介质阻挡层对镁合金PEO过程能耗及陶瓷膜性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体电解氧化(PEO)是轻金属材料表面改性的新技术,利用该技术制得的膜层兼具阳极氧化膜及陶瓷膜的性能。目前国内外对于PEO膜层性能做了大量的研究工作,但PEO技术因其高能低效问题而难以得到大规模应用。鉴于此,本论文以AZ31Mg为工作电极,围绕介质阻挡层对击穿放电过程和能耗、气体鞘层形成、陶瓷膜性能的影响以及溶剂组成对溶剂蒸发过程、放电过程能耗、陶瓷膜层性能的影响等方面对等离子体电解氧化过程展开研究。
     (1)分析了化学转化工艺条件对转化膜厚度、孔隙率、耐蚀性及相组成的影响。转化时间在30min以内,转化膜厚度与转化时间呈线性关系,其线性函数为:d=0.43t-0.44(R~2=0.999);转化时间增加,转化膜更致密,膜层表面更完整;转化膜对镁合金表面的耐腐蚀性能有一定的提高;转化膜主要有MgO及MgAl_2O_4两相组成,转化时间主要影响膜层中两相的含量。
     (2)通过在试件表面预处理的介质阻挡层减少阳极氧化阶段对PEO过程的影响,分析介质阻挡层对击穿放电过程和能耗、气体鞘层形成、陶瓷膜性能的影响。实验结果表明预处理的介质阻挡层对PEO过程有明显影响:介质阻挡层厚度对PEO过程的电流密度下降快慢、进入稳定放电阶段的时间以及平衡电流密度的大小都有影响;PEO陶瓷膜的生长速度增加近一倍;陶瓷膜中镁橄榄石(Mg_2SiO_4)相的含量显著增加,使陶瓷膜的附着强度、耐摩擦性能及耐腐蚀性能有较大提高; PEO反应过程的能耗显著降低,且在介质阻挡层厚度为8.2μm时最低。
     (3)结合介质阻挡层作用,分析溶剂中甲醇对PEO过程中气体鞘层形成过程的影响,讨论甲醇对PEO过程放电特性、过程能耗、陶瓷膜性能的影响:甲醇浓度影响PEO过程电流下降的难易及平衡电流密度的大小;甲醇使PEO过程能耗降低,且甲醇浓度在其体积分数为16%时过程的能耗最低;甲醇浓度对PEO陶瓷膜的厚度、附着强度、耐摩擦性能、耐腐蚀性能及膜层相组成无显著影响。
     (4)结合介质阻挡层和甲醇对等离子体电解氧化过程的影响,简单分析PEO过程的传质传热作用机理以及介质阻挡层在PEO过程中的作用机理。
     研究表明:介质阻挡层主要是借助于其自身良好的电绝缘性能影响等离子体电解氧化过程初始阶段的电能分布、避免电极与电解液直接接触,减少溶剂电解,使形成气体鞘层的气相主要源于溶剂蒸发过程,降低等离子体电解氧化过程的能量消耗;预处理的介质阻挡层通过改变陶瓷膜的晶相组成分布和相态分布而影响膜层性能;在预处理介质阻挡层高效聚集电能的作用下,甲醇因其本身较小的蒸发焓和比水小的电解能减少气体鞘层形成过程的能量消耗;甲醇改变了电解液的溶剂组成,通过影响反应的热力学环境对等离子体电解氧化过程的放电点产生影响。
Plasma electrolyte oxidation (PEO) technology provides a new platform for surfacemodification of light-metallic materials. The films formed by PEO combine the performanceof both anodic oxide films and ceramic films, which broadens the application field oflight-metallic materials. Many researches related to the PEO films’ properties have been downat home and abroad. Because of its high energy inefficient PEO technology cannot be usedwidely. Based on this, the AZ31Mg alloy was used as the working electrode. The influence ofthe dielectric barrier layer’s (DBL) characteristics and solvent composition on the breakdowndischarge, process energy consumption, the gas envelops and performance of the PEOcoatings were investigated.
