
    39.孙有斌,高抒,鹿化煜.前处理方法对北黄海沉积物粒度的影响[J].海洋与湖沼,2001,32(6):665-671.
    40.田军,汪品先,成鑫荣.更新世南海南部上层海水结构变化的岁差驱动[J].自然科学进展,2004,14(6):683-688.
    41.涂霞,郑范,陈木宏.南海南部NS93-5柱样揭示的晚第四纪以来的古海洋学特征[J].热带海洋,2000,19(4):36-44.
    42.涂霞,郑范,陈木宏,等.南海南部陆坡区的浮游有孔虫及其所表征的表层古水温[J].热带海洋,2000,19(3):40-49.
    43.涂霞,郑范,向荣,等.末次冰期以来西太平洋暖池变化的浮游有孔虫记录[J].热带海洋学报,2005,24(1):1-7.
    44.汪品先.低纬过程的轨道驱动[J].第四纪研究,2006,26(5):694-701.
    45.汪品先,卞云华,翦知湣.南沙海区晚第四纪的碳酸盐旋回[J].第四纪研究,1997,(4):293-300.
    46.汪品先,卞云华,李保华,等.西太平洋边缘海的“新仙女木”事件[J].中国科学(D)辑,1996,26(5):452-460.
    47.汪品先,翦知缗,刘志飞.地球圈层相互作用中的深海过程和深海记录(Ⅱ):气候变化的热带驱动与碳循环[J].地球科学进展,2006,21(4):338-345.
    48.汪品先,翦知湣,刘志伟.南沙海区盛冰期的气候问题[J].第四纪研究,1996,(3):193-201.
    49.汪品先,李荣凤.末次冰期南海表层环流的数值模拟及其验征[J].科学通报,1995,40(1):51-53.
    50.汪品先,田军,成鑫荣.第四纪冰期旋回转型在南沙深海的记录[J].中国科学(D辑),2001,31(10):793-799.
    51.汪品先,章纪军,赵泉鸿,等.东海底质中的有孔虫和介形虫[M].北京:海洋出版社,1988,1-438.
    52.汪品先,赵泉鸿,翦知湣,等.南海三千万年的深海记录[J].科学通报,2003,48(21):2206-2215.
    53.汪品先.冰期时的中国海研究现状与问题[J].第四纪研究,1990,(2):111-124.
    54.汪品先.西太平洋边缘海的冰期碳酸盐旋回[J].海洋地质与第四纪地质,1998,18(1):1-11.
    55.汪品先.西太平洋边缘海对我国冰期干旱化影响的初步探讨[J].第四纪研究,1995,1:32-42.
    56.汪品先.南海在亚太地区气候演变中的作用.见:汪品先等著.十五万年来的南海[A].上海:同济大学出版社,1995,74-82.
    57.王慧中,汪品先.古洋流与海水古温度[A].同济大学海洋地质系·古海洋学概论[M].上海:同济大学出版社,1989:45-119.
    58.王慧中,翦知滑.南海晚第四纪碳酸盐稀释旋回[A].南海晚第四纪古海洋学研究[C].青岛:青岛海洋大学出版社,1992,283-294.
    59.王吉良,斋藤文纪,大场忠道,等.近万年来冲绳海槽温跃层的高分辨率记录[J].中国科学(D辑),2000,30(3):233-238.
    60.王律江,卞云华,汪品先.南海北部末次冰消期及快速气候回返事件[J].第四纪研究,1994,1:1-12.
    61.王律江.南海北部19.3万年来古盐度历史[A].业治铮,汪品先.南海晚第四纪古海洋学研究[M].青岛:青岛海洋大学出版社,1992a,88-95.
    62.王律江.南海北部晚第四纪碳同位素记录与古生产力——以SO49-8KL柱状样为例[M].业治铮,汪品先.南海晚第四纪古海洋学研究.青岛:青岛海洋大学出版社,1992b,219-226.
    63.王宁练,姚檀栋.冰芯对于过去全球变化研究的贡献[J].冰川冻土,200,25(3):275-287.
    64.王晓梅,孙湘君,汪品先,等.末次冰消期以来巽他陆架高分辨率的孢粉记录[J].中国科学(D辑),2007,27(1):71-76.
