PEO介质阻挡层形成、击穿放电与膜层生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可开发能源和矿产资源日益短缺的问题,迫使人们必须把提高材料和能源利用率放在研究的首要位置。等离子体电解氧化(PEO)技术为轻金属材料表面改性提供了新思路,利用该技术制得的膜层兼具阳极氧化膜及陶瓷膜的性能,拓宽了轻金属材料的使用领域。目前国内外对于PEO膜层性能做了大量的研究工作,而PEO技术的重要特征之一是其击穿放电现象,这是PEO的基础问题。鉴于此,本论文以AZ31镁合金为工作电极,围绕介质阻挡层特性对击穿放电的影响、电解液离子性质对等离子体场放电火花特性的影响、PEO膜层击穿放电机理和阴阳离子对PEO过程贡献等方面进行研究。
     (1)以第二三周期元素组成的含氧酸盐碱性电解液为对象:研究电解液中阴离子性质对介质阻挡层组分性质的影响;对介质阻挡层的致密性或绝缘性做了定性评价;通过放电前后的电流密度来验证介质阻挡层的质量好坏,研究生成的介质阻挡层的质量对击穿放电及后续膜层成膜能力的影响。(2)选取氟锆酸盐系列酸性电解液为研究对象,研究电解液阴离子的稳定性对放电特性及膜层性能的影响。
     研究表明:(1)阴离子通过自身形成氧化物成膜或者与基体离子结合形成化合物成膜而形成介质阻挡层。介质阻挡层组分性质越稳定、介质阻挡层越致密,则介质阻挡层质量越好,在稳定放电阶段平衡电流越小。(2)介质阻挡层的形成以及膜层击穿放电之后电解液中阴离子的后续成膜是PEO过程顺利进行的两个必要条件。(3)膜层组分溶度积<10-10时,生成的介质阻挡层较稳定且质量好,PEO过程放电特性较好,放电稳定,放电平衡电流密度约为15-40 mA/cm2。膜层组分溶度积>10-10时,生成的介质阻挡层质量较差,放电不稳定,放电平衡电流密度约为300-700 mA/cm2。膜层组分性质可溶时,不能放电。(4)添加剂可以改善氟锆酸盐系列电解液阴离子的稳定性,继而改善放电性能及膜层各方面性能,膜层耐腐蚀性能相比于基体而言提高了3-4个数量级。
     利用光发射光谱对上述电解液在PEO过程的不同阶段进行了研究:(1)分析在放电之前电极表面的能量状态及物种分布。研究放电之后等离子体场放电火花的特性(2)分析阴阳离子对等离子体成分及PEO过程的贡献。(3)对等离子体场内活性物种的来源、能级跃迁过程及归属进行分析。(4)探讨了PEO过程击穿放电、生长过程的理论模型及等离子体场内传热及物种传递的理论模型。(5)在特定Na2SiO3电解液中对PEO生长过程进行研究,验证PEO膜层生长模型及物质传递过程模型。
     研究表明:(1)光谱在PEO过程不同阶段呈现不同特性,阳极氧化阶段光谱为钝峰,由热致辐射引起发光;过渡阶段气体鞘层被离子化而发光,随后气体鞘层被击穿,接着发生介质阻挡层的击穿;在放电阶段,等离子体场内放电火花活性物种主要由阳离子和来自H20分解的气体及其元素组成。在放电阶段,电解液中离子的移动,主要是由于等离子体场作用产生的离子加速和由于气泡破裂所产生的离子气泡的吸附和迁移。(2)阴离子对等离子体场放电火花活性物种组成无影响,但可以形成氧化物而影响膜层组分;阳离子可为等离子体场提供高温能量环境。(3)活性物种被激发顺序只与等离子体场能量状态有关,与浓度无关。单个活性物种浓度在PEO过程随时间的变化与电极表面的能量状态有关。等离子体场内各活性物种经历了激发、解离和离子化的过程。等离子体场内电子温度可达103-104K。(4)在Na2SiO3电解液中的膜层生长特性较好地验证了PEO膜层生长过程模型及物质传递过程模型。
The shortage of energy and mineral resources force people to improve the materials and energy's using efficiency. Plasma electrolytic oxidation (PEO) technology provides a new platform for surface modification of light-metallic materials. The films formed by PEO combine the performance of both anodic oxide films and ceramic films, which broadens the application field of light-metallic materials. Many researches related to the PEO films' properties have been down at home and abroad. The breakdown discharge phenomenon, which is the basic problem of PEO, is one of the most important characteristics of the PEO technology. Based on this, the AZ31 magnesium alloy was used as the working electrode. The influence of the dielectric barrier layer's (DBL) characteristics on the breakdown discharge, the influence of the electrolytes' ion nature on the characteristics of the micro-discharge in the plasma field, the mechanism of the breakdown discharge and the contribution of cations and anions to the PEO process were investigated.
     (1) the oxygen-containing alkaline electrolytes composed by the second and third cycle elements were the objects of the study:the influence of anion nature on the properties of the DBL's composition was investigated. The compactness and insulation of the DBL were evaluated qualitatively. The current densitis before and after the discharge were used to verify the quality of the DBL. The influence of the quality of the DBL on the breakdown discharge and follow-up the film forming ability was studied. (2) fluorozirconate series acidic electrolytes were selected as the research objects; the influence of the electrolyte anions' stability on the discharge characteristics and the films'performance were investigated.
     It was found that:(1) the anions formed the DBL through their own by forming the oxide or combining with the substrate ions to form the compounds. The more stable the DBL's composition, the more compact the DBL, the better the quality of the DBL, thus the stable equilibrium current density could be got at the stable discharge stage. (2) DBL's formation and the anions's film-forming after breakdown discharge were two necessary conditions for the PEO process been carried out smoothly. (3) if the solubility product of the film composition is smaller than 10-10, the formed DBL exhibits good stability and quality, the discharge characteristics are better with stable micro-discharges and the equilibrium current density is about 15-40 mA/cm2; if the solubility product of the film composition is larger than 10-10, the formed DBL has a poor quality with unstable micro-discharges, the equilibrium current density is about 300-700 mA/cm2; if the film composition is soluble, the discharge can not happen. (4) the additives could improve the stability of the anions in the fluorozirconate series electrolytes, followed by improving the discharge quality and the performance of the films. The corrosion resistance of the films increased 3-4 orders of magnitude compared to the substrate.