     (1) Analyzed the influence of chemical conversion process conditions on conversionfilms’ thickness, porosity, corrosion resistance and the phase composition. The result showthat: The thickness of conversion coating approximates linear growth with conversion time in30minutes, its linear function is d=0.43t-0.44(R2=0.999); compactness of conversioncoating improves with the extension of conversion time; conversion film can help improvecorrosion resistant performance of the magnesium alloy to some extent; the crystal phase ofconversion film mainly includes MgO and MgAl_2O_4, conversion time has great influence oncomposition of crystal phase.
     (2) In order to reduce the adverse effects of anodic oxidation during PEO process, thedielectric barrier layer was prepared through chemical conversion pretreatment. The effect ofdielectric barrier layer on the breakdown discharge, process energy consumption, the gasenvelops and performances of the PEO films were investigated. The experimental resultsshow that the pretreated DBL has significant effect: The thickness of DBL has remarkableinfluence on current density, balanced current and stationary discharge of PEO process; thegrowth rate of ceramic membrane doubled; adhesive strength, abrasion resistance andcorrosion resistance of ceramic membrane improve obviously because of MgAl2O4increased;energy consumption of PEO process decreases greatly, it bottoms out lowest when thethickness of conversion film is8.3μm.
     (3) The effect of methanol on the gas enveloping process was analyzed. The influence ofmethanol concentration on discharge characteristic, process energy consumption, and the PEOfilms’ performance were discussed. The experimental data shows that: the concentration ofmethanol has great impact on current density and balanced current of PEO process; the energyconsumption of PEO process has the very big relations with methanol concentration, when theconcentration of methanol is16%(volume fraction), energy consumption is lowest; thickness,adhesive strength, abrasion resistance and corrosion resistance of ceramic membrane almosthas nothing to do with methanol concentration.
     (4) According to the study shows that (1) and (2), the mechanisms of PEO process’smass and heat transfer as well as DBL’s mechanism of action were analyzed.
     (5) The results indicated that:1) DBL mainly impacts the electric power distribution ofthe initial stage of PEO process by its good dielectric properties, so that the gas phase mainlycomes from solvent evaporation process other than electrolysis of solvent. By this, the energyconsumption of the reaction was reduced.2) The DBL changed the crystal phase compositionand morphology distribution of PEO films to influence their performance.3) Because of itssmaller evaporation enthalpy and electrolytic energy consumption than water, methanol canmake energy consumption of the gas envelope’s formation process reduced.4) The methanoladded to the solution affects discharge points through changing thermodynamics environmentof PEO reaction.
引文
[1]黎文献.镁及镁合金[M],长沙:中南大学出版社,2005,1-7