    65.王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989,247-272.
    66.韦刚健,陈毓蔚,李献华,等.NS93-5钻孔沉积物不活泼微量元素记录与陆源输入变化探讨[J].地球化学,2001a,30(3):208-216.
    67.韦刚健,桂训唐,李献华,等.南沙NS90-103钻孔沉积物Sr-Nd同位素组成及其气候环境信息探讨[J].中国科学,2000,30(3):249-255.
    68.韦刚健,李献华,陈毓蔚,等.NS93-5钻孔沉积物高分辨率过渡金属元素变化及其古海洋记录[J].地球化学,2001b,30(5):450-458.
    69.吴明清,王贤觉.东海沉积物稀土和微量元素[J].地球化学,1991,(1):40-45.
    70.吴明清,文启忠,潘景钰,等.黄河中游地区马兰黄土的稀土元素[J].科学通报,1991,36(5):366-369.
    71.向荣,阎军.表层海水古盐度重建[J].海洋科学,2002,26(4):17-20.
    72.徐建,汪品先,黄宝琦,等.南海南部普林虫与“中更新世革命”[J].地球科学(中国地质大学学报),2004,29(1):7-14.
    73.叶瑛,柳志卿,陈宁华,等.南海表层沉积物浮游有孔虫的氧、碳同位素及其海洋学意义[J].浙江大学学报(理学版),2004,31(1):114-120.
    74.张海生,周怀阳,卢冰,等.南海北部盛冰期以来古海洋环境变化的沉积记录[J].海洋 学报,2005,27(3):52-58.
    75.张志强,孙成权.国际全球变化研究十年新进展[J].科学通报,1999,44(5):464-477.
    76.赵焕庭,孙宗勋,宋朝景,等.南沙群岛永暑礁90多万年以来的海平面变化[J].海洋与湖沼,1996,27(3):264-269.
    77.赵泉鸿,W Kuhnt,K Stattegger,等.南海巽他陆坡晚更新世以来的微体化石和古环境[J].海洋地质与第四纪地质,2002,22(2):63-68.
    78.赵泉鸿,翦知滔,成鑫荣,等.中更新世撞击事件对海洋环境的影响—南海ODP1144站的高分辨率记录[J].微体古生物学报,2004,21(2):130-135.
    79.赵泉鸿,苏新.冲绳海槽南部末次间冰期以来古海洋学变迁:ODP1202站的记录[J].海洋地质与第四纪地质,2004,24(4):61-66.
    80.赵泉鸿,汪品先,成鑫荣,等.中新世“碳位移”事件在南海的记录[J].中国科学(D辑),2001,31(10):808-815.
    81.赵泉鸿,汪品先.南海第四纪古海洋学研究进展[J].第四纪研究,1999,6:481-501.
    82.赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.
    83.周怀阳,叶瑛,沈忠悦.南海南部沉积物中黏土矿物组成变化及其古沉积信息记录初探[J].海洋学报,2004,26(2):52-66.
    84.朱颜明,何岩.环境地理学导论[M].北京:科学出版社,2002.
    85.朱照宇,邱燕,周厚云,等.南海全球变化研究进展[J].地质力学学报,2002,8(4):314-322
    86. Morey, A. E., Mix, A.C., Pisias, N.G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables[J]. Quaternary science reviews. 2005, 24: 925-950.
    87. Baldini James U L, McDermott F, Fairchild Ian J. Structure of the 8200-year cold event revealed by a speleothem trace element record[J]. Science, 2002, 296: 2203-2206.
    88. Bard, E.. Geochemical and geophysical implications of the radiocarbon calibration[J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2025-2038.
    89. BeA W H. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramsay A T S, ed. Oceanic Micropaleontology. London: Academic Press, 1977. 1-100.
    90. Berger W. H.. Planktonic foraminifera: Selective solution and paleoclimatic interpretation[J]. Deep-Sea Research, 1968, 15:31-43.
    91. Berger, W.H. Ecologic patterns of living planktonic foraminifera[J]. Deep-Sea Research, 1969, 16: 1-24.
    92. Berner RA, Berner E K. Silicate weathering and climate. In: Ruddiman W F, ed. Tectonic Uplift and Climate Change. New York: Plenum Press, 1997, 354-364.