     The optical emission spectroscopy(OES) was used to investigate the different stage characteristics during the PEO process:(1) the energy status on the electrode surface before discharge and the reasons for the formation of species'distribution were studied. The characteristics of micro-discharge in the plasma filed were also analyzed. (2) the contribution of cations and anions to the plasma's composition and the PEO process were analyzed. (3) the source, energy level transition process and attribution of active species in the plasma field were investigated. (4) the breakdown discharge and growth mechanism during the PEO process, the heat and species'transfer mechanism in the plasma field were discussed. (5) the PEO growth process in the particular Na2SiO3 electrolyte was studied to verify the PEO film growth model and the species transfer process model.
     The results indicated that:(1) the spectra showed different characteristics at different PEO stages. At the anodic oxidation stage, the spectra has blunt peak caused by heat radiation which resulted in the luminescence; at the transition stage, the gas envelop was ionized and emitting light, followed by the breakdown of the gas envelop and DBL; at the discharge stage, the plasma active species were mainly composed of metal cations, the gases and its elements produced by water decomposition. The transfer of the electrolyte ions was mainly due to the ion acceleration, the adsorption and migration of ion bubbles, which resulted from the plasma field and the rupture of bubbles, respectively. (2) the anions in the electrolyte had little influence on the composition of the plasma active species, but they could affect the film composition by forming oxide; the cations could provide high energy environment for the plasma field. (3) the excited order of the plasma active species depended on the energy that the orbit transition of the species needed. It was not related to the ion's concentration. The concentration variation of each special active species with time during the PEO process was related to the energy status on the electrode surface. The active species in the plasma field were found to undergo dissociation, ionization and excitation. The electron temperature of the plasma field was between 6×103 and 3×104 K. (4) the PEO growth process in the Na2SiO3 electrolyte verify the PEO film growth model and the species transfer process model well.
引文
[1]Mordike B.L., Ebert T. Magnesium properties-applications-potential [J]. Materials Science and Engineering,2001, A302:37-45
    [2]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004,39-57
    [3]Sorin I., Pierre S., Dominique G., et al. Magnesium alloys (WE43 and ZE41) characterization for laser applications [J]. Applied Surface Science,2004,233(1-4): 382-391
    [4]Sharma A.K., Uma Tani R., Giri K. Studies on anodization of magnesium alloy for thermal control application [J]. Metal Finishing,1997,95(3):43-51
    [5]Blawert C., Heitmann V., Dietzel W., et al. Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys [J]. Surface and Coatings Technology,2007,201(21):8709-8714
    [6]苏鸿英.镁合金在汽车前端应用进展[J].中国有色金属,2009,(3):74
    [7]Liang J., Wang P., Hu L.T., et al. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition [J]. Materials Science and Engineering A,2007, (454-455):164-169
    [8]Liang J., Hu L.T., Hao J.C. Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation [J]. Electrochimica Acta,2007,52(14):4836-4840
    [9]Witte F., Kaese V., Haferkamp H., et al. In vivo corrosion of four magnesium alloys and the associated bone response [J]. Biomaterials,2005,26(17):3557-3563
    [10]Wen, C.E., Yamada Y, Shimojima K., et al. Compressibility of porous magnesium foam:dependency on porosity and pore size [J]. Material Letters,2004,58(3-4): 357-360
    [11]Cai Z.P., Lu D.S., Li W.S., et al. Study on anodic oxidation of magnesium in 6M KOH solution by alternative current impedance [J]. International Journal of Hydrogen Energy,2009,34(1):467-472
    [12]Wang X.M., Zhu L.Q. Li W.P., et al. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy [J]. Applied Surface Science,2009,255(11):5721-5728
    [13]Zhang Z. P., Yu G, Ouyang Y. J., et al. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D [J]. Applied Surface Science,2009,255(17):7773-7779
    [14]Zhu L. Q., Li W. P., Shan D. D. Effects of low temperature thermal treatment on zinc and/or tin plated coatings of AZ91D magnesium alloy [J]. Surface and Coatings Technology,2006,201(6):2768-2775
    [15]Pierlot C., Pawlowshi L., Bigan M., et al. Design of experiments in thermal spraying:A review [J]. Surface and Coatings Technology,2008, 202(18): 4483-4490
    [16]Danlos Y., Costil S., Liao H., et al. Combining effects of ablation laser and laser preheating on metallic substrates before thermal spraying [J]. Surface and Coatings Technology,2008,202(18):4531-4537
    [17]Masaki M., Hashimoto H., Masahiko W., et al. Measurements of complex materials constants of piezoelectric ceramics:Radial vibrational mode of a ceramic disk [J]. Journal of European Ceramic Society,2008,28(1):133-138
    [18]Lupei V. Ceramic laser materials and the prospect for high power lasers [J]. Optical Materials,2009,31(5):701-706
    [19]Uhlmann E., Mihotovic V., Coenen A. Modelling the abrasive flow machining process on advanced ceramic materials [J]. Journal of Materials Processing Technology,2009,209(20):6062-6066
    [20]Ergul S., Ferrante F., Pisciella P., et al. Characterization of basaltic tuffs and their applications for the production of ceramic and glass-ceramic materials [J]. Ceramics International,2009,35(7):2789-2795
    [21]Marsavina L., Sadowski T. Kinked crack at a bi-material ceramic interface-numerical determination of fracture parameters [J]. Computational Materials Science,2009,44(3):941-950
    [22]Curran J. A., Kalkanc H., Magurova Y., et al. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications [J]. Surface and Coatings Technology, 2007,201(21):8683-8687
    [23]王志刚,朱瑞富,吕宇鹏,等.钛、镁、铝合金的表面微弧氧化技术[J].陶瓷,2007,1:17-21
    [24]Cakmak E., Tekin K. C., Malayoglu U., et al. The effect of substrate composition on the electrochemical and mechanical properties of PEO coatings on Mg alloys [J]. Surface and Coatings Technology,2010:204(8):1305-1313
    [25]Luo H. H., Cai Q. Z., Wei B. K., et al. Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy [J]. Journal of Alloys and Compounds,2008,464(1-2):537-543
    [26]Matykina E., Arrabal R., Skeldon P., et al. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium [J]. Acta Biomaterialia,2009,5(4):1356-1366
    [27]Zhang W., Du K. Q., Yan C. W., et al. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation [J]. Applied Surface Science,2008,254(16):5216-5223
    [28]Dunleavy C. S., Golosnoy I. O., Curran J. A. Characterisation of discharge events during plasma electrolytic oxidation [J]. Surface and Coatings Technology,2009, 203(22):3410-3419.