    [2] Han I., Choi H. J., Zhao B. H., et al. Micro-arc oxidation in various concentration of KOHand structural change by different cut off potential[J]. Current Applied Physics,2007,7(1):23-27
    [3] Guo H.F., An M. Z. Growth of ceramic coatings on AZ91D magnesium alloys bymicro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosionresistance [J]. Applied Surface Science,2005,246(1-3):229-238
    [4] Chen F., Zhou H., Yao B., et al. Corrosion resistance property of the ceramic coatingobtained through microarc oxidation on the AZ31magnesium alloy surfaces [J]. Surf.&Coat. Technol.,2007,201(9-11):4905-4908
    [5]蒋百灵,张淑芬,郝建明.镁合金表面处理工艺[P].中国专利:1369577A,2002-10-18
    [6] Mehta D.S., Masood S.H., Song W.Q. Investigation of wear properties of magnesium andaluminum alloys for automotive applications [J].Mater. Processing Technol.,2004,(155-156):1526-1531
    [7]文博.日本镁合金的研发与应用[J].世界有色金属,2004,11:33-36
    [8] Staiger M.P., Pietak A.M., Huadmai J. et al. Magnesium and its alloys as orthopedicbiomaterials: A review [J].Biomaterials,2006,27:1728-1734
    [9] Umehara H., Takaya M., Terauchi S. Chrome-free surface treatments for magnesium alloy[J]. Surface and Coatings Technology,2003,(169-170):666-669
    [10]李颂.镁合金微弧氧化膜的制备-表征及其性能研究[D].吉林,吉林大学,2007
    [11] Wagner L. Mechanical surface treatments on titanium, aluminum and magnesium alloys[J]. Materials Science and Engineering,1999,263(2):210-216
    [12] Samant A. N., Du B. S., Paital S. R., et al. Pulsed laser surface treatment of magnesiumalloy: Correlation between thermal model and experimental observations [J]. Journal ofMaterials Processing Technology,2009,209(11):5060-5067
    [13] Gray J. E., Luan B. Protective coatings on magnesium and its alloys-a critical review [J].Journal of Alloys and Compounds,2002,336(1-2):88-113
    [14] Jin H. N., Yang X. J., Wang M. Chemical conversion coating on AZ31B magnesiumalloy and its corrosion tendency [J]. Acta Metallurgical Sonica,2009,22(1):65-70
    [15] Ng W. F., Wong M. H., Cheng F. T. Stearic acid coating on magnesium for enhancingcorrosion resistance in Hanks’ solution [J]. Surface and Coatings Technology,2010,204(11):1823-1830
    [16] Christoglou C., Voudouris N., Angelopoulos G. N. Deposition of aluminum onmagnesium by a CVD process [J]. Surface and Coatings Technology,2004,184(2-3):149-155
    [17] Arrabal R., Matykina E., Skeldon P., et al. Coating formation by plasma electrolyticoxidation on ZC71/SiC/12p-T6magnesium metal matrix composite [J]. Applied SurfaceScience,2009,255(9):5071-5078
    [18] Yekehtaz M., Baba K., Hatada R. Corrosion resistance of magnesium treated byhydrocarbon plasma immersion ion implantation [J]. Nuclear Instruments and Methodsin Physics Research B,2009,267(8-9):1666-1669
    [19] Charles E., Linson T. Conversion coatings for metal surfaces [P]. US:5380374,1995
    [20] Rudd A. L, Breslin C. B, Mansfeld F. The corrosion protection afforded by rare earthconversion coatings applied to magnesium [J].Corrosion Science,2000,42(2):275-279
    [21]赵明,吴树森,罗吉荣等.镁合金磷酸盐-高锰酸盐化学转化处理工艺研究[J].特种铸造及有色合金,2005,25(6):328-329