    93. Bhatia, M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basin [J]: Contributions to Mineralogy and Petrology, 1986, 92: 181-193.
    94. Bidigare R R, Fiuegee A, Freeman K Het al. Consistent fractionation of ~(13)C in nature and in the laboratory: Growth-rate effects in some haptophyte algae [J]. Global Biogeochemical Cycles, 1997, 11 (2): 279-292.
    95. Boulay S, Colin C, Trentesaux A, et al. Sediment sources and East Asian monsoon intensity over the last 450 ky: mineralogical and geochemical investigations on South China Sea sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 228: 260-277.
    96. Bradshaw, J. S. Ecology of living planktonic foraminifera in the North and Equatorial Pacific Ocean. Cushman Foundation for Foraminiferal Research Contributions, 1959, 10: 25-64.
    97. Brassell S, Eglinton G, Marlowe I, et al. Molecular stratigraphy: A new tool for climatic assessment [J]. Nature, 1986, 320: 129-133.
    98. Broecker W S, Henderson G M. The sequence of events surrounding termination Ⅱ and their implications for the causes of glacial interglacial CO2 change [J]. Palaeoceanography, 1998, 13: 352-364.
    99. Chen M T, Prell W L. Faunal distribution patterns of planktonic foraminiferas in surface sediments of the low-latitude Pacific[J]. Paleo Paleo Paleo, 1995, 137: 55-77.
    100. Chen M, Li Q, Zheng F, Tan X, Xiang R, Jian Z. Variations of the Last Glacial Warm Pool: Sea surface temperature contrasts between the open western Pacific and South China Sea [J]. Paleoceanography, 20, PA2005, doi: 10. 1029/2004PA001057.
    101. Chen M, Tu X, Zheng F. Relations between sedimentary sequence and paleoclimatic changes during last 200 ka in the southern South China Sea [J]. Chin. Sci. Bull. 2000, 45(14), 1334-1340.
    102. Clark P U. McCabe A M. Mix A C, Weaver A J. Rapid rise of sea level 19000 years ago and its global implications [J], Science, 2004, 304: 1141-1144.
    103. CLIMAP Project Members. Seasonal Reconstruction of the Earth's Surface at the Last Glacial Maximum, Map and Chart Ser. MC- 36, Geol. Soc. of Am., Boston, Mass. 1981.
    104. Colin C, Turpin L, Bertauxc J, et al. Erosional history of the Himalayan and Burman ranges dring the last two glacial-interglacial cycle[J]. Earth and Planetary Science Letters, 1999, 171: 647-660.
    105. Craig, H. The measurement of oxygen isotope palaeotemperatures, in Tongiorgi, ed., Stable isotopes in oceanographic studies and palaeotemperatures [M]: CNR Lab. Geol. Nucl. Pisa, 1965, 161-182.
    106. Cullen J L. Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20 000 years [J]. Palaeoclimatology, Palaeoecoiogy, 1981, 35: 315-356.
    107. Culler R L, Barrett T, Carlson R and Robison B. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chem. Geol., 1987, 63: 275-297.
    108. Cullers R L, Chaudhuri S, Arnold B, et al. Rare earth distributions in clay minerals and clay-sized fractinal of the lower Permian Havensville and Eskridge shales of Kansas and Oklahoma [J]. Geochim. et Cosmochim. Acta, 1975, 39: 1691-1703.
    109. Dasch E J. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks [J]: Geochim. Cosmochim. Acta, 1969, 33: 1521-1552.
    110. Derry L A, France-Lanord C. Neogene Himalayan weathering history and river ~(87)Sr/~(86)Sr: impact on the marine Sr record [J]. Earth Planetary Science Letters, 1996, 142: 59-74.
    111. Doeglas D T. Grain-size indices, Classifications and environment [J] Sedimentology, 1968, 10: 83-100.
    112. Drever J I. The Geochemistry of Natural Waters [M]. New York: Prentice Hall, Englewood Cliffs, 1988. 1-437.
    113. Dupr B, Dessert C, Oliva P, et al. Rivers chemical weathering and Earth's climate [J]. C. R. Geoseience, 2003, 335: 1141-1160.