    [29]Umehara H., Takaya M., Terauchi S. Chrome-free surface treatments for magnesium alloy [J]. Surface and Coatings Technology,2003, (169-170):666-669
    [30]李颂.镁合金微弧氧化膜的制备-表征及其性能研究[D].吉林,吉林大学,2007
    [31]Wagner L. Mechanical surface treatments on titanium, aluminum and magnesium alloys [J]. Materials Science and Engineering,1999,263(2):210-216
    [32]Samant A. N., Du B. S., Paital S. R., et al. Pulsed laser surface treatment of magnesium alloy:Correlation between thermal model and experimental observations [J]. Journal of Materials Processing Technology,2009,209(11): 5060-5067
    [33]Gray J. E., Luan B. Protective coatings on magnesium and its alloys-a critical review [J]. Journal of Alloys and Compounds,2002,336(1-2):88-113
    [34]Jin H. N., Yang X. J., Wang M. Chemical conversion coating on AZ31B magnesium alloy and its corrosion tendency [J]. Acta Metallurgica Sinica,2009, 22(1):65-70
    [35]Pan F. S., Yang X., Zhang D. F. Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy [J]. Applied Surface Science,2009,255(20):8363-8371
    [36]Yang K. H., Ger M. D., Hwu W. H., et al. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy [J]. Materials Chemistry and Physics,2007,101(2-3):480-485
    [37]Cheng Y. L., Wu H. L., Chen Z. H., et al. Corrosion properties of AZ31 magnesium alloy and protective effects of chemical conversion layers and anodized coatings [J]. Transactions of Nonferrous Metals Society of China,2007,17(3):502-508
    [38]Elsentriecy H. H., Azumi K., Konno H. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91D magnesium alloy [J]. Electrochimica Acta, 2008,53(12):4267-4275
    [39]Ng W. F., Wong M. H., Cheng F. T. Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks'solution [J]. Surface and Coatings Technology,2010,204(11):1823-1830,
    [40]Chen X. M., Li G. Y., Lian J. S., et al. An organic chromium-free conversion coating on AZ91D magnesium alloy [J]. Applied Surface Science,2008,255(5): 2322-2328
    [41]Zhong X., Li Q., Hu J., et al. A novel approach to heal the sol-gel coatings system on magnesium alloy for corrosion protection [J]. Electrochimica Acta,2010,55(7): 2424-2429
    [42]Shi H. W., Liu F. C., Han E. H. Corrosion protection of AZ91D magnesium alloy with sol-gel coating containing 2-methyl piperidine [J]. Progress in Organic Coatings,2009,66(3):183-191
    [43]Hu J. Y., Li Q., Zhong X. K., et al. Composite anticorrosion coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol-gel coatings [J]. Progress in Organic Coatings,2009,66(3):199-205
    [44]Khramov A. N., Balbyshev V. N., Kasten L. S., et al. Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys [J]. Thin Solid Films,2006,514(1-2):174-181
    [45]Arrabal R., Matykina E., Skeldon P., et al. Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite [J]. Applied Surface Science,2009,255(9):5071-5078
    [46]Dipartimento di innobazione meccanica e gestionale, Dipartimento di fisica. Cerium-based chemical conversion coating on AZ63 magnesium alloy [J]. Surface and Coatings Technology,2003,172(2-3):227-232
    [47]Huo H. W., Li Y., Wang F. H. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer [J]. Corrosion Science, 2004,46(6):1467-1477
    [48]Yekehtaz M., Baba K., Hatada R. Corrosion resistance of magnesium treated by hydrocarbon plasma immersion ion implantation [J]. Nuclear Instruments and Methods in Physics Research B,2009,267(8-9):1666-1669
    [49]Tian X. B., Wei C. B., Yang S. Q. Water plasma implantation/oxidation of magnesium alloys for corrosion resistacne [J]. Nuclear Instruments and Methods in Physics Research B,2006(1-2),242:300-302
    [50]Wan G. J., Maitz M. F., Sun H. Corrosion properties of oxygen plasma immersion ion implantation treated magnesium [J]. Surface and Coatings Technology,2007, 201(19-20):8267-8272
    [51]Christoglou C., Voudouris N., Angelopoulos G. N. Deposition of aluminum on magnesium by a CVD process [J]. Surface and Coatings Technology,2004, 184(2-3):149-155
    [52]Yamauchi N., Demizu K., Ueda N. Effect of peening as pretreatment for DLC coatings on magnesium alloy [J]. Thin Solid Films,2006, (506-507):378-383
    [53]刘耀辉,李颂.微弧氧化技术国内外研究进展[J].材料保护,2005,38(6):36-40
    [54]Mollah M.Y.A., Schennach R., Patscheider J., et al. Plasma chemistry as a tool for green chemistry, environment analysis and waste management [J]. Journal of Hazardous Materials,2000,79(3):301-320
    [55]Tendero C., Tixier C., Tristant P. Atmospheric pressure plasmas:A review [J]. Spectrochimica Acta Part B,2006,61(1):2-30
    [56]Fortov V. E., Ivlev A.V., Khrapak S. A. Complex (dusty) plasma:Current status, open issues, perspectives [J]. Physics Reports,2005,421(1-2):1-103
    [57]Gupta P., Tenhundfeld G, Daigle E.O., et al. Electrolytic plasma technology: Science and engineering-An overview [J]. Surface and Coatings Technology,2007, 201(21):8746-8760
    [58]Ryu T. G., Sohn H. Y., Hwang K. S. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor [J]. International Journal of Refractory Metals and Hard Materials,2009,27(1):149-154