    [22]张勇,张泰峰,赵维义等.镁合金表面处理技术现状和发展趋势[J].青岛理工大学学报,2010,31(4):111-116
    [23]李瑛,余刚,刘跃龙等.镁合金的表面处理及其发展趋势[J].表面技术,2003,32(2):1-5
    [24]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展[J].兵器材料科学与工程,2006,29(2):73-77
    [25]涂运骅,高谨.镁合金涂装体系的应用现状及研究进展[J].材料保护,2003,36(12):1-3
    [26]张津,章宗和.镁合金及其应用[M].北京:化学工业出版社,2004,211-302
    [27] Yerokhin A.L., Nie X., Leyland A. Plasma electrolysis for surface engineering [J].Surface and Coatings Technology,1999,122(2-3):73-93
    [28] Matykina E., Berkani A., Skeldon P., et al. Real-time imaging of coating growth duringplasma electrolytic oxidation of titanium [J]. Electrochemical Acta,2007,53(4):1987-1994
    [29] Paulmier T., Bell J.M., Fredericks P.M. Development of a novel plasma/electrolyticdeposition technique Part2: Physico-chemical analysis of the plasma discharge [J].Surface and Coatings Technology,2007,201(21):8771-8781
    [30] Wuthrich R., Mandin P. Electrochemical discharges-Discovery and early applications [J].Electrochimica Acta,2009,54(16):4031-4035
    [31] Markov I. Saturation nucleus density in the electro deposition of metals onto inertelectrodes theory [J]. Thin Solid Films,1976,35:11-20
    [32] Albella J. M., Montero I., Martinez-Duart J. M. A theory of avalanche breakdown duringanodic oxidation [J]. Electrochemical Acta,1987,32(2):255-258
    [33]李夕金,程国安,薛文斌等.Ti-3Al基合金微弧氧化膜的制备和性质[J].航空材料学院,2007,27:1-6
    [34]王卫锋,蒋百灵,时惠英.镁合金微弧氧化深色陶瓷膜制备及耐蚀性研究[J].腐蚀科学与防护技术,2007,27(1):51-53
    [35] Raveh A., Rubinshtein A., Weiss M., et al. Ta-C micro-composite material formed byheat treatment of plasma carburized layer [J]. Thin Solid Films,2004,466(1-2):151-157
    [36] Desai B. D., Lobo F. S., Kamat-Dalal V. N. Performance and discharge characteristics ofdoped (beta) MnO2in H2SO4electrolyte [J]. Journal of Power Sources,1994,51(3):351-365
    [37] Malyshev V. N., Duane E. B. Anodized coatings for magnesium alloys [J]. MetalFinishing,1994,3:39-44
    [38]姜兆华,李延平,李文旭等.钛表面原位生长钛酸锶钡陶瓷膜[J].稀有金属材料与工程,2003,32(10):859-861
    [39] Vigh A. K. Sparking voltages and side reactions during anodization of valve metals interms of electron tunneling [J]. Corrosion Science,1971,11:411-417
    [40] Van T. B., Brown S. D., Wirtz G. P. Mechanism of anode spark deposition [J]. AmericanCeramic Society Bulletin,1977,56(6):563-566
    [41] Ikonopisov S. Theory of electrical breakdown during formation of barrier anodic films[J]. Electrochemical Acta,1977,22:1077-1082
    [42] Albella J. M., Montern I., Martinez-Duart J. M. Electron injection and avalanche duringthe anodic oxidation of tantalum [J]. Journal of Electrochemical Society,1984,131:1101-1104
    [43] Dittrich K. H., Krysmann W., Kurze P. Structure and properties of ANOF layers [J].Crystal Test Technology,1984,19:93-99
    [44] Kurze P., Krysmann W., Schreckenbach J., et al. Coloured ANOF layers on aluminum [J].Crystal Research and Technology,1987,22:53-58
    [45] Nikolaev A. V., Rykalin N. N., Borzhov A. P. Energy balance of a high current hollowtungsten cathode [J]. Fizikai Khimiya Obrabotki Materialov,1977,2:32-41