    114. Emiliani C. Pleistocene temperature [J]. Jour. Geol., 1955, 63: 538-578.
    115. Froelich P N, Blanc V, Mortlock R A, et al. River fluxes of dissolved silica to the oceans were higher during glacial: Ge/Si in diatoms, rivers, and oceans [J]. Paleoceanography, 1992, 7: 739-767.
    116. Gaillardet J, Dupr B, Louvat P, et al. Global silicate weathering and CO_2 consumption rates deduced from the chemistry of the large rivers [J]. Chemical Geology, 1999, 159: 3-30.
    117. Cramer B S. Deconvolving the carbon isotope record (Abstract) [C]. Eos. Trans. AGU, 2003, 84(46), F213.
    118. Gibbs M T, Kump L R. Global chemical erosion during the last glacial Maximum and the present: Sensitivity to changes in lithology and hydrology. Palaeooceanography, 1994, 9: 529-543.
    119. Gingele, F. X., Mu" ller, P. M., Schneider, R. R. Orbital forcing of freshwater input in the Zaire Fan area—clay mineral evidence from the last 200 kyr [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 138, 17-26.
    120. Gupta, A., Rahman, A., Poh Poh, W. & Pitts, J. The old alluvium of Singapore and the extinct drainage system of the South China Sea [J]. Earth Surface Processes and Landforms, 1987, 12, 259-275.
    121. Hanebuth T J J, Stattegger K. Depositional sequences on a late leistocene Hoiocene tropical siliciclastic shelf (Sunda shelf, southeast Asia)[J]. Journal of Asian Earth Sciences, 2004, 23: 113-126.
    122. Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a late-glacial sea-level record [J]. Science, 2000, 288: 1033-1035.
    123. Hanebuth T, Stattegger K. Depositional sequences on a late Pleistocene Holocene tropical siliciclastic shelf (Sunda Shelf, Southeast Asia) [J]. Journal of Asian Earth Sciences, 2004, 23: 113-126.
    124. Hemleben C, Spindler M, Anderson O R. Modem Planktonic Foraminifera. New York: Springer, 1988.
    125. Hodell D A, Mead G A, Mueller P A. Variation in the strontium isotopic composition of seawater (8 Ma to present): Implications for chemical weathering rates and dissolved fluxs to the oceans [J]. Chem. Geol., 1990, 80: 291-307.
    126. Holser W T. Evaluation of the application of rare-earth elements to paleoceanography [J]. Paleoceanography, Paleaoclimatology, Paleaoecology, 1997, 132: 309-323.
    127. Huang Ronghui and Sun Fengying. Impact of the tropical western Pacific on the East Asian summer monsoon [J]. J. Meteor. Soc. Japan, 1992, 70, 243-256.
    128. Imbrie, J., and N. G. Kipp, A new micropaleontological method for Quantitative paleoclimatology: Application to a late Pleistocene Caribbean Core, in The Late Cenozoic Glacial Ages, edited by K. K. Turekian, Yale Univ. Press, New Haven, CT, 1971.
    129. Jenkins, J. A. and Williams, D. F. Nile water as a cause of Eastern Mediterranean sapropel formation: Evidence for and against [J]. Marine Micropaleontology, 1984, 8(6), 521-534.
    130. Jia G, Xie H, Peng P. Contrast in surface water δ~(18)O distributions between the Last Glacial Maximum and the Holocene in the Southern South China Sea [J]. Quaternary Science Reviews, 2006, 25: 1053-1064.
    131. Jian Z M, Wang L J, Kienast M, et al. Benthic foraminiferal paleoceanography of the South China Sea over the last 40000 years [J]. Marine Geology, 1999, 156: 159-186.
    132. Jian Z, Wang P, Chen M, et al. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea [J]. Paleoceanography, 2000, 15 (2): 229-243.
    133. Jian, Z., Huang, B., Kuhnt, W. et al. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea [J]. Quaternary Research, 2001, 55: 363-370.
    134. Jian, Z., Yu, Y., Li, B., Wang, J., Zhang, X., and Zhou, 2006. Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 230(3-4), 251-263.