    [59]杨宽辉,王保伟,许根慧.介质阻挡放电等离子体特性及其在化工中的应用[J].化工学报,2007,28(7):1609-1618
    [60]陈惠敏.等离子体浸没离子注入(PⅢ)在材料表面改性中的应用及发展[J].表面技术,2008,79-81
    [61]Szymanowski H., Kaczmarek M., Gazicki-Lipman M., et al. New biodegradable material based on RF plasma modified starch [J]. Surface and Coatings Technology, 2005,200(1-4):539-543
    [62]Lota G., Tyczkowski J., Kapica R., et al. Carbon materials modified by plasma treatment as electrodes for supercapacitors [J]. Journal of Power Sources,2009, doi: 10.1016/j.jpowsour.2009.12.019
    [63]刘鹏,丁建东.等离子体表面改性技术在医用高分子材料领域的应用[J].中国医疗器械信息,39-42
    [64]Liang R. Q., Su X. B., Wu Q. C., et al. Study of the surface-modified Teflon/ceramic material treated by microwave plasma with XPS analysis [J]. Surface and Coatings Technology,2000,131(1-3):294-299
    [65]Wu Y., Li J., Wang N. H., et al. Industrial experiments on desulfurization of flue gases by pulsed corona induced plasma chemical process [J]. Journal of Electrostatics,2003,57(3-4):233-241
    [66]Mecuson F., Czerwiec T., Belmonte T., et al. Diagnostics of an electrolytic microarc process for aluminium alloy oxidation [J]. Surface and Coatings Technology,2005,200(1-4):804-808
    [67]Kawai T., Maekawa Y. K., Kusabiraki M. Plasma treatment of ITO surfaces to improve luminescence characteristics of organic light-emitting devices with dopants [J]. Surface Science,2007,601(22):5276-5279
    [68]Djordjevic I., Britcher L.G., Kumar S. Morphological and surface compositional changes in poly (lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment [J]. Applied Surface Science,2008, 254(7):1929-1935
    [69]Boinet M., Verdier S., Maximovitch S., et al. Plasma electrolytic oxidation of AM50 magnesium alloy:Monitoring by acoustic emission technique. Electrochemical properties of coatings [J]. Surface and Coatings Technology,2005, 199(2-3):141-149
    [70]严志云,刘安华,贾德民.低温等离子体技术在聚合物材料表面改性中的应用[J].高技术通讯,2004,4:107-110
    [71]Paulmier T., Bell J. M., Fredericks P. M. Development of a novel cathodic plasma/electrolytic deposition technique part 1:Production of titanium dioxide coatings [J]. Surface and Coatings Technology,2007,201(21):8761-8770
    [72]Aliofkhazraei M., Morillo C., Miresmaeili R., et al. Carburizing of low-melting-point metals by pulsed nanocrystalline plasma electrolytic carburizing [J]. Surface and Coatings Technology,2008,202(22-23):5493-5496
    [73]李杰,沈德久,王玉林,等.液相等离子体电解渗透技术[J].金属热处理,2005,30(9):63-67
    [74]Raveh A., Rubinshtein A., Weiss M., et al. Ta-C micro-composite material formed by heat treatment of plasma carburized layer [J]. Thin Solid Films,2004,466(1-2): 151-157
    [75]Mimura K., Komukai T., Isshiki M. Purification of chromium by hydrogen plasma-arc zone melting [J]. Materials Science and Engineering:A,2005,403(1-2): 11-16
    [76]Liu L. M., Hao X. F. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy [J]. Optics and Lasers in Engineering,2009,47(11):1177-1182
    [77]Ono S., Teii S., Suzuki Y., et al. Effect of gas composition on metal surface cleaning using atmospheric pressure microwave plasma [J]. Thin Solid Films,2009, 518(3),981-986
    [78]Kolari K. Deep plasma etching of glass with a silicon shadow mask [J]. Sensors and Actuators A:Physical,2008,141(2):677-684
    [79]Alakoski E., Tiainen V. M., Kiuru M. Effect of continuous in situ cathode polishing on plasma yield and energy in filtered pulsed arc discharge system [J]. Diamond and Related Materials,2006,15(10):1677-1681
    [80]Anders A. Energetic deposition using filtered cathodic arc plasma [J]. Vacuum, 2002,67(3-4):673-686
    [81]Li X.M., Han Y, Li Y S. Synthesis of nanocrystalline Ti(CxN1-x) thick films on titanium by plasma electrolytic carbonitriding [J]. Surface and Coatings Technology,2007,201:5326-5329
    [82]Yerokhin A.L., Nie X., Leyland A. Plasma electrolysis for surface engineering [J]. Surface and Coatings Technology,1999,122(2-3):73-93
    [83]Parfenov E.V., Yerokhin A., Matthews A. Small signal frequency response studies for plasma electrolytic oxidation [J]. Surface and Coatings Technology,2009, 203(19):2896-2904
    [84]Yao Z. P., Li L. L., Jiang Z. H. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation [J]. Applied Surface Science, 2009,255(13-14):6724-6728
    [85]Han Y., Sun J. F., Huang X. Formation mechanism of HA-based coatings by micro-arc oxidation [J]. Electrochemistry Communications,2008,10(4):510-513
    [86]Li J. F., Wan L., Feng J. Y. Micro arc oxidation of S-containing TiO2 films by sulfur bearing electrolytes [J]. Journal of Materials Processing Technology,2009, 209(2),762-766
    [87]Wu X.H., Qin W., Guo Y, et al. Self-lubricative coating grown by micro-plasma oxidation on aluminum alloys in the solution of aluminate-graphite [J]. Applied Surface Science,2008,254(20):6395-6399
    [88]Zhang C. H., Lai H. L., Fang T., et al. Generation of DC corona discharge in supercritical CO2 [J].电工技术学报,2007,22:37-40
