ZK60镁合金微弧氧化复合电解液工艺及膜层组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化技术是一项从传统阳极氧化基础上发展起来具有较好应用前景的表面处理技术。国内外对镁合金微弧氧化技术的研究主要集中在AZ系和AM系,对变形Mg-Zn-Zr系的研究很少,并且这些研究主要集中在单一的主成膜剂中。本课题以ZK60变形镁合金作为基体材料,在恒流微弧氧化模式下开发出了新型复合电解液工艺体系,并对微弧氧化膜层的组织和性能进行了分析,探讨了膜层形成机理。实验开展了以下几个方面的工作并取得了创新性成果:
     首先,将微弧氧化主成膜剂铝酸盐、磷酸盐和硅酸盐分别按一定比例两两混合,通过对膜层厚度、耐蚀性的分析测试,得出较优的复合电解液体系,即铝酸钠-磷酸钠体系,在此复合电解液体系下进行后续试验。
     其次,通过系列单变量实验分别研究了复合电解液中的各个组分浓度变化对镁合金微弧氧化过程电压、膜层厚度、微观形貌以及膜层耐腐蚀性能的影响规律,确定了电解液各组分浓度的最佳值,以此为基础,通过正交实验优化出最佳配方:即铝酸钠12.5g/L,磷酸钠5g/L,氢氧化钠3g/L,硼酸钠2g/L,柠檬酸钠3.6g/L。
     在优化的复合电解液配方下,通过系列单变量实验分别研究了电参数的各个变量对镁合金微弧氧化过程电压、膜层厚度、微观形貌以及膜层耐腐蚀性能的影响规律,确定出较优的电参数,并在此基础上进行正交优化实验,最后得到的最优电参数:即电流密度22A/dm~2,频率500Hz,占空比38%,微弧氧化时间15min。
     通过SEM、XRD、EDS等手段对优化工艺下制备的微弧氧化膜层微观组织结构进行了分析,并探讨了微弧氧化的形成机理。结果表明:恒流方式下,膜层的生长过程主要经历了钝化膜生成阶段,微弧氧化快速生长阶段,以及微弧氧化电压微降阶段和微弧氧化细小火花放电阶段,最终形成表面较为致密的膜层。优化工艺参数下制备的微弧氧化膜层表面均匀致密,其中主要物相为尖晶石结构的MgAl_2O_4和方镁石结构的MgO。
     最后,通过电化学实验、硬度实验、摩擦磨损实验、划格实验和划痕实验等测试手段,测试了优化膜层的耐腐蚀性、硬度、耐磨性以及膜层结合力等性能,结果表明:优化后膜层与基体相比,耐蚀性大幅提高。膜层表面平整致密,有光泽,粗糙度较低。膜层的硬度为基体的7倍左右;且膜层具有较好的耐高温性和耐磨性。膜层与基体的结合力达到一级标准,通过划痕实验表明膜层与基体的临界结合力为13.85N。
Micro-arc oxidation (MAO), as a novel and unique surface treatment technique based on anodic oxidation, has been used for surface modification of many metals. At present, MAO researching of magnesium alloys mainly focus on AZ and AM alloys, but few about Mg-Zn-Zr alloys such as ZK60. In this paper, a new dual electrolyte system was developed under constant current micro-arc oxidation mode and the microstructure and composition of the coating were analyzed by modern surface analysis methods such as SEM, EDS, XRD. Some valuable researches about ZK60 have been carried out and some innovative results have been obtained.
     Firstly, Micro-arc oxidation (MAO) process was carried out in a dual electrolyte system of NaAlO_2-Na_3PO_4 and NaAlO_2-Na_2SiO_3 and Na_2SiO_3-Na_3PO_4 respectively. Test of weight loss was conducted at a 3.5%NaCl solution to assess the resistance to corrosion. The results reveal that the best dual electrolyte system is NaAlO_2-Na_3PO_4.
     Secondly, by means of single variable experiments, the effect of every element of the dual electrolyte system on voltage-time responses during MAO process and the coating characteristic was analyzed and discussed systematically. Combined with the orthogonal experiment an optimized dual electrolyte system was developed, which composes of 12.5g/L NaAlO2, 5g/L Na_3PO_4, 3g/L NaOH, 2g/L NaB4O7 and 3.6g/L C_6H_5Na_3O_7.
     The optimized electronic parameters are current density:20 A/dm~2; power frequency: 500Hz; duty cycle ratio: 38%; oxidation time: 15min.
     The microstructural characteristics of coating were investigated by XRD and SEM coupled with EDS. Studies have shown that the optimized micro-arc oxidation coating growth process is mainly composed of the following stages: anodic oxidation stage, micro-arc oxidation stage, voltage droping stage and tiny spark discharge stage, The coating prepared with the optimized process parameters was characterized with compact, smooth, glossy, colorful and exquisite surface. The main phase of surface of Coating is MgAl_2O_4 and MgO phase.
