深绿木霉的拮抗机理、促生作用及制剂加工研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用已筛选的具有拮抗作用的深绿木霉菌(Trichoderma aureoviride)作为试材,进行深绿木霉对百合疫霉菌(Phytophthora nicotianae van Brede de Haan)抑制机理、深绿木霉制剂的制备及其对不同植物促生作用等方面的研究。
     通过对峙培养、菌丝降解、抗生物质测定、对扣培养、圆盘滤膜法、酶活性测定等一系列方法,研究深绿木霉对百合疫霉菌的多种拮抗机理,确定其具有竞争营养与重寄生作用,并发现有抗生物质产生。两者在对峙培养60h时,生长速率比达到3.68,且在其发酵液中测定出较高的β-1,3-葡聚糖酶和几丁质酶的活性。另外,还观察到深绿木霉发酵液对百合疫霉菌丝有降解作用,进一步证实了重寄生作用的存在。
     在探明拮抗机理的基础上,探讨液固两相发酵的培养成份和条件,确定最佳培养基和培养条件,获得深绿木霉制剂。先将1.0%(V/V)深绿木霉接种于液体麸皮培养基,置于全光照,25℃,pH5.0,摇瓶转速150r/min的条件下进行5d二级扩大培养,得到1.91×1010个/ml的孢子量。再以30%(V/V)的孢子量接种于含水量1:0.8的麦麸-泥土(1:1)固料中,进行三级固体浅盘发酵。采用前期20℃,中期24℃,后期28℃的变温处理,固料厚度1.0cm,每12h搅拌一次,发酵10d,获得孢子浓度为3.41×1010个/g的深绿木霉制剂。试验还确定深绿木霉制剂的干燥温度在30~35℃范围内,干燥48h为宜(活孢率90%以上),且最佳贮存组合为4℃-牛皮纸包装,测定其六个月后的孢子萌发率为32.8%。
     研究还发现深绿木霉制剂对小麦、苜蓿、黄瓜的发芽和生长均有促进作用。浸种试验表明,深绿木霉剂200X稀释液均能促进小麦、苜蓿发芽,小麦尤其明显(发芽指数和活力指数分别为11.8和0.437)。但其高浓度(10X、20X、50X)却抑制发芽。而盆栽试验显示,对小麦、苜蓿的出苗率,浸种法促进效果比施入法明显。小麦最佳浸种倍数为500,出苗率83%;苜蓿最佳浸种倍数为200,出苗率达87.50%。此外,适当的施入组合(施入量+施入深度)更利于小麦、苜蓿的生长,其苗干重、相对生长率及植株干物质积累等指标均高于对照,促生作用明显。对黄瓜,则喷洒法促生效果优于施入法,最佳喷洒浓度为106个/ml。
The antagonistic mechanism of Trichoderma aureoviride to the pathogen causing Lily blights (Phytophthora nicotianae van Brede de Haan), promotion of growth to various plants and the preparation of T. aureoviride were studied in this paper.
     The results showed that the biocontrol mechanism of T. aureoviride restraining P. nicotianae was mycoparasitism and competition of nutrition,and antibiotic substances were detected by a series of investigation means,such as confronting each other,degrading hypha,mensurating antibiosis substances,cultivating face to face, cultivating in sieve film of disc, mensurating activities of enzyme.The ratio of growth speed was 3.68 in confronting each other after 60h,and the activities of chitinase andβ-1,3-glucanase were detected in the ferment filtrate. In addition, the pathogenic hyphae could be degraded by T. aureoviride filtrate, which showed existence of parasitism.
     The medium and culture conditions were tested in experiment.In second-grade liquid culture, the optimum medium was wheat bran decoction.The optimum conditions were the inoculum 1.0%, continuous light, 25℃,pH5.0, and rotate speed 150r/min.The harvest period was five days.The conidial concentration reached 1.91×1010 spores/ml. In third-grade solid culture in plate, the optimum medium was wheat bran-clay(1:1).The optimum conditions were the proportion between water and medium 1:0.8, the inoculum 30%, the variational temperature(prophase 20℃,metaphase 24℃a nd anaphase 28℃),the thickness of medium 1.0cm and agitating medium every 12h. The fermentation period was ten days.The conidial concentration reached 3.41×1010spores/g.To T. aureoviride preparation ,the optimum temperature and time of desiccation were 30~35℃,48h respectively.Under these conditions the rate of alive spore reached 90%.And the preparation was packed with kraft at 4℃.The rate of bud was 32.8% after six months.