    [89]Yan Z. C., Li C., Wang H. L. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions [J]. International Journal of Hydrogen of Energy, 2009,34(1):48-55
    [90]Matykina E., Berkani A., Skeldon P., et al. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium [J]. Electrochimica Acta,2007, 53(4):1987-1994
    [91]Alekseyev N.I., Dyuzhev G.A. Fullerene formation in an arc discharge [J]. Carbon, 41(7):1343-1348
    [92]Paulmier T., Bell J.M., Fredericks P.M. Development of a novel plasma/electrolytic deposition technique Part 2:Physico-chemical analysis of the plasma discharge [J]. Surface and Coatings Technology,2007,201(21):8771-8781
    [93]Nie X., Meletis E. I., Jiang J. C., et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis [J]. Surface and Coatings Technology,2002,149(2-3):245-251
    [94]Wuthrich R., Mandin P. Electrochemical discharges-Discovery and early applications [J]. Electrochimica Acta,2009,54(16):4031-4035
    [95]王德云,东青,陈传忠,等.微弧氧化技术的研究进展[J].硅酸盐学报,2005,33(9):1133-1138
    [96]Jin F. Y., Wang K., Zhu M., et al. Infrared reflection by alumina films produced on aluminum alloy by plasma electrolytic oxidation [J]. Materials Chemistry and Physics,2009,114(1):398-401
    [97]Luo H. H., Cai Q. Z., He J., et al. Preparation and properties of composite ceramic coating containing Al2O3-ZrO2-Y2O3 on AZ91D magnesium alloy by plasma electrolytic oxidation [J]. Current Applied Physics,2009,9(6):1341-1346
    [98]Shi X. L., Wang Q. L., Wang F. S., et al. Effects of electrolytic concentration on properties of micro-arc film on Ti6A14V alloy [J]. Mining Science and Technology, 2009,19(2),220-224
    [99]Yan Y. Y., Han Y., Huang J. J. Formation of Al2O3-ZrO2 composite coating on zirconium by micro-arc oxidation [J]. Scripta Materialia,2008,59(2):203-206
    [100]Kurze P., Krysmann W., Schreckenbach J., et al. Coloured ANOF layers on aluminium [J]. Crystal Research and Technology,1987,22:53-58
    [101]Vijh A. K. Sparking voltages and side reactions during anodization of valve metals in terms of electron tunneling [J]. Corrosion Science,1971,11:411-417
    [102]Albella J. M., Montero I., Martinez-Duart J. M. Electron injection and avalanche during the anodic oxidation of tantalum [J]. Journal of the Electrochemical Society, 1984,19:93-99
    [103]Markov I. Saturation nucleus density in the electrodeposition of metals onto inert electrodes I. Theory [J]. Thin Solid Films,1976,35:11-20
    [104]Albella J.M., Montero I., Martinez-Duart J.M. A theory of avalanche breakdown during anodic oxidation [J]. Electrochimica Acta,1987,32(2):255-258
    [105]李夕金,程国安,薛文斌,等.Ti-3Al基合金微弧氧化膜的制备和性质[J].航空材料学院,2007,27:1-6
    [106]王卫锋,蒋百灵,时惠英.镁合金微弧氧化深色陶瓷膜制备及耐蚀性研究[J].腐蚀科学与防护技术,2007,27(1):51-53
    [107]Shang W., Chen B. Z., Shi X. C., et al. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy using combined micro-arc oxidation and sol-gel technique [J]. Journal of Alloys and Compounds,2009, 474(1-2):541-545
    [108]王丽,陈砺,严宗诚,等.等离子体电解氧化氧化锆陶瓷膜的制备及性能评价[J].硅酸盐学报,2009,37(5):783-787
    [109]Liang J., Srinivasan B. P., Blawert C., et al. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation [J]. Corrosion Science,2009,51(10):2483-2492
    [110]Gu W. C., Shen D. J., Wang Y. L., et al. Deposition of duplex Al2O3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation [J]. Applied Surface Science,2006,252(8):2927-2932.
    [111]Desai B. D., Lobo F. S., Kamat-Dalal V. N. Performance and discharge characteristics of doped (beta) MnO2 in H2SO4 electrolyte [J]. Journal of Power Sources,1994,51(3):351-365.
    [112]Malyshev V. N., Duane E. B. Anodized coatings for magnesium alloys [J]. Metal Finishing,1994,3:39-44
    [113]Han I., Choi J. H., Zhao B. H., et al. Micro-arc oxidation in various concentration of KOH and structural change by different cut off potential [J]. Current Applied Physics,2007,7S1:e23-e27
    [114]Moon S., Jeong Y. Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions [J]. Corrosion Science,2009, 51(7):1506-1512
    [115]Nakajima M., Miura Y., Fushimi K. Spark anodizing behavior of titanium and its alloys in alkaline aluminate electrolyte [J]. Corrosion Science,2009,51(7): 1534-1539
    [116]Xue W. B., Wang C., Chen R. Y., et al. Structure and properties characterization of ceramic coatings produced on Ti-6A1-4V alloy by microarc oxidation in aluminate solution [J]. Materials Letters,2002,52(6):435-441
    [117]Duan H. P., Yan C. W., Wang F. H. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solutions [J]. Electrochimica Acta,2007,52(15):5002-5009
    [118]Gu W. C., Lv G. H., Chen H., et al. PEO protective coatings on inner surface of tubes [J]. Surface and Coatings Technology,2007,201(15):6619-6622
    [119]Curran J. A., Clyne T.W. Porosity in plasma electrolytic oxide coatings [J]. Acta Materialia,2006,54(7):1985-1993
    [120]Lv G. H., Gu W. C., Huan C. Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte [J]. Applied Surface Science,2006,253(5),2947-2952
    [121]徐方涛,夏原,李光,等.铸态Al-Si合金等离子体电解氧化过程放电特征研究[J].材料热处理学报,2009,30(3):150-153.
