AZ31镁合金原位生长耐磨陶瓷膜层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是结构材料中最轻的金属,但其硬度和塑性剪切抗力较低,导致其摩擦磨损性能较差,大大限制了其在航空航天及其他领域的应用空间,因此,有必要对镁合金进行表面改性以提高其摩擦磨损性能。本文针对提高镁合金的耐磨性能,利用微弧氧化技术在AZ31镁合金表面原位生长耐磨氧化陶瓷膜,并系统分析了氧化陶瓷膜的结构和摩擦磨损性能及其与电解液体系、工艺参数、掺杂改性剂之间的关系,为AZ31镁合金的推广和使用提供了理论依据。
     采用XRD、EDS、SEM等测试手段,对氧化膜的相组成、元素组成及其在厚度方向上的分布进行分析,并观察膜层形貌和磨痕形貌;采用表面粗糙度轮廓仪对氧化膜表面粗糙度及磨痕轮廓进行分析;采用纳米压痕测量系统对膜层的表面硬度进行分析;采用球-盘式摩擦磨损试验机对氧化膜的摩擦系数进行分析;并采用往复式摩擦磨损试验机研究膜层的磨损寿命和磨损率。
     研究表明,最佳电解液体系为:硅酸钠10g/L、氢氧化钠5g/L、钨酸钠1.5g/L、柠檬酸钠1g/L;最佳电参数为:电流密度7A/dm2、频率500Hz、占空比10%、反应时间300s;膜层厚度为14μm;相组成为方镁石MgO和硅镁尖晶石Mg_2SiO_4;纳米硬度为2.56GPa;摩擦系数为0.2329;体积磨损率为9.098×10~(-6)mm~3/Nm。
     为了进一步提高氧化膜的摩擦磨损性能,研究K_2Cr_2O_7和Na_2B_4O_7掺杂对膜层摩擦磨损性能的影响,结果表明:K2Cr2O7掺杂膜层的耐磨性能较优,掺杂浓度为0.5g/L,制备膜层在底载荷下的摩擦系数为0.2111;高载荷下的体积磨损率为6.746×10~(-6)mm~3/Nm;纳米硬度为3.47GPa,膜层的磨损机制为粘着磨损。
Magnesium alloy is the lightest metal of the structural material, but its lower hardness and plastic shear resistance result in less friction and wear properties, which greatly restricts its application field of aerospace and other application area. So it is necessary to modify magnesium Alloy to improve its friction and wear properties. In this paper, the wear resistance of the alloy is improved by using micro-arc oxidation in situ growth of AZ31 magnesium alloy wear-resistant oxide ceramic coatings. The oxide ceramic film structure, friction and wear properties of the composition and its relationship with the electrolyte system, process parameters, and the relationship between doping agents are systematically analyzed, providing theoretical basis for the promotion of AZ31 magnesium alloy.
     XRD, EDS, SEM and other testing methods are used to analyze the phase composition, element composition and distribution in the thickness of the oxide film, then the morphology of the film and wear scar are observed. The worn surface roughness and contour of oxide film are characterized by Surface Roughness Profilometer. The hardness of the surface of the film is analyzed by Nano-indentation. The friction coefficient of the oxide film is analyzed by Ball-disc Tribometer. Finally the coating wear life and wear rate are measured by friction and wear testing machine.
     Study results show that the optimum electrolyte system are: Sodium 10g/L, sodium hydroxide 5.5g/L, sodium tungstate 1.5g/L, sodium citrate 1g/L; the best electrical parameters are current density 7A/dm~2, frequency 500Hz, 10% duty cycle, the reaction time 300s; film thickness is 14μm; phase composition are MgO and Mg2SiO4; nano-hardness is 2.56GPa; friction coefficient is 0.2329 and the volume wear rate is 9.098×10~(-6)mm~3/Nm.
     To further improve the friction and wear properties of oxide film, the effects of doping K_2Cr_2O_7 and Na_2B_4O_7 on friction and wear properties of the film are studied respectively. The results display that doping K_2Cr_2O_7 film shows the best wear resistance when doping concentration reaches 0.5g/L. The bottom friction coefficient of the prepared coating under load is 0.2111. The volume wear rate under high load is 6.746×10~(-6)mm~3/Nm. Nano-hardness is 3.47GPa and the film wear mechanism is adhesive wear.