     The bud and growth of wheat, alfalfa and cucumber was promoted by T. aureoviride preparation. In soaking seed experiment, the growth of wheat and alfalfa was promoted by 200X preparation,especially wheat (index of bud and energy were 11.8 and 0.437).But high concentration(10X、20X、50X) restrained the growth of plants.In soil experiment, it was helpful to soak seed to germination of wheat(500X) and alfalfa
引文
[1].鲁素芸.植物病害生物防治学[M].北京:北京农业大学出版社,1993,126~130.
    [2].Bhuyan S A. Antagonisitic effect of T.virid,T.harzianum dan Asperigillus terreus on Rhizoctonia solani causing sheath blight of rice[J]. Journal of Agricultural Science Society of North East India,1994, 7(1):125~127.
    [3].Harman G E. Myths and Dogmas of Biocontrol:Changes in Perceptions Derived from Research on Trichoderma harzianum T-22[J]. Plant Disease,2000,84(4):377~393.
    [4].Zimand G,Elad Y.Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity[J]. Phytopatholigy, 1996,86:945~956.
    [5].龚明波.木霉厚垣孢子制剂的防病促生机制研究[D].硕士学位论文.中国农业科学院,2004,6.
    [6].惠有为,孙勇,潘亚妮,等.木霉在植物病害防治上的作用[J].西北农业学报,2003,12(3):96~99.
    [7].Wen C J, et al. Studies on the taxonomy of the genus Trichoderma in southwestern China[J].Acta Mycologica Sinica,1993,12(2):118~130.
    [8].Bissett J. A revision of the genus Trichoderma Ⅰ :Longibrachiatum sect.nov[J]. Can J Bot., 1984, 62: 924~93.
    [9].Bissett J. A revision of the genus TrichodermaⅡ :Infraspecific classification[J]. Can.J.Bot.,1991,69: 2357~2372.
    [10].Bissett J. A revision of the genus Trichoderma Ⅲ :Pachybasium[J]. Can.J.Bot.,1991,69: 2373~2417.
    [11].Bissett J. A revision of the genus Trichoderma Ⅳ :Additional notes on section.Longibrachiatum[J]. Can.J.Bot.,1991,69:2418~2420.
    [12].Meyer R J. Mitochondrial DNAs and plasmids as taxonomic characteristics in Trichoderma viride[J]. Applied and Environmental Microbiology,1991,57(8):2269~2276.
    [13].Zimand G,Valinsky L,Elad Y,et al. Use of the RAPD procedure for the identification of Trichoderma strains[J]. Mycological Research,1994,98(5):531~534.
    [14].Gomez I,Chet I, Herrera-Estrella A.Genetic diversity and vegetative compatibility among Trichoderma harzianum isolates[J]. Molecular and General Genetics, 1997, 256(2): 127~135.
    [15].鄢永琦,张素琴.绿色木霉菌产生纤维素酶的研究[J].应用与环境生物学报,2000,21(10):24~25.
    [16].邵力平,沈瑞祥,张素轩,等.真菌分类学[M].中国林业出版社,1983,315.
    [17].郭润芳.拮抗木霉菌在生物防治中的应用与研究进展[J].中国生物防治,2002,18(4):180~184.
    [18].杨合同.木霉菌与植物病害的生物防治[J].山东科学,1999,12(4):7~15.
    [19].Sivan A et al. The possible role of competition between Trichoderma harzinum and Fusarium oxysporum on rhizosphere colonization[J]. Phytopathology,1989,79(2): 198~203.
    [20].Danielson R M. Carbon and Nitrogen in Trichoderma[J]. Soil Biol Biochem,1998,5:508~516.
    [21].薛宝娣,李娟,陈永萱.木霉菌(TR-5)对病原真菌的拮抗机制和防病效果研究[J].南京农业大学学报,1995,18(1):31~36.
    [22].王未名,陈建爱,孙永堂.六种土传病原真菌被木霉抑制作用机理的初步研究[J].中国生物防治,1999,15(3):142~143.
    [23].Labudova I.,Gogorova L. Biological control of phytopathogenic fungi through lutic action of Trichoderma species FEMS. Microbiology letters,1988,52:193~198.