    [46] Zhao W. S., Xin T. Z., Liu J. C. Research on properties and formation mechanism ofceramic coatings prepared by micro-arc oxidation on2024aluminum alloy surface [J].Key Engineering Materials,2006,315:259-263
    [47] Kasalica B., Petkovic M., Belca I., et al. Electronic transitions during plasma electrolyticoxidation of aluminum [J]. Surface and Coatings Technology,2009,203(20-21):3000-3004
    [48] Matykina E., Berkani A., Skeldon P., et al. Real-time imaging of coating growth duringplasma electrolytic oxidation of titanium [J]. Electrochemical Acta,2007,53(4):1987-1994
    [49] Alekseyev N.I., Dyuzhev G.A. Fullerene formation in an arc discharge [J]. Carbon,2007,41(7):1343-1348
    [50] Yerokhin A. L., Voevodin A. A., Lyubimov, et al. Plasma electrolytic fabrication of oxideceramic surface layers for tribotechnical purposes on aluminum alloys [J]. Surface andCoatings Technology,1998,110(3):140-146
    [51] Nie X., Leyland A., Song H. W., et al. Thickness effects on the mechanical properties ofmicro-arc discharge oxide coatings on aluminum alloys [J]. Surface and CoatingsTechnology,1999,116:1055-1060
    [52] Nie X., Wang L., Konca E., et al. Tribological behavior of oxide/graphite compositecoatings deposited using electrolytic plasma process [J]. Surface and CoatingsTechnology,2004,(188-189):207-213
    [53] Nie X., Leyland A., Matthews A. Low temperature deposition of Cr(N)/TiO2coatingsusing a duplex process of unbalanced magnetron sputtering and micro-arc oxidation [J].Surface and Coatings Technology,2000,(133-134):331-337
    [54]郭雪锋,彭光怀,张小联.镁合金表面微弧氧化处理研究进展[J].江西有色金属,2009,23(2):34-37
    [55] Jin F. Y., Wang K., Zhu M., et al. Infrared reflection by alumina films produced onaluminum alloy by plasma electrolytic oxidation [J]. Materials Chemistry and Physics,2009,114(1):398-401
    [56] Luo H. H., Cai Q. Z., He J., et al. Preparation and properties of composite ceramiccoating containing Al2O3-ZrO2-Y2O3on AZ91D magnesium alloy by plasma electrolyticoxidation [J]. Current Applied Physics,2009,9(6):1341-1346
    [57] Shi X. L., Wang Q. L., Wang F. S., et al. Effects of electrolytic concentration onproperties of micro-arc film on Ti6Al4V alloy [J]. Mining Science and Technology,2009,19(2),220-224
    [58] Yan Y. Y., Han Y., Huang J. J. Formation of Al2O3-ZrO2composite coating on zirconiumby micro-arc oxidation [J]. Scripta Materialia,2008,59(2):203-206
    [59] Kurze P., Krysmann W., Schreckenbach J., et al. Coloured ANOF layers on aluminum [J].Crystal Research and Technology,1987,22:53-58
    [60] Vijh A. K. Sparking voltages and side reactions during anodization of valve metals interms of electron tunneling [J]. Corrosion Science,1971,11:411-417
    [61] Albella J. M., Montero I., Martinez-Duart J. M. Electron injection and avalanche duringthe anodic oxidation of tantalum [J]. Journal of the Electrochemical Society,1984,19:93-99
    [62] Markov I. Saturation nucleus density in the electro deposition of metals onto inertelectrodes theory [J]. Thin Solid Films,1976,35:11-20