    [122]周海晖,旷亚非,侯朝辉,等.LF4合金在磷酸盐-氢氧化钠溶液中的微弧氧化[J].湖南大学学报,2001,28:67-71
    [123]Parfenov E. V., Yerokhin A. L., Matthews A. Impedance spectroscopy characterization of PEO process and coatings on aluminium [J]. Thin Solid Films, 2007,516(2-4):428-432
    [124]Liang J., Srinivasan B. P., Blawert C. Electrochemical corrosion behavior of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes [J]. Electrochimica Acta,2009,54(14): 3842-3850
    [125]贺子凯,唐培松.溶液体系对微弧氧化陶瓷膜的影响[J].材料保护,2001,34(11):12-13
    [126]戴磊,罗胜联,周海晖,等.铝在铝酸盐复合电解液中的阳极火花氧化[J].电镀与精饰,2005,27(5):8-11
    [127]彭家志,陈砺,严宗诚,等.等离子体电解氧化电解液配方研究进展[J].中国陶瓷,2009,45(10):12-15
    [128]Hwang D. Y., Kim Y M., Park D. Y, et al. Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation [J]. Electrochimica Acta,2009,54(23),5479-5485
    [129]Zheng H. Y., Wang Y K., Li B. S. The effects of Na2WO4 concentration on the properties of microarc oxidation coatings on aluminum alloy [J]. Materials Letters, 2005,59(2-3):139-142
    [130]Ding J., Liang J., Hu L.T. Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte [J]. Transactions of Nonferrous Metals Society of China,2007,17(2): 244-249
    [131]Barchiche C. E., Rocca E., Hazan J. Corrosion behavior of Sn-containing oxide layer on AZ91D alloy formed by plasma electrolytic oxidation [J]. Surface and Coatings Technology,2008,202(17):4145-4152
    [132]姜兆华,李延平,李文旭,等.钛表面原位生长钛酸锶钡陶瓷膜[J].稀有金属材料与工程,2003,32(10):859-861
    [133]Guo H. F., An M. Z., Xu S., et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy [J]. Materials Letters,2006,60(12):1538-1541
    [134]Shi L.L., Xu Y.J., Kang L. Effect of additives on structure and corrosion resistance of ceramic coatings on Mg-Li alloy by micro-arc oxidation [J]. Current Applied Physics,2010,10(3):719-723
    [135]Yao Z. P., Jiang Z. H., Wu X. H., et al. Effects of ceramic coating by micro-plasma oxidation on the corrosion resistance of Ti-6A1-4V alloy [J]. Surface and Coatings Technology,2005,200(7):2445-2450
    [136]Curran J. A., Clyne T. W. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium [J]. Surface and Coatings Technology, 2005,199(2-3):177-183
    [137]Curran J. A., Clyne T. W. Thermal-physical properties of plasma electrolytic oxide coatings on aluminium [J]. Surface and Coatings Technology,2005,199(2-3): 168-176
    [138]徐勇.国内铝和铝合金微弧氧化技术研究动态[J].腐蚀与防护,2004,24(4):153-156
    [139]马臣,王颖慧,曲立杰,等.钛合金微弧氧化技术的研究现状及展望[J].中国陶瓷工业,2007,14(1):46-49
    [140]刘耀辉,李颂.微弧氧化技术国内外研究进展[J].材料保护,2005,38(6):36-41
    [141]Nie X., Meletis E. I., Jiang J. C., et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis [J]. Surface and Coatings Technology,2002,149(2-3):245-251
    [142]Yerokhin A. L., Voevodin A. A., Lyubimov, et al. Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys [J]. Surface and Coatings Technology,1998,110(3):140-146
    [143]Nie X., Leyland A., Song H. W., et al. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys [J]. Surface and Coatings Technology,1999,116:1055-1060
    [144]Nie X., Wang L., Konca E., et al. Tribological behaviour of oxide/graphite composite coatings deposited using electrolytic plasma process [J]. Surface and Coatings Technology,2004,188-189:207-213
    [145]Nie X., Leyland A., Matthews A. Low temperature deposition of Cr(N)/TiO2 coatings using a duplex process of unbalanced magnetron sputtering and micro-arc oxidation [J]. Surface and Coatings Technology,2000,133-134:331-337
    [146]Vigh A. K. Sparking voltages and side reactions during anodization of valve metals in terms of electron tunneling [J]. Corrosion Science,1971,11:411-417
    [147]Van T. B., Brown S. D., Wirtz G. P. Mechanism of anode spark deposition [J]. American Ceramic Society Bulletin,1977,56(6):563-566
    [148]Ikonopisov S. Theory of electrical breakdown during formation of barrier anodic films [J]. Electrochimica Acta,1977,22:1077-1082
    [149]Albella J. M., Montern I., Martinez-Duart J. M. Electron injection and avalanche during the anodic oxidation of tantalum [J]. Journal of Electrochemical Society, 1984,131:1101-1104
    [150]Dittrich K. H., Krysmann W., Kurze P. Structure and properties of ANOF layers [J]. Crystal Test Technology,1984,19:93-99
    [151]Nikolaev A. V., Rykalin N. N., Borzhov A. P. Energy balance of a high current hollow tungsten cathode [J]. Fizikai Khimiya Obrabotki Materialov,1977,2:32-41
    [152]Zhao W. S., Xin T. Z., Liu J. C. Research on properties and formation mechanism of ceramic coatings prepared by micro-arc oxidation on 2024 aluminum alloy surface [J]. Key Engineering Materials,2006,315:259-263
    [153]Kasalica B., Petkovic M., Belca I., et al. Electronic transitions during plasma electrolytic oxidation of aluminum [J]. Surface and Coatings Technology,2009, 203(20-21):3000-3004
    [154]王卫锋,蒋百灵,时惠英.镁合金微弧氧化深色陶瓷膜制备及耐蚀性研究[J].腐蚀科学与防护技术,2007,27(1):51-53
    [155]沈德久,王玉林,廖波,等.铝合金活塞环槽微弧氧化改性[J].汽车工艺与技 术,2002,12:7-9
    [156]李均明,蒋百灵,靳文萍,等.铝合金发动机缸体微弧氧化层的特性[J].金属热处理,2005,30:64-65
    [157]蒋百灵,张先锋,朱静.铝镁合金微弧氧化技术研究现状和产业化前景[J].金属热处理,2004,29:23-28
    [158]辛铁柱.铝合金表面微弧氧化陶瓷膜生成及机理研究[D].黑龙江,哈尔滨工业大学,2006.