    135. Klaver G T and van Weering T C E. Rare earth element fractionation by selective sediment dispersal in surface sediments: the Skagerrak [J]. Marine Geology, 1993, 111: 345-359.
    136. Lambeck K, Yokoyama Y, Purcell T. Into and out of the last glacial maximum: sea-level changes during oxygen isotope stages 3 and 2 [J]. Quaternary Science Reviews, 2002, 21: 343-360.
    137. Le J, Shackleton N J. Carbonate dissolution fluctuation in the western equatorial Pacific during the late Quaternary [J]. Paleoceanography, 1992, 7(1): 21-42.
    138. Lee M Y, Wei K Y, Chen Y G. A high resolution oxygen isotope stratigraphy for the last 150000 years in the southern South China Sea: Core MD972151 [J]. TAO, 1999, 10: 239-254.
    139. Li B, Jian Z, Wang P. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa trough during the last 20000 years [J]. Marine Micropaleontology, 1997, 32(1-2): 59-69.
    140. Li X H, Wei G J, Liu Y, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia [J]. Earth and Planetary Science Letters, 2003, 211: 207-220.
    141. Lin D., Liu C., Fang T., el al. Millennial-scale changes in terrestrial sediment input and Holocene surface hydrography in the northern South China Sea (IMAGES MD972146) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236: 56-73.
    142. Linsley, B. K. Oxygen-isotope record of sea level and climate variations in Sulu sea over past 150000 years [J]. Nature, 1996, 380: 234-237.
    143. Liu Z, Colin C, Trentesaux A, et al. Erosional history of the eastern Tibetan Plateau since 190 kyr ago: clay mineralogical and geochemical investigations from the southwestern South China Sea [J]. Mar Geol, 2004, 209: 1-18.
    144. Liu Zhifei. Christophe Colin, Alain Trentesaux, et al. Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin [J]. Quaternary Research, 2005, 63: 316-328.
    145. Liu, Z., Trentesaux, A., Clemens, S. C. et al. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years [J]. Mar Geol, 2003, 201: 133-146
    146. Ma Henian, Ding Yhu. The present status and features of research of the East Asian monsoon [J]. Adv Atmo Sci, 1997, 14(2): 125-140.
    147. Martin L, Absy M L, Flexor J M, Fournier M, Mourguiart P, Sifeddine A, Turcq B. Records of El Nino-like conditions in South America during the last 7000 years: Comptes Rendus de rAcademie des Sciences, Serie Ⅱ (Mecanique, Physique, Chimie Sciences de la Terre et de l'Univers), 1992, 315(1): 97-102.
    148. McLaren P A. Interpretation of trends in grain-size measurements [J]. Journal of Sedimentary Petrology, 1981, 51: 611-624.
    149. Mclerman S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes(A). In Lipin B R & Mckay G A, ed. Reviews of Mineralogy(C). Washington DC: Mineralogical Society of America, 1989, 21: 169-200.
    150. Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, Journal of Geology, 1992, 100: 525-544.
    151. Millot R, Gailardet J, Dupr B, el al. Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada [J]. Geochimca Cosmochimca Acta, 2003, 67- 1305-1329.
    152. Mix, A. C. Pleistocene paleoproductivity: Evidence from organic carbon and foraminiferal species. In: Berger, W. H. et al., Productivity of the Ocean, Past and Present. Wiley, New York, 1989, 313-340.
    153. Morey G B and Setterholm D R. Rare earth elements in weathering profiles and sediments of Minnesota: Implications for provenance studies[J]. Journal of Sedimentary Research, 1997, 67: 105-115.
    154. Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Nino southern Oscillation Activity at Millemial Timescales during the Holocene Epoch [J]. Nature, 2002, 420: 162-165.
    155. Munksgaard N C, Lim K and Parry D L. Rare earth elements as provenance indicators in North Australian estuarine and coastal marine sediments [J]. Estuarine Coastal and Shelf Science, 2003, 57(3): 399-409.
    156. Nath B. N., Kunzendorf H. & Pluger W. L. Influence of provenance, weathering, and sedimentary processes on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad Lake and the adjoining continental shelf, Southwest coast of India [J]. Journal of Sedimentary Research, 2000, 70, 1081-1094.