    [24].Jong-Min.,Baek.,Charles R.,et al. The role of extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani[J]. Current Genetics, 1999, 35(1): 41~43.
    [25].Dennis,Webster. Antagonistic properties of species-groups of Trichoderma.Ⅱ [J]. Hyphal interaction. Trans. Br. Mycol.Soc,1971,57:363~369.
    [26].朱天辉.Trichoderma harzianum 对 Rhizoctonia solani 的抗生现象[J].四川农业大学学报,1994, 12(1):11~15.
    [27].Ordentlich-A,Wiesman-Z,Gottlieb-HE.Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum[J]. Phytochemistry,1992,31(2):485~486.
    [28].Sivasithamparam K,Ghisalbert E J. Secondary metabolism in Trichoderma and Gliocladium[A]. Trichoderma and Gliocladium,Vol I:Basic biology taxonomy and genetics[C]. London,Taylor&Francis Ltd,1998,139~190.
    [29].Che I,Baker R. Isolation and biocontral potential of Trichoderma hamatum from soil naturally suppressive to Rhizofctonia solani[J]. Phytopathology,1981,71: 286~290.
    [30].Jones D,Watson D. Parasitism and lysis by soil fungi of Scleroliorum(Lib) debary a phytopathogenic fungus[J]. Nature,1969,224:287~288.
    [31].Galhaup C. Use of the green fluorescent protein as a reporter system reveals trichoderma harizianum ech42 gene expression as a very early , precontact event of mycoparasities interaction[C]. Fungal Genetic,Abstract Book of the Fourth European Conference on Fungal Genetic, 1998,249.
    [32].Inbar J, Chet I. The role of recognition in the induction of specific chitinases during mycoparasitism of Trichoderma harzianum[J]. Microbiology,1995,(4):2823~2829.
    [33]. Pierto,et al. Antifungal synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterobacter cloacae[J]. Phytopathology, 1993, 83:721~728.
    [34].Ordentlich-A,Migheli-Q,Chet-I. Biological control activity of three Trichoderma isolatrs against Fusarium wilts of cotton and muskmelon and lack of correlation with their lytic enzymes[J]. Phytopathology,1991,133(3):177~186.
    [35].Dal Soglio F K,Bertagnelli B L. Production of chitinolytic enzymes and endoglucanase in the soybean rhizosphere in the presence of Trichoderma harzianum and Rhizoctonia solani[J]. Biologial Control, 1998,12,111~117.
    [36].Srinivasam U,Staines H J. Chitinase and laminarinase production in liquid culture by Trichoderma spp and their role in biocontrol of wood decay fungi[J]. International Biodeterioration,1995,337~353.
    [37].孙勇.绿色木霉的拮抗机理、发酵条件、生物防治的研究[D].硕士学位论文.西北大学,2003,5.
    [38].徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用[J].植物病理学报,2002,32(2):97~102.
    [39].Barak R,Elad Y. A possible basis for specific recognition in the interaction of Trichoderma spp. and sclerotium rolfsii[J]. Phytopathology,1985,75(4):458~463.
    [40].Elad Y,Chet I. Parasitism of Trichoderma spp.on Rhizoctonia solani and Sclerotium rolfsii scanning electron microscopy and fluorescence microscopy[J]. Phytopathology,1983,73(1): 85~88.
    [41].Lorito M,Harman G E,Hayes C K,et al. Chitinolytic enzymes produced by Trichoderma harzianum:antifungal activity of purified endochitinase and chitobiosidase[J]. Phytopathology.1993,83:302~307.
    [42].Geremia R,Goldman G H,Jacobs D,et al. Molecular characterization of a proteinase-encoding gene, pbrl, related to mycoparasitism by Trichoderma harzianum[J].Molecular Microbiology, 1993,8:603~613.
    [43].Elad Y,Kapat A,Eur.J. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea[J]. Plant Pathol,1999,105:177~189.
    [44].Yedidia I,Benhamou N,Chet I. Induction of Defense Responses in Cucumber Plants (Cucumis sativus L.) by the Biocontrol Agent Trichoderma harzianum[J]. Applied and Environmental Microbiology, 1999, 65(3): 1061~1070.