     The optimized coating in the electrochemical experiments exhibited higher impedance value. In addition, The microhardness test results show that the coating’s microhardness is 726HV, the wear resistance test results show that friction coefficient of optimized MAO coating decreases with increasing of loads under the condition of dry sliding wear. The adhesion test results showed that the bonding between coating and substrate achieve the top 1 level of corresponding standard.
引文
[1]王银娜.稀土元素对ZK60合金组织性能和热变形行为的影响[D].中南大学,2004:5-7.
    [2]陈振华.镁合金[B].北京:化学工业出版社,2004,477,74-76.
    [3]陈振华.变形镁合金[B].北京:化学工业出版社,2005:412.
    [4] S Schumann, H Friedrich. Current and future use of magnesium in automobile industry[J]. Material Science Forum, 2003:419-422.
    [5]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社,2004.20-20.
    [6]冯吉才,王亚荣,张忠典.镁合金焊接技术的研究现状及应用[J].中国有色金属学报,2005,15(2):165-178.
    [7]王快社,王训宏,王聪林.搅拌摩擦焊研究最新进展[J].西安建筑科技大学学报, 2004, 36(4):501-505.
    [8]许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工学院报,2002,23(3):190.
    [9]吴安如,夏长青.镁合金焊接技术的现状及最新进展[J].机械,2005,32(4):1-3.
    [10]刘兵.加强技术创新,为经济结构调整提供强大的动力—论实施“镁合金开发与应用及产业化”重大专项的战略意义[J].材料热处理学报,2001,22:1.
    [11]刘祚时,谢旭红.镁合金在汽车工业中的开发与应用[J].轻金属,1999,(1):55.
    [12]孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力[J].特种铸造及有色合金,1998,(3):40.
    [13] D Mager, J Willekens. Global Outlook on the Use of Magnesium Die Casting Automotive Application[J]. The Conference of Magnesium Alloys and Their Application,Germany,1998, Germany: Worst-off-Informations gesellschft mbH, 1998.105.
    [14] N Zeumer, A G Honsel, Meschede, et al. Magnesium Alloys in New Aeronautic Equipment[J]. The Conference of Magnesium Alloys and TheirApplication, Germany, 1998.Germany,Wofsburg,1998.234-243.
    [15]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2002, (4):42.
    [16]陈礼清.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属,2004,(7).
    [17]宋雨来,刘耀辉,朱先勇,等.压铸镁合金腐蚀行为研究进展[J].铸造, 2007,50(1):36.
    [18]卫英慧,许并社.镁合金腐蚀防护的理论与实践[M].北京:冶金工业出版社,2007:101-105.
    [19] S MATHIEU, C RAPIN. A corrosion study of the main constituent phases of AZ91 magnesium alloys[J]. Corrosion Science, 2003, 45: 2741-2755.
    [20]战广深,肖向辉.g-Al-Zn-Mn合金在NaCl溶液中的接触腐蚀行为[J].上海有色金属,1996,(17):8-11.
    [21]蔡启舟,王立世.NaCl水溶液中AZ91与A3钢的接触腐蚀[J].特种铸造及有色合金,2004, (1):31-33.
    [22] SONG Guangling, JOHANNESSON Birgir. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy[J]. Corrosion Science. 2004 (46): 955-977.
    [23] Guangling Song , Andrej Atrens. Influence of microstructure on the corrosion of die cast AZ91D[J]. Corrosion Science 1999, (41): 249-273.
    [24]姚寿山,李戈扬,胡文彬.表面科学与技术[M].机械工业出版社,2005,1(1):127-145.
    [25] J.E.Gray, B.Luan. Protective coatings on magnesium and its alloys-a critical review[J]. Journal of Alloys and Compounds, 2002, 336:88.
    [26] E.Brillas, P.L.Cabot, F.Centellas,et al. Electrochemical oxidation of high-purity and homogeneous Al-Mg alloys with low Mg contents[J]. Electrochimica Acta,1998, 43(7):799.
    [27] H.Fukuda, Y.Matsumoto. Effects of Na2SiO3 on anodization of Mg-Al-Zn alloy in 3M KOH solution[J]. Corrosion Science, 2004, 46:2135.
    [28] R.Ambat, W.Zhou. Electroless nickel-plating on AZ91D magnesium alloy:effect of substrate microstructure and plating parameters[J]. Surface and Coatings Technology, 2004, 179:124.
    [29] H.F.Guo, M.Z An, H.B.Huo. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions[J]. Applied Surface Science, 2006, 252:7911–7916.