引文
[1]原旭芳.稀土镁合金微弧氧化深色陶瓷膜的制备[D].长春:长春理工大学,2006:2.
    [2] Kojima.Y. Platform Science and technology for advanced magnesium alloy[J]. Mater. Sci. Forum,2000:350-351.
    [3] Jin-Young CHO,Duck-young HWANG,Dong-Heon LEE,et al. Influence of porassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy formed by plasma electrolytic oxidation[J]. Transactions of Nonferrous Metals Society of China,2009(19):824-828.
    [4] A.Molinari,G.Straffelini,B.Tesi. Dry sliding wear mechanism of the Ti6Al-4V alloy[J]. Wear,1997,208:105-121.
    [5]王宏宇,陈康敏,徐晓静.钛合金Ti-6Al-4V的磨损失效及其表面耐磨处理技术[J].轻金属,2005,5:54-59.
    [6] Wenbin Xue,Qian Jin,Qingzhen Zhu,et al. Anti-corrosion microarc oxidation coatings on SiCp/AZ31 magnesium matrix composite[J]. Journal of Alloys and Compounds,2009(482):208-212.
    [7] Mordike B L,Ebert T. Mganesium properties applications potential[J]. Materials Science and Engineering,2001(302):37-45.
    [8] Huan Chen,GuoHua Lv,GuLing Zhang et al. Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives[J]. Surface and Coatings Technology,2010,32:1-4.
    [9] Chu-Tsun Wu,Fu-Hsing Lu. Corrosion resistance of BaTiO_3 films prepared by plasma electrolytic oxidation[J]. Surface and Coatings Technology,2002,166:31-35.
    [10] I. Vrublevsky,V. Parkoun,J. Schreckenbach. Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique[J]. Applied Surface Science,2005(242):333-338.
    [11] Fan Zhang,Xiaohua Liu,Caofeng Pan,et al. Nano-porous anodic aluminium oxide membranes with 6-19nm pore diameters formed by a low-potential anodizing process[J]. Nanotechnology,2007,18(345302):1-3.
    [12] Kurze P,Krymann W. Coloured ANOF Layers on aluminum[J]. Crystal Research and Technology,1987,22:35-38.
    [13] A.K. Sharma,R. Uma Rani,Afzar Malek,et al. Black Anodizing of a Magnesium-Lithium Alloy[J]. Metal Finishing,1996:16-18.
    [14]张永君,严川伟.压铸镁合金AZ91D环保型阳极氧化电解液配方的研究[J].腐蚀与防护,2002,23(4):148-151.
    [15]姚军,孙广平,贾树盛.镁合金表面处理的研究进展[J].焊接技术,2004,33(6):4-6.
    [16]张道军,邵红红,蒋小燕. AZ91D镁合金化学镀镍-磷新工艺研究[J].轻金属,2007,(10):63-66.
    [17]何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001:293.
    [18]王芳,余宏英,孙冬柏等. Ni-P-纳米Al2O_3复合镀层耐磨性能研究[J].电镀与涂饰,2006,3(26):1-8.
    [19]王政君,赵永武.化学镀高磷Ni-P镀层的摩擦磨损性能[J].江南大学学报,2006,5(5):566-572.
    [20] Bruckner J,Gunzel R,Moller W. Metal plasma immersion ion implantation and deposition(MPIIID) : Chromium on magnesium[J]. Surface and Coatings Technology,1998,(103-104):227-230.
    [21]赵渭江,颜沙,乐小云等.强脉冲离子注入的脉冲能量效应研究[J].核技术,2000,23(10):689-696.
    [22]赵晖.镁合金的微弧氧化及这空高能束流处理研究[D].沈阳:沈阳工业大学,2007:91-123.
    [23]杨海刚. Al离子注入AZ31镁合金的电化学腐蚀研究[D].大连:大连交通大学,2005:30-38.