    [45]. Elad Y ,De Meyer G,Bigirimana J, et al. Induced systemic resistance in Trichoderma harzianumT39 biocontrol of Botrytis cinerea[J]. Eur.J.Plant Pathol,1998,104:279~286.
    [46].Jones R W,Hancock J G. Biological control of soilborne fungal propagules[J].Ann. Rev. Phytopathology,1980,18:389-413.
    [47].Di Pietro,Lorito M,Hayes C K,et al. Biolistic transformation of Trichoderma harzianum and Gliocladium virent with plasmid and genomic DNA [J].Phytopathology,1993,83:308~313.
    [48].Baker K F. Evolving concepts of biological control of plant pathogen. Ann Rev Phytopathol,1987,25: 67~85.
    [49].THUY L B. Rhizosphere competence of two selected Trichoderma strains[J]. Acta Phytopath. Entomol. Hung.,26:327~331.
    [50].WRIGNT J M. Phytotoxic effects of some antibiotics[J]. Ann.Bot.,1951,15:493~499.
    [51].CULTER H G,COX R H,CRUMLEY,et al. 6-Pent-yll-α-pyrone from Trichoderma harzianum:its plant growth inhibitory and antimicrobial properties[J]. Agric.Biol.Chem., 1986,50: 2943~2945.
    [52].CULTER H G,JACYNO J M. Biological activity of harziano-pyridone isolated from Trichoderma harzianum[J]. Agric.Biol.Chem.,1991,50:2943~2945.
    [53].LINDSEYDL,BAKER R. Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions[J]. Phytopathology,1967,57:1262~1263.
    [54].CHANG Y C,BAKER R. Increased growth of plants in the presence of the biological control agent Thichoderma harzianum[J].Plant Dis.,1986,70:145~148.
    [55].WINDHAM M T,ELAD Y,BAKER R. A mechanism for increased plant growth induced by Trichoderma spp.[J]. Phytopathology,1986,76:518~521.
    [56].KLEIFELD O,CHET I. Trichoderma harzianum interaction with plants and effect on growth response[J]. Plant Soil,1992,144:267~272.
    [57].CALVET C,PERAJ M. Growth response of marigold(Tagetes erecta L.)to inoculation with Glomus mosseae,Trichoderma aureoviride and Pythium ultimum in a peat-perlite[J]. Plant Soil,1993,148:1~6.
    [58].Baker R. Diversity in biological control[J]. Crop Protection,1991,10:85~94.
    [59].Harman G E, et al. Combining effective strains of Trichoderma hazianum and solidmatrix priming to provide improved biological seed treatment systems[J]. Plant Dis,1989,73: 631~637.
    [60].Fravel D R. Interaction of biocontrol fungi with sublethal rates of metham sodium for control of Verticillium dahliae[J]. Crop Protection,1996,15(2):115~119.
    [61].Jones R W,Pettit R E,Taber R A. Lignite and stillage:carrier and substrate for application of fungal biocontrol agents to soil[J]. Phytopathology,1984,74: 1167~1170.
    [62].Knudsen G R. Effects of temperature,soil moisture,and wheat bran on growth of Trichoderma harianum from alginate pettets[J]. Phytopathology,1990,80:724~727.
    [63].Knudsen G R,Eschen D J,Zhang Z G. Method to enhance growth and sporulation of pelletized biocontrol fungi[J]. Appl.Environ.Microbiol,1991,57:2864~2867.
    [64].Lewis J A ,Papavizas G C. Production of chlamydospores and conidia by Trichoderma spp.in liquid and solid growth media[J]. Soil Biochm,1983,15:351~357.
    [65].Lewis J A, Papavizas G C. Chlamydospore formation by Trichoderma spp.in natrual substrates[J]. Can J.Microbiol,1984,30:1~7.
    [66].Lewis J A,Papavizas G C. Reduction of inoculum of Rhizoctonia solani in soil by germ lings of Trichoderma hamatum[J]. Soil Biochem,1987,19:195~200.
    [67].Lewis J A,Papavizas G C. A new biocontrol formulation for Trichoderma and Gliocladium[J]. Phytopathology,1989,79:1160.
    [68].Papavizas G C,et al. Effect of Gliocladium and Trichoderma on damping –off and bligh of snap bean caused by Sclerotium roifsii[J]. Plant Pathol,1989,38:277~286.