    [30] A.L Eroklhin, V. Lyubimov, R.V. Ashitkov. Fiz,Khim[J].Obrab.Mater.,1996, 5: 39.
    [31] A.L. Yerokhin, X. Nie, A. Leyland, et al. Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol. 122 (2-3) (1999) 73-93.
    [32] P.I. Butyagin, Y.V. Khokhryakov, A.I. Mamaev. Microplasma systems for creating on aluminum alloys[J]. Mater. Lett. 2003, 57: 1748-1751.
    [33] Mangrove, Yuliya,V. ladmirovna. Application of oxide coating to metals in electrolyte solutions by micro plasma methods[J]. Revista de Metalurgia (Madrid)365 Cent National de Investigations Metalurgicas, 2000: 323-330.
    [34]张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响[J].腐蚀科学与防护技术,2005,17(3).
    [35]郭洪飞,安茂忠.镁合金微弧氧化工艺条件对陶瓷膜耐蚀性的影响[J].工程材料,2006,3:12-15.
    [36]来永春,陈如意,邓志威,等.微弧氧化技术在纺织工业中的应用[J].腐蚀科学与防护技术,1998,l:9- 52.
    [37]苏会东.硝酸镧处理对微弧氧化二氧化钛膜光催化性能的影响[J].中国稀土学报,2005.
    [38]张新平,熊守美,许庆彦.微弧氧化工艺参数对覆盖层厚度的影响规律模型[J].材料保护, 2004,37(8):19.
    [39]刘文亮,铝合金在不同溶液中的微弧氧化膜层性能研究,电镀与精饰,1999,21(4):9.
    [40] K H Dit trich, P Kurze, W Krysmann. Structure and properties of ANOF layers[J]. Crystal Res&Techno l, 1984, 19(1):93-99.
    [41]徐勇.国内铝和铝合金微弧氧化技术研究动态,腐蚀与防护,2003,24(4):154.
    [42]胡宗纯,谢发勤,吴向清.不同控制方式下占空比对钛合金微弧氧化膜的影响[J].电镀与环保,2006,(5):23-25.
    [43]郝建民,陈宏,张荣军.电参数对镁合金微弧氧化陶瓷层致密性和电化学阻抗的影响[J].腐蚀与防护,2003,24(6):24-25.
    [44]张英,孟保平,杨国英.镁合金表面微弧氧化法[J].轻合金加工技术,2004,32(10):23-25.
    [45]宋学平,马跃洲,李泽.镁合金新型微弧氧化脉冲电源的研制[J].兰州石化职业技术学院学报,2008,8(4):22-24.
    [46]李一,巩春志,田修波.基于PLC的微弧氧化电源控制系统研制[J].机械工程师,2009(7):32-34.
    [47]陈宏,郝建民.AZ91D压铸镁合金微弧氧化的工艺研究[J].铸造技术,2009,30(5):657-660.
    [48]彭光怀,郭雪锋,张小联,等.正脉冲电压对Mg-4Gd-3Y-0.5Zr合金微弧氧化膜组织形貌与耐蚀性能的影响.江西有色金属,2009,23(4):18-20.
    [49]付华.AZ31镁合金微弧氧化膜制备工艺的研究[D].江苏大学,2009:32-45.
    [50]张文华,胡正前,马晋.俄罗斯微弧氧化技术研究进展[J].轻合金加工技术,2004,32:25-29.
    [51] Fanya Jin, K Paul. Honghui Tong. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes[J]. Materials Science and Engineering, 2006, 7:123-126.
    [52] Y. Mizutani, S.J. Kim, R. Ichion. Anodizing of Mg alloys in alkaline solutions[J].Surface and Coatings Technology, 2003, 5:143-146.
    [53]骆海贺,蔡启舟,魏伯康.AZ91D镁合金微弧氧化工艺参数的优化[J].特种铸造及有色合金,2007,27(7):554-557.
    [54]郭洪飞,安茂忠,霍惠彬.工艺条件对镁合金微弧氧化的影响[J].材料科学与工2006,14(6):616-621.
    [55]徐桂东,沈丽如.直流和直流脉冲电源对镁合金微弧氧化膜层性能的影响[J].材料保护,2007,(6):42-44.
    [56] DENG Shu-hao, YI Dan-qing. Influence of potential on structure and properties of microarc oxidation coating on Mg alloy[J]. J.CENT. SOUTH UNIV. TECHNOL, 2005: 1005-9784.
    [57]王亚明,王福会.镁合金表面生物陶瓷涂层在模拟体液中的腐蚀性能[J].热处理技术与装备, 2007,12:6-9.
    [58]高引慧,李文芳,杜军,等.镁合金微弧氧化黄色陶瓷膜的制备和结构研究[J].材料科学与工程学报,2005,23(4):542-545.