    [63] Yao Z. P., Li L. L., Jiang Z. H. Adjustment of the ratio of Ca/P in the ceramic coating onMg alloy by plasma electrolytic oxidation [J]. Applied Surface Science,2009,255(13-14):6724-6728
    [64] Yao Z. P., Jiang Z. H., Wu X. H., et al. Effects of ceramic coating by micro-plasmaoxidation on the corrosion resistance of Ti-6Al-4V alloy [J]. Surface and CoatingsTechnology,2005,200(7):2445-2450
    [65]王辰浩,夏兰廷,臧东勉等.AZ91D镁合金表面无铬化学转化膜的研究[J].铸造设备研究,2008(3):17-20
    [66]刘景辉,申丰,王立夫等.镁合金表面磷化处理的研究[J].有色金属加工,2005,34(4):30-31
    [67]彭家志.介质阻挡层对镁合金等离子体电解氧化陶瓷膜生长影响[D].华南理工大学,2010
    [68] Apelfeld A. V., BesPalova O. V., Borisov A. M., et al. Application of the particlebackscattering methods for the study of new oxide protective coatings at the surface ofAl and Mg alloys[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2000,(161-163):553-557
    [69]吕维玲,陈体军,马颖等.AZ91D镁合金恒定小电流密度微弧氧化工艺[J].中国有色金属学报,2008,18(9),1590-1595
    [70] Guo X. W., Ding W. J., Lu C., et al. Influence of ultrasonic power on the structure andcomposition of anodizing coatings formed on Mg alloys [J]. Surface and CoatingsTechnology,2004,183(2-3),359-368
    [71]邪青,高瑾,董朝芳等.AZ91D镁合金微弧氧化膜的腐蚀行为研究[J].金属学报,2008,44(8),986-990
    [72]郭洪飞,安茂忠,霍慧彬等.工艺条件对镁合金微弧氧化的影响[J].材料科学与工艺,2006,14(6):616-621
    [73] Ding J., Liang J., Hu L., et al. Effects of sodium tungstate on characteristics of microarcoxidation coatings formed on magnesium alloy in silicate-KOH electrolyte [J]. TransNonferrous Met SOC China,2007,17(2):244-249
    [74]王萍,李建平,马群.Mg-9Gd-3Y-0.6Zn-0.5Zr镁合金微弧氧化配方的优化[J].特种铸造及有色合金,2008,28(7):502-504
    [75] Liang J., Guo B. G., Tian J., et al. Effect of potassium fluoride in electrolytic solution onthe structure and properties of microarc oxidation coatings on magnesium alloy[J].Applied Surface Science,2005,252(2):345-351
    [76]郭洪飞,安茂忠,徐莘等.镁合金微弧氧化配方的优化及膜层耐蚀性能评价[J].电镀与涂饰,2004,23(6):1-4
    [77]章志友,赵晴,刘月娥.镁合金微弧氧化工艺及陶瓷层耐蚀性能研究[J].电镀与涂饰,2008,27(5):30-33
    [78]崔作兴,邵忠财,刘志远等.添加剂对镁合金微弧氧化膜性能的影响[J].材料研究学报,2009,32(2):193-198
    [79]石西昌,肖湘,尚伟等.镁合金微弧氧化添加剂的优选[J].材料保护,2009,42(2):55-57
    [80]范松岩,阎峰云.镁合金微弧氧化电解液配方及膜层着色研究[D].兰州:兰州理工大学,2008:17-29
    [81]张学文,马保吉.硅酸盐体系电解液中添加剂对稀土镁合金微弧氧化陶瓷膜性能的影响[J].材料热处理技术,2008,37(2):82-84
    [82]王吉会,房大然,杨静等.镁合金微弧氧化的电解液组分研究[J].天津大学学报,2005,11(11):1026-1030
    [83]汪洋,沈承金,缪姚军.添加剂对镁铝合金微弧氧化作用的研究[J].腐蚀与防护,2006,27(8):387-390
    [84]罗渚草.甲醇、乙二醇对镁合金PEO能耗及膜层耐蚀性影响研究[D].华南理工大学,2011
    [85]段关文,高晓菊,满红等.微弧氧化研究进展[J].兵器材料科学与工程,2010,33(5):102-106
    [86] Shi Z. M., Song G. L., Atrens A. Influence of anodizing current on the corrosionresistance of anodized AZ91D magnesium alloy[J].Corrosion Science,2006,48:1939-1959
    [87]李淑华,张龙,谭成文.工艺条件对镁合金微弧氧化陶瓷层孔隙率的影响[J].硅酸盐通报,2009,28:180-182
    [88] Mizutani Y., Kim S. J., Ichino R., et al. Anodizing of Mg alloys in alkaline solutions [J].Surface and Coatings Technology2006,48(8):1939-1959
    [89]王丽.PEO介质阻挡层形成、击穿放电与膜层生长研究[D].华南理工大学,2010
    [90] Paulmier T., Bell J.M., Fredericks P.M. Development of a novel plasma/electrolyticdeposition technique Part2: Physico-chemical analysis of the plasma discharge [J].Surface and Coatings Technology,2007,201(21):8771-8781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700