    157. Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering [J]. Geochim Cosmochim Acta, 1980, 44: 1659-1666.
    158. Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments [J]. Geochim. Cosmochim. Acta, 1997, 61: 1653-1670.
    159. Nesbitt H W, Wilson R E. Recent chemical weathering of basaits [J]. Amer J Sci, 1992, 292: 740-777.
    160. Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite [J]. Nature, 1979, 279: 206-210.
    161. NODC (The National Oceanographic Data Center, America), 1998. http: //www. nodc. noaa. gov/OC5/WOA98F/woaf_ed/search. html.
    162. Norman M P, Deekker P D. Trace metals in lacustrine and marine sediments: A case study from the Gulf of Carpentarra, northern Australia[J]. Chemical Geology, 1990, 82(3/4): 299-318.
    163. Oppo D W, McManus J F, Cullen J L. Abrupt climate events 500 000 to 340 000 years ago: evidence from subpolar North Atlantic sediments [J]. Science, 1998, 277: 1867-1870.
    164. Oppo, D. W. & Lehman, S. J. Suborbital timescale variability of North Atlantic Deep Water during the past 200000 years [J]. Paleoceanography, 1995, 10, 901-910.
    165. Owen L A, Finkel R C, Caffee M W. A note on the extent of glaciation throughout the Himalayan during the global Last Glacial Maximum [J]. Quaternary Science Reviews, 2002, 21(1-3): 147-157.
    166. Pancost R D, Freeman K H, Wakeham S G, et al. Controls on carbon isotope fractionation by diatoms in the Peru upwelling region[J]. Geochimica et Cosmochimica Acta, 1997, 61(23): 4983-4991.
    167. Parker, F. L. and Berger, W. H. Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific [J]. Deep-Sea Research, 1971, 18, 73-107.
    168. Parker, F. L. Living planktonic foraminifera from the equatorial and southeast Pacific. Tohoku University Science Reports Serial 2 (Geology) Special 4, 1960, 71-82.
    169. Pelejero C, Grimalt J O, Sarnthein M, et al. Molecular biomarker record of sea surface temperature and clirmatic change in the South China Sea during the last 140000 years [J]. Marine Geology, 1999, 156: 109-121.
    170. Pelejero, C., Kienast, M., Wang, L., et al. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea. Earth Planet. Sci. Lett., 1999, 171, 661-671.
    171. Perry G D, Duffy P B, Miller N L. An extended data set of river discharges for validation of general circulation models [J]. J. Geophys. Res., 1996, 101: 21339-21349.
    172. Pflaumann U, Jian Z M. Modern distribution patterns of planktons foraminiferal in the South China Sea and western Pacific: a new transfer technique to estimate regionalsea surface temperature [J]. Marine Geology, , 1999, 156: 41-83
    173. Ravelo A C, Fairbanks R G, Philander G. Reconstructing tropical Atlantic hydrography using planktonic foraminifera and ocean model [J]. Paleoceanography, 1990, 5(5): 409-431.
    174. Ravelo A C, Fairbanks R G. Oxygen isotopic composition of multiple species of palnktonic foraminifera: recorders of the modern photic zone tempterature gradient [J]. Paleoceanography, 1992, 7(6): 815-831.
    175. Raymo M E, Ruddiman W F, Froe lich P N. Influence of late Cenozoic mountain building on ocean geochemical cycles [J]. Geology, 1988, 16: 649-653.
    176. Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359: 117-112.
    177. Rodbell D T, Seltzer G O, Anderson D M et al. An-15000-year record of El nino-driven alluviation in southwestern Ecuador [J]. Science, 1999, 283: 516-519.
    178. Roser B P, Korsch R J. Provenance signatures of sandstone- mudstone suites determined using discriminant function analysis of major-element data [J]. Chemical Geology, 1988, 67: 119-139.
    179. Russell R D. Effects of transportation of sedimentary particles. In: Trask P D (editor), Recent Marine Sediments. The Society of Economic Paleontologists and Mineralogists, Tulsa (Oklahoma), 1939, 32-47.