    [59]王卫峰,蒋百灵,李均明,等.工艺参数对镁合金微弧氧化陶瓷膜色度的影响[J].材料与表面处理技术,2006(3):87-89.
    [60]原旭芳.稀土镁合金微弧氧化深色陶瓷膜的制备[D].长春理工大学,2008:14-28.
    [61] Writz G P,Bown S D,Kriven W M.Ceramic coatings by anodic spark deposition[J]. Materials and Manufacturing Processes, 1997, 6(1):87-115.
    [62]蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景[J],金属热处理,2004,29(1):23.
    [63]刘超锋,谷书华,王力臻.镁合金微弧氧化专利进展[J].材料保护,2008,41(2):53-55.
    [64]冯俊,沈丽如,冯洁,等.汽车发动机活塞的微弧氧化处理[J].特种铸造及有色合金,2003(1): 52.
    [65]李青.汽车用镁合金车轮的表面处理[J].汽车世界,1996,(5):25.
    [66] S I Bulyshev, V A Fedorov. The kinetic of coating formation in microarc oxidation process[J]. Fiz Khim obrob Mater, 1993,17(6):93~95.
    [67]杨国英,杨英.镁合金微弧氧化添加剂研究[J].绍兴文理学院学报,2005,9:42-45.
    [68]郭艳,董国君.柠檬酸钠对ZA31镁合金阳极氧化膜耐蚀性的影响[J].轻金属,2008,(3):47-50.
    [69] P.B.Su, X.HWu, Y.Guo, et.al. Journal of Alloys and Compounds 2009, Vol.475:773-777.
    [70] H.H.Wang, J. Wang, J.B. Zhang, et.al. Materials Letters 2006, Vol.60: 474-478.
    [71] H.F. Guo, M.Z. An, H.B. Huo, et.al. Applied Surface Science 2006. Vol.252:7911-7916.
    [72] A.L. Yerokhin, A. Leyl, A. Matthews. Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation[J]. Appl. Surf. Sci. 2002, 200:172-184.
    [73]张荣发,李明升.电参数对镁合金阳极氧化膜性能影响的研究进展[J].中国有色金属学报,2006,16(11):1829-1834.
    [74] Hao Jianmin(郝建民), Chen Hon(陈宏), Zhang Rongjun(张荣军) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2003, 13(4): 988.
    [75] Guo Hongfei(郭洪飞), An Maozhong(安茂忠), Xu Shen(徐莘) et al. Rare Metal Materials and Engineering(稀有金属材料与工程) [J], 2005, 34(10): 1554.
    [76]翁海峰,陈秋龙,蔡殉,等.脉冲占空比对纯铝微弧氧化膜的影响[J].表面技术,2005,34:59-62.
    [77]张荣发,单大勇,陈荣石,等.电参数对镁合金微弧氧化膜厚度的影响[J].中国有色金属学报,2007,17:1574-1578.
    [78]徐柏明.工艺参数对镁合金微弧氧化模层微观组织和性能的影响[D].吉林大学,2007:1-2.
    [79] A.K.Vijh. Mechanism of anodic spark deposition[J]. Corros, Sci. 1971, 11:411-417.
    [80] J.Yahalom . Proc shmp oxic-Electrolyte Interfaces[J]. The journal of Electrochem, Inc. 1973, 10:503-506.
    [81] T.B.Van, S.D.Brown, G.P.Wirtz. Anode spark reaction products in aluminate tungstate and silicate[J]. Bulletins American Ceramic Society. 1977, 6:563-566.
    [82] Mathieu S,Rapin C,Hazen J,et al. Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys [J]. Corros.Sci. 2002, 44(12):2727-2756.
    [83] Shi Z M, Song G L, Andrej A. The corrosion performance of anodized magnesium alloys[J]. Corrosion Science, 2006, 48(11):1939-1959.
    [84] FANG Da-ran, WANG Ji-hui, YANG Jing. Electrolyte Optimization of Microarc Oxidation of Magnesium Alloy[C]. Transactions of materials and heat treatment proceedings of the ifhtse congress. 2004, 25(5): 1072-1075.
    [85] Sharlna A K,Ralli R U,Giri K. Studles on anodization of magnesium alloy for thermal econtrol applieations[J]. Metal Finishing.1997, 3:43-51.
    [86] Khan N, Dollimore D, Alexander K, et al. The origin of exothermic peak in the thermal decomposition of basic magnesium carbonate[J]. Thermochimica Acta. 2001, 367-368:321-333.
    [87]江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005,23:4-8.
    [88]高雪峰,江雷.天然超疏水生物表面研究的新进展[J].物理.2006,(7):559-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700