    [69].Lewis J A,Papavizas G C. Production of chlamydospores and conidia by Trichoderma spp.in liquid and solid growth media[J]. Soil Biochm,1983,15:351~357.
    [70].朱辉,娄沂春,林福呈,等.利用城市垃圾发酵生产绿色木霉孢子[J].微生物学通报,1999,26(6):387~389.
    [71].Danielson R M. Carbon and Nitrogen in Trichoderma[J]. Soil Biol Biochem,1998,5: 508~516.
    [72].赵培洁,王慧中,陈卫辉.哈茨木霉浅层液体培养最适采收时间的研究[J].植物病理学报,1995,25(3): 220.
    [73].Jackson A M.,Whipps J M.,Lynch J M. Nutritional studies of four fungi with disease biocontrol potential[J]. Enzyme Microb.Technol,1991,13:456~461.
    [74].Jackson A M.,Whipps J M.,Lynch J M. Effects of temperatrue, pH and water potential on growth of four fungi with disease biocontrol potential[J]. World J.Microbiol. Biotechnol, 1991,7: 494~501.
    [75].Gaunt D M.,Trinci A P J.,Lynch J M. Metal ion composition and physiology of Trichoderma reesei grown on achemically defined medium prepared in tow different ways[J]. TRANS. Br. Mycol. Soc,1984,83:575~583.
    [76].Papavizas G C,et al. Liquid fermentation technology for experimental production of biocontrol fungi[J]. Phytopathology,1984,74(10):1171~1175.
    [77].Anke H.,Kinn J. Production of siderophores by strains of the genus Trichoderma. Isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen[J]. Biol.Metals,1991, 4: 176~190.
    [78].Patil K C.,Matsumura F.,Boush J M. Degradation of endrin and DTT by soil microorganisms[J]. Appl.Microbiol,1970,19:879~881.
    [79].丁万隆,程惠珍,张国珍.木霉素防治西洋参立枯病研究[J].中草药,1994,25(2):91~92.
    [80].茆振川,侯桂凤.木霉菌对苹果枝条的轮纹病菌的抑制作用[J].落叶果树,1999,(3):6~7.
    [81].Danielson R M.,Davey C B. Carbon and nitrogen nutrition of Trichoderma[J]. Soil Biol.Biochem, 1973, 5:506~515.
    [82].马辉刚,李瑞明,胡水秀.木霉素防治番茄灰霉病田间药效试验[J].植物保护,1998,24(2):38~39.
    [83].丁万隆.木霉在药用植物病害防治上的应用[J].中草药.1997,28(8):505~507.
    [84].徐同.木霉在植病生防中的地位[C].第三届全国真菌地衣学会讨论会论文及论文摘要汇编.北京:中国植物学会真菌学会,1990.
    [85].产祝龙,丁克坚,檀根甲,等.哈茨木霉对水稻恶苗病菌的拮抗作作用[J].植物保护,2003,29(3):35~39.
    [86].叶建仁,杨斌,包宏,等.松针褐斑病菌毒素的层析分离及紫外吸收特性研究[J].南京林业大学学报(自然科学版),2004,2:43~47
    [87]. Chisalbett E L. Antifungal metabolite from Trichoderma harzianum [J]. J. Natural Products, 1993, 56(10 ): 1769~1804.
    [88]. Lumsden R D,Ridout C J,Vendemia M E et al. Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens[J]. Can J Microbiol,1992,38:1274~1280.
    [89].乔宏萍,宗兆锋.用重寄生菌防治植物病害[J].中国生物防治, 2002,18(4):176~179.
    [90].郑平,冯孝善.废物生物处理理论和技术[M].杭州:浙江教育出版社,1995.
    [91].费成煜,唐培瑜.快速生产白僵菌的研究[J].林业科学研究,1994,7(6):701~703.
    [92].周德庆.微生物学实验手册[M].上海:上海科技出版社,1986,78~81.
    [93].蔡止荷,吴清平,许红立,等.木霉和粘帚霉的生物防治研究进展[J].微生物学通报,1998,25(5):284~286.
    [94].王进强,吴刚,许文耀.植物病害生防制剂的研究[J].福建农林大学学报(自然科学版),2004,33(4): 448-452.
    [95].黄有凯.哈茨木霉促进植物生长的相关研究[D].硕士学位论文.安徽农业大学,2003,5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700