    180. Saito, T., Thompson, R. R., Breger, D. Systematic index of recent and Pleistocene planktonic foraminifera, University of Tokyo Press, 1981, 1-190.
    181. Schneider, R., Muller, P. J. and Wefer, G. Late Quaternary paleoproductivity changes off the Congo deduced from stable carbon isotopes of planktonic foraminifera [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 110, 255-274.
    182. Shackleton N J. Oxygen isotopes, ice volume and sea level [J]. Quat Sci Rew, 1987, 6: 183-190.
    183. Shackleton N J. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity [J]. Science, 2000, 289: 1 897-1 902.
    184. Shackleton, N. J. and Opdyke, N. D. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale [J]. Quaternary Research, 1973, 3(1): 39-55.
    185. Shaw P T, Chao S Y. Surface circulation in the South China Sea [J]. Deep-Sea Res I, 1994, 40(11/12): 1663-1683.
    186. Spero H J, Lea D W. The cause of carbon isotope minimum events on glacial terminations [J]. Science, 2002, 296: 522-525.
    187. Spero, H. J., J. Bijma, D. W. Lea, and B. E. Bemis, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes [J]. Nature, 1997, 390, 497-500.
    188. Steinke S, Chiu H Y, Yu P S, et al. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the past 22000 years [J]. Quaternary Science Reviews, 2006, 25: 1475-1488.
    189. Steinke S, Kienast M, Hanebuth T. On the significance of sea-level variations and shelf paleo-morphoiogy in governing sedimentation in the southern South China Sea during the last deglaciation [J]. Marine Geology, 2003, 201: 179-206.
    190. Steinke, S., Kienast, M., Pflaumann, U., Weinelt, M., Stattegger, K. A high resolution sea-surface temperature record from the tropical South China Sea (16500-3000 yr B. P. ) [J]. Quaternary Research, 2001, 55, 352-362.
    191. Sun X, Li X, Luo Y. Vegetation and climate on the Sunda Shelf of the South China Sea during the Last Glaciation-pollen results from Station 17962 [J]. Acta Botanica Sinica, 2002, 44(6): 746-752.
    192. Tamburini F, Adatte T, Follmi K et al. Investigating the history of East Asian monsoon and climate during the last glacial interglacial period (0-140000 years): mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea [J]. Mar. Geol., 2003, 201: 147-168.
    193. Taylor S R, Mclennan S M. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks [J]. Phil. Trans. R. Soc., 1981, A301, 381-399.
    194. Taylor S R, MeLennan S M. The Continental Crust: Its Composition and Evolution [M]. Melbourne: Blackwell. 1985, 28-29.
    195. Taylor S R. Geochemistry of loess, continental crustal composition and crustal modal ages[J]. Geochim. Cosmochim. Acta, 1983, 47: 1897-1904.
    196. Thompson L G, M osley-Thompson E, Amao B M. El Nino-Southem Oscillation events recorded in the stratigraphy of the Quelccaya ice cape, Peru [J]. Science, 1984, 226: 50-53.
    197. Thompson P A, Calvert S E. Carbon isotopic fractionation by a marine diatom--the influence of irradiance, daylength, PH, and nitrogen source [J]. Limnology and Oceanography, 1994, 39: 1835-1844.
    198. Thompson P R. Planktonic foraminifera in the western north pacific during the past 150 000years: comparison of modem and fossil assemblages [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 241-279.
    199. Thunell, R. C. and Williams, D. F. Glacial-Holocene salinity changes in the Mediterranean Sea: hydrographic and depositional effects [J]. Nature, 1989, 338(6215), 493-496.
    200. Tian, J., Wang, P. and Cheng, X. Development of the East Asian monsoon and Northern Hemisphere glaciation: oxygen isotope records from the South China Sea [J]. Quaternary Science Reviews, 2004, 23(18-19), 2007-2016.
    201. Tudhope A W, Chilcott C P, McCulloch M T et al. Variability in the El nino-Southem Oscillation through a glacial-interglacial cycle [J]. Science, 2001, 291: 1511-1517.
    202. Ujiie, H., Ujiie, Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean [J]. Mar. Micropaleontol., 1999, 37: 23-40.