    [159]韩荣第,袭建军.回归设计铝合金7075微弧氧化形膜控制及膜特性[J].南京航空航天大学学报,2005,37:125-129
    [160]李尚义,赵克定,常同立,等.铝合金微弧氧化技术在仿真台用连续回转电液伺服马达中的应用研究[J].液压与气动,2004,12:43-45
    [161]Nie X., Leyland A., Matthews A. Deposition of layered bio-ceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis [J]. Surface and Coatings Technology, 2000,125:407-414
    [162]Han I., Choi J. H., Zhao B. H., et al. Changes in anodized titanium surface morphology by virtue of different unipolar DC pulse waveform [J]. Surface and Coatings Technology,2007,201(9-11):5533-5536
    [163]Wei D. Q., Zhou Y., Jia D. C., et al. Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment [J]. Acta Biomaterialia,2007,3(5):817-827
    [164]Li X. J., Cheng G. A., Xue W. B., et al. Wear and corrosion resistant coatings formed by microarc oxidation on TiAl alloy [J]. Materials Chemistry and Physics, 2008,107(1):148-152
    [165]Wei D. Q., Zhou Y., Jia D. C., et al. Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized(MAO) titania coatings containing Ca and P ions [J]. Surface and Coatings Technology,2007,201(21):8723-8729
    [166]Xu Y. J., Yao Z. P., Jia F. Z., et al. Preparation of PEO ceramic coating on Ti alloy and its high temperature oxidation resistance [J]. Current Applied Physics,2010, 10(2):698-702.
    [167]Li J. M., Cai H., Jiang B. L. Growth mechanism of black ceramic layers formed by microarc oxidation [J]. Surface and Coatings Technology,2007,201(21): 8702-8708
    [168]Liu F., Wang F. P., Shimizu T., et al. Formation of hydroxyapatite on Ti-6Al-4V alloy by microarc oxidation and hydrothermal treatment [J]. Surface and Coatings Technology,2005,199(2-3):220-224
    [169]Wei D. Q., Zhou.Y., Jia D. C., et al. Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calsium salts and phosphates for biomedical applications [J]. Applied Surface Science,2008,254(6):1775-1782
    [170]Han Y., Yan Y. Y., Lu C. G.. Ultraviolet-enhanced bioactivity of ZrO2 films prepared by micro-arc oxidation [J]. Thin Solid Films,2009,517(5):1577-1581.
    [171]陈宏,郝建民,冯忠绪.微弧氧化机理及电击穿模型[J].长安大学学报(自然科学版),2008,28(5):116-119.
    [172]Wang L., Chen L., Yan Z. C., et al. The influence of additives on the stability behavior of electrolyte, discharges and PEO films characteristics [J]. Journal of Alloys and Compounds,2010,493(1-2):445-452
    [173]Ghasemi A., Raja V. S., Blawert C., et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings [J]. Surface and Coatings Technology,2010,204(9-10):1469-1478
    [174]Wang L., Chen L., Yan Z. C., et al. Growth and corrosion characteristics of plasma electrolytic oxidation films on AZ31 magnesium alloy [J]. The Chinese Journal of Process Engineering,2009,9(3):592-597
    [175]Chang L. M. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation [J]. Journal of Alloys and Compounds,2009,468(1-2): 462-465
    [176]Snizhko L. O., Yerokhin A. L., Pilkington A. Anodic processes in plasma electrolytic oxidation of aluminum in alkaline solutions [J]. Electrochimica Acta, 2004,49(13):2085-2095
    [177]郭雪锋,彭光怀,张小联.镁合金表面微弧氧化处理研究进展[J].江西有色金属,2009,6:34-37
    [178]Liang J., Guo B. G., Tian J., et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy [J]. Applied Surface Science,2005,252(2):345-351
    [179]Li J., Li B., Gao S. Y. Thermochemistry of hydrated potassium and sodium borates [J]. The Journal of Chemical Thermodynamics,1998,30(4):425-430
    [180]大连理工大学无机化学教研室.无机化学[M].高等教育出版社,2001
    [181]申贵隽,彭增辉,黄海英,等.静电离子色谱用于硼酸溶液中不同形态组分分离的研究[J].高等学校化学学报,1999,20:1538-1541
    [182]Clearfield A., Serrette G. P. D., Khazi-Syed A. H. Nature of hydrous zirconia and sulfated hydrous zirconia [J]. Catalysis Today,1994,20(2):295-312
    [183]Kalra K. C., Singh K. C., Singh M. Electrical breakdown of anodic films on titanium in aqueous electrolytes [J]. Journal of Electroanalytical Chemistry,1994, 371(1-2):73-78
    [184]Wang L., Chen L., Yan Z. C., et al. The influence of additives on the aging of potassium fluorozirconate electrolyte, discharges and PEO films during PEO process [C].第十四届全国等离子体科学技术会议,2009.
    [185]杨宏孝.无机化学[M].高等教育出版社,北京,2002.