    [24]刘英,李元元等.镁合金疲劳的研究进展[J].材料导报,2005,19(2):87-90.
    [25]宋玉泉,徐振国等.金属平面滚压塑性精加工的实验分析[J].吉林大学学报,2006,36(2):188-193.
    [26]赵建飞,周建忠,黄舒等. AZ31B镁合金激光喷丸强化后疲劳裂纹扩展的数值模拟研究[J].机械设计与制造,2009,12:117-119.
    [27]卫中山,王珉等.钛合金的微动疲劳及其防护[J].材料科学与工程学报,2003,21(2):293-297.
    [28]吴国松,曾小勤等.气相沉积膜层在没合计表面改性中的应用[J].材料工程,2006(1):61-63.
    [29]吴国松,汪爱英等.镁合金表面气相沉积技术薄膜的制备与腐蚀性能研究[J].材料保护,2008,10(41):157-159.
    [30] J. Senf,E. Broszeit. Wear and corrosion protection using Cr and CrN (PVD coating on Al and Mg)[J]. Materal Wissenschaft and Werkstonfftechnik,1999,30:262-268.
    [31] H. Hoche,H. Scheerer,D. Probst,et al. Plasma anodisation as an environmental harmless method for the corrosion protection of magnesium alloys[J]. Surface and Coatings Technology,2003,(174-175):1002-1007.
    [32] T. B. Van,S. D. Brown,G. P. Wirtz. Mechanism of anodic spark deposition[J]. Ceramic Bulletin,1997,56(6):563-566.
    [33] Yaming Wang,Tingquan Lei,Bailing Jiang,et al. Growth microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution[J]. Applied Surface Science,2004,(233):258-267.
    [34]薛文斌,邓志威等.有色金属表面表面微弧氧化技术评述[J].金属热处理,2000,1(1):1-3.
    [35] W. Krysmann,P. Kurze,H. G. Dittrich. Process characteristics and parameters of oxidation by spark discharge (ANOF)[J]. Crystal Research and Technology,1984,19(7):973-979.
    [36]芦笙. ZK60镁合金微弧氧化工艺及其膜层组织和性能研究[D].杭州:江苏科技大学,2009:8-10.
    [37]曾华梁,杨家昌.电解和化学转化膜[M].轻工业出版社,1987:56-59.
    [38]张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响[J].腐蚀科学与防护技术,2005,17(3):141-143.
    [39]曲旋中.钛合金螺纹表面膨化与润滑和摩擦学性能的研究[J].航天标准化,2003,6:1-6.
    [40] Jin-Young CHO,Duck-Young HWANG,Dong-Heon LEE,et al. Influence of potassium pyrophosphate in electrolyte on coated layer of AZ91 Mg alloy formed by plasma electrolytic oxidation[J]. Transactions of Nonferrous Metals Society of China,2009(19):824-828.
    [41] Fei Chen,Hai Zhou,Bin Yao, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces[J]. Surface and coatings Technology,2007,(201):4905-4908.
    [42]安茂忠,郭洪飞,吴丽军.镁合金微弧氧化工艺及陶瓷氧化膜性能的研究[C].表面工程技术创新研讨会,2005:32-36.
    [43] Li Wang,Li Chen,Zongcheng Yan,et al. The influence of additives on thestability behavior of electrolyte, discharges and PEO films characteristics[J]. Journal of Alloys and Compounds,2010,(493):445-452.
    [44] Li Wang,Li Chen,Zongcheng Yan,et al. Effect of plasma electrolytic oxidation films formed on AZ31 magnesium alloy[J]. Journal of Alloys and Compounds,2009,(408):469-474.
    [45]李均明.铝合金微弧氧化陶瓷层的形成机制及其耐磨性能[D].西安:西安理工大学,2008:9-10.
    [46]石淼森.耐磨耐蚀涂层材料与技术[M].化学工业出版社,2002:1-12.
    [47]温诗铸,黄平.摩擦学原理(第2版)[M].北京:清华大学出版社,2002:301-331.
    [48]李炳. AZ91D镁合金耐磨性及其表面微弧氧化膜的制备与性能研究[D].兰州理工大学,2007:26-30.