    203. Visher G S. Grain size distribution and depositional processes [J]. Journal of Sedimentary Petrology, 1969, 39(3): 1047-1106.
    204. Wan Shiming, Li Anchun, Clift P. D. et al. Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8. 5 Ma [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241: 139-159.
    205. Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 1999, 156(1-4): 245-284.
    206. Wang L, Wang P. Late Quaternary paleoceanography of the South China Sea: glacial-interglacial contrasts in an enclosed basin [J]. Paleoceanography, 1990, 5(1): 77-90.
    207. Wang L. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161: 381-394.
    208. Wang P, Wang L, Bian Y, Jian Z. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology, 1995, 127(1-4): 145-165.
    209. Wang P. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features [J]. Marine Geology, 1999, 156 (1-4): 5-39.
    210. Wang P and Sun X. Last glacial maximum in China: comparison between land and sea. Catena, 1994, 23: 341-353.
    211. Wang Y J, Cheng H, Edwards R L, et al. The Holoeene Asian Monsoon: Links to solar changes and North Atlantic climate [J]. Science, 2005, 308: 854-857.
    212. Wang, P., Prell, W. L., Blum, P., et al. (Eds. ), Proc. ODP Init. Rep., Vol. 184 [CD-ROM]. Available from: Ocean Drilling Program, Texas ApM University, College Station, TX 77845-9547, USA. 2000.
    213. Wang, P., Wang, L., Bian, Y., Jian, Z. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles [J]. Marine Geology, 1995, 127, 145-165.
    214. Wang, P., Wang, L., Bian, Y., Jian, Z. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles [J]. Marine Geology, 1995, 127, 145-165.
    215. Wedepohl K H. Handbook of Geochemistry[C]. New York: Springer-Verlag, 1969.
    216. Wehausen, R., and Brumsack, H. -J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments [J]. Earth Planet. Sci. Lett., 2002, 201: 621-636.
    217. Wei, G. J., Liu, Y., Li, X. H., et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications [J]. Palaeogeogr. Palaeoclimatol. Palaeoecolo., 2004, 212: 331-342.
    218. Wei, K. -Y., Chiu, T. -C. and Chen, Y. -G., 2003. Toward establishing a maritime proxy record of the East Asian summer monsoons for the late Quaternary. Marine Geology 201(1-3), 67-79.
    219. White A F, Blum E K. Effects of climate on chemical weathering in watersheds [J]. Geoch. Cosmochim. Acta, 1995, 59: 1729-1747.
    220. Windom H L. Lithogenous materials in marine sediments. In: Riley J P, Chester R (eds. ), Chemical Oceanography, 2nd edition, vol. 5. Academic Press, London. 1976, 103-135.
    221. Wu J P, Calvert S E, Won G C S, et ai. Carbon and nitrogen isotopic composition of sedimenting particulate material at station papa in the subarctic northeast Pacific [J]. Deep Sea Research Ⅱ, 1999, 46(11, 12): 2793-2832.
    222. Yang S Y, Li C X, Lee C B, et al. REE geochemistry ofsuspeoded sediments from the rivers around the Yellow Sea and provenance indicators [J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139.
    223. Yang, Shouye, Yim, Wyss W. -S., Huang, Guangqing. Geochemical composition of inner shelf Quaternary sediments in the northern South China Sea with implications for provenance discrimination and paleoenvironmental reconstruction, Global and Planetary Change, 2007, doi: 10. 1016/j. gioplacha. 2007. 02. 005.
    224. Yokoyama Y, Lambeck K, De Deckker P, et al. Timing for the maximum of the last glacial constrained by lowest sea-level observations [J]. Nature, 2000, 406: 713-716.
    225. Yu, P. -S., Huang, C. -C., Chin, Y., Mii, H. -S. and Chen, M. -T. Late Quaternary East Asian Monsoon variability in the South China Sea: Evidence from planktonic foraminifera faunal and hydrographic gradient records [J]. Palaeogeography, Palaeoclimatology, Palaeoecoiogy, 2006, 236(1-2): 74-90.
    226. Zachos, J., Pagani, M., Sloan, L., et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 2001, 292(5517): 686-693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700