    [186]Quarto F. D., Piazza S., Sunseri C. Electrical and mechanical breakdown of anodic films on tungsten in aqueous electrolytes [J]. Journal of Electroanalytical Chemistry,1988,248(1):99-115
    [187]邓姝皓,易丹青,龚竹青.镁合金微弧氧化膜的制备工艺研究[J].材料科学与工艺,2007,15:22-26
    [188]Chao C. Y., Lin L. F., Macdonald D. D. A point defect model for anodic passive films [J]. Journal of the Electrochemical Society,1981,128:1187-1194
    [189]Shimizu K., Thompson G. E., Wood G. C. The generation of flaws in anodic barrier-type films on aluminum [J]. Electrochimica Acta,1982,245-250
    [190]Guan Y. J., Xia Y. Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation [J]. Transactions of Nonferrous Metals Society of China,2006,16(5):1097-1102
    [191]Thompson G. E., Wood G. C., Shimizu K. Short communication STEM/EDXA analysis of a barrier film formed on aluminum [J]. Electrochimica Acta,1981,26:951-953
    [192]Guohua L., Huan C., Li L., et al. Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy [J]. Current Applied Physics,2009,9(1):126-130
    [193]Luo H. H., Cai Q. Z., Wei B. K., et al. Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation [J]. Journal of Alloys and Compounds,2009,474(1-2):551-556
    [194]Wang L., Chen L., Yan Z. C., et al. The discharge mechanism and plasma characteristics of PEO process using optical emission spectroscopy in different electrolytes [C].清华大学第228期博士生论坛,2009.
    [195]Didenko Y. T., Nastich D. N., Pugach S. P. The effect of bulk solution temperature on the intensity and spectra of water sonoluminescence [J]. Ultrasonics,1994,32(1):71-76
    [196]Posakony G. J., Greenwood L. R., Ahmed S. Stable multibubble sonoluminescence bubble patterns [J]. Ultrasonics,2006,44:e445-e449
    [197]Didenko Y. T., Pugach S. P. Spectra of water sonoluminescence [J]. Journal of Physics Chemistry,1994,98:9742-9749
    [198]Didenko Y. T., Gordeychuk T. V., Koretz V. L. The effect of ultrasound power on water sonoluminescence [J]. Journal of Sound and Vibration,1991,147(3):409-416
    [199]Sehgal C., Sutherland R. G., Verrall R. E. Optical spectra of sonoluminescence from transient and stable cavitation in water saturated with various gases [J]. Journal of Physical Chemistry,1980,84:388-395
    [200]Pearse R. W. B., Gaydon A. G. The Identification of Molecular Spectra [M]. Forth Edition, Chapman and Hall, London,1976.
    [201]Griem H. R. Plasma Diagnostics [M]. Mc Graw Hill, New York,1964.
    [202]Albella J. M., Montero I., Martinez-Duart J. M. Anodization and breakdown model of Ta2O5 films [J]. Thin Solid Films,1985,125:57-62
    [203]Yerokhin A. L., Snizhko L.O., Gurevina N. L. et al. Discharge characterization in plasma electrolytic oxidation of aluminum [J] Journal of Physics D:Applied Physics,2003,36: 2110-2120
    [204]Distefano T. H., Shatzkes M. Dielectric instability and breakdown in wide bandgap insulators [J]. Journal of Vacuum Science and Technology,1975,12:37-46
    [205]顾斌,金年庆,王志萍.用含时密度泛函理论计算钠原子跃迁光谱[J].物理学报,2005,54:4648-4606
    [206]Holmlid L., Menon P. G. Emission and loss of potassium promoter from styrene catalysts: studies by ultrahigh vacuum/molecular-beam and laser techniques [J]. Applied Catalysis A: General,2001,212(1-2):247-255
    [207]刘幸平,黄尚荣.无机化学[M].科学出版社,北京,2005.
    [208]Tchernenko V. I., Snezhko L. A., Papanova I. I. et al. Theory and technology of anodic processes at high voltages[M] (Kiev:Naukova Dumka) (in Russian) (ISBN 5-12-004202-4)
    [209]张红松,徐强,王富耻,等.ZrO2基热障涂层陶瓷材料研究进展[J].宇航材料工艺,2007,3:1-4
    [210]王立世,潘春旭,蔡启舟,等.等离子体电解氧化过程中单个稳态微放电的热效应研究[J].物理学报,2007,56(9):5341-5345.
    [211]Sawada K., Fujimoto T. Effective ionization and dissociation rate coefficients of molecular hydrogen in plasma [J]. Journal of Applied Physics,1995,78:2913-2924
    [212]Chen C. K., Wei T. C., Collins L. R. Modelling the discharge region of a microwave generated hydrogen plasma [J]. Journal of Physics D:Appliled Physics,1999,32:688-698 Gudmundsson J. T., Thorsteinsson E. G. Oxygen discharges diluted with argon: dissociation processes [J]. Plasma Sources Science and Technology,2007,16:399-412
    [214]Krishnakumar E., Srivastava S. K., Int. J. Mass Spectrum. Cross-section for electron impact ionization of O2 [J]. Ion Processes,1992,113:1-12
    [215]Penetrante B. M., Bardsley J. N., Hsiao M. C. Kinetic analysis of non-thermal plasmas used for pollution control [J]. Japanese Journal of Applied Physics,1997,36:5007-5017
    [216]Ross P. J. Taguchi techniques for quality engineering [M]. McGraw-Hill International Editions, USA,1988.
    [217]Ma Y. Y., Hu H., Northwood D., et al. Optimization of the electrolytic plasma oxidation processes for corrosion protection of magnesium alloy AM50 using the Taguchi Method [J]. Journal of Materials Processing Technology,2007,182(1-3):58-64
    [218]Cao F. H., Lin L. Y., Zhang Z., et al. Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion resistance [J]. Transactions of Nonferrous Metals Society of China,2008,18(2):240-247
    [219]陈砺,彭家志,严宗诚,等.AZ31镁合金等离子体电解氧化工艺优化[J].华南理工大学学报(自然科学版),2009,37(12):49-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700