    [49] F. H. Cao,J. L. Cao,Z. Zhang,et al. Plasma electrolytic oxidation of AZ91D magnesium alloy with different additives and its corrosion behavior[J]. Materials and Corrosion,2007,58(9):696-703.
    [50] Fanya Jin,Paul K. Chub,Guidong Xu,et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes[J]. Materials Science and Engineering,2006,7:123-126.
    [51]赵晖.镁合金的微弧氧化及真空高能流束处理研究[D].沈阳:沈阳工业大学,2003:60-65.
    [52]陈飞,周海,姚斌等.镁合金微弧氧化陶瓷层摩擦学性能的研究[J].稀有金属材料工程,2006,35(5):806-808.
    [53]阎逢元,周惠娣,张泽抚.球-盘微动摩擦件磨损体积的测量与计算[J].摩擦学学报,1995,15(2):145-151.
    [54] G. C. Wood,C. Pearson,The theory of avalanche breakdown in solid dielectrics[J]. J. Corros. Sci,1967,7(2):119-125.
    [55]郭洪飞,安茂忠,徐莘,等.镁合金表面微弧氧化配方的优化及膜层耐蚀性能评价[J].中国有色金属学报,2002,12(6):1-4.
    [56] Apelfeld A V, Bespalova O V, Borisov A M. Nuclear lnstruments and Methods in Physics Research B[J]. 2000,161-163:553-554.
    [57] Jiang Bailing,Wu Guojian,Zhang shufen,et al. The research on micromechanism and growth procedure of ceramic coating formed by micro-arc oxidation on magnesium alloys[J]. Trans Mater Heat Treat,2002,23(1):5-7.
    [58]郭兴伍,丁文江.镁合金阳极氧化的研究与发展现状[J].材料保护,2002,35(2):1-3.
    [59]丁显波. TC4钛合金表面原位生长耐磨损陶瓷膜研究[D].哈尔滨:哈尔滨工业大学,2007:25-27.
    [60] Khaselev O , Weiss D , Yahalom J. Anodizing of pure magnesium in KOH-Aluminate solutions under sparking[J]. J. Electrochem. Soc,1999,146(5):1757-1761.
    [61] CHANG Lin-rong,CAO Fa-he,CAI Jing-shun,et al. Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source[J]. Transactions of Nonferrous Metals Society of China,2011,21:307-316.
    [62] ZHANG R F,SHAN D Y,CHEN R S,et al. Effects of electric parameters on properties of anodic coatings formed on magnesium alloys[J]. Materials Chemistry Physics,2008,107:356-363.
    [63] Limin Chang. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation[J]. Journal of Alloys and Compounds,2009,468: 462-465.
    [64]张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响[J].腐蚀科学与防护技术,2005,17(3):141-143.
    [65] Xiaohong Wu,Wei Qin,Yun Guo,et al. Self-lubricative coating grown by micro-plasma oxidation process on aluminum alloys in the solution of aluminate-graphite[J]. Applide Surface Science,2008,254(20):6395-6399.
    [66] Y. Ma,X. Nie,D. O. Northwood,H. Hu,et al. Systematic study of the electrolytic plasma oxidation process on a Mg alloy for corrosion protection[J]. Thin Solid Films,2006,494(1-2):296-301.
    [67]魏庆丰,孙景,李昌青.稀土添加剂在硬质合金中的应用研究[J].稀有金属与硬质合金,2002,30(2):33-35.
    [68]李诗卓.耐磨(兼及耐蚀)材料研究的进展[J].物理,1987,16(12):720-722.
    [69]熊仁章,盛磊,杨生荣等.添加剂对铝合金微弧氧化陶瓷涂层结构和耐磨性能的影响[J].兵器材料科学与工艺,2002,25(3):17-18.
    [70]吴汉华.铝、钛合金微弧氧化陶瓷膜的制备表征及其特性研究[D].长春:吉林大学,2004:42.
    [71]蔡宗英,张莉霞,邢献然等.微等离子体氧化技术制备陶瓷膜研究进展[J].湿法冶金,2004,23(3):128-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700