镁合金深色微弧氧化陶瓷膜制备及耐蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化技术在铝合金表面已可制备多种颜色陶瓷膜,而在镁合金表面仅能制备出白色陶瓷膜,急需研发出不同颜色的深色氧化陶瓷膜。本文从溶液体系出发,通过研究电解质的作用,不同电解质间的配比,改变溶液电导率、pH值等,研制出了适合于镁合金深色微弧氧化陶瓷膜制备的溶液配方,进而研究了溶液浓度和工艺参数对制备深色氧化陶瓷膜的影响,后期对不同颜色的陶瓷膜的耐蚀性进行了研究,并借助于EDS和XPS等方法分析并探讨了不同颜色陶瓷膜层显色机理。
     实验表明,在NaOH-Na_2SiO_3-C_6H_5OH-NH_4VO_3体系溶液中,当浓度比为50:15:3:5,55:30:4:20时可制备出绿色系列和棕色系列的陶瓷膜层,且膜层色度变化随电参数的增加而变深,前者在电压为350~450V,电流密度0.8~2.0A/dm~2可制备出绿色陶瓷膜;后者在电压为350~450V,1.2~2.4A/dm~2可制备出棕色陶瓷膜,时间为5~30min的膜层色度较好。温度30~45℃最佳,但电压、电流过大、温度过高会导致膜层质量不高。
     盐雾腐蚀结果表明,350~450V制备的绿色和棕色陶瓷膜经120h盐雾腐蚀比白色陶瓷膜耐蚀性要好,但棕色的耐蚀性更优于绿色陶瓷膜。电流密度在1.2~2.8A/dm~2制备的绿色陶瓷膜、0.4~2.0A/dm~2下制备的棕色陶瓷膜表现良好的耐蚀性。
     分析表明,随电压升高,膜层中钒、硅、氧的含量逐渐增多,镁、铝的含量逐渐减少,膜层中主要以氧化镁、氧化硅、氧化钒等混合物的形式存在,绿色陶瓷膜中钒以V_2O_3和VO_2的形式存在,棕色膜层中钒的氧化物除V_2O_3和VO_2外,还有少量的V_2O_5,且膜层中这些氧化物含量的不同引起了膜层色度的变化,其中氧化钒是色度改变的主要因素。
Multipurpose fuscous ceramic films on aluminium-alloy have been obtained by MAO. Therefore, different fuscous one on magnesium-alloy is needed greatly to develop because of only white ceramic film recently. Different solution systems are studied from character of MAO electrolyte, solution's conductance, pH value and ratio between different electrolytes. A new optimal electrolyte's directions is obtained for magnesium-alloy by trial and error and the effect of the fuscous ceramic films is studied by altering electrolyte's ratio and controlling different technics parameter. Then corrosion resisting property is studied for different chroma ceramic films too. Finally mechanisms of different chroma ceramic films are discussed by the way of EDS and XPS.
    The experiments show that the preparation of green or brown ceramic films is obtained when the ratio of concentration is 50:15:3:5, 55:30:4:20 in NaOH-Na_2SiO_3-C_6H_5OH-NH_4VO_3 solutions. Fuscous ceramic films are altered as changing voltage, current, time and temperature. The better ceramic films are obtained when voltage is between 350V and 450V, and current density is between 0.8A/dm~2and 2.0A/dm~2 for green ceramic films and is between 1.2A/dm~2 and 2.4A/dm~2 for brown ones, time is between 5 and 20min, and temperature is between 30 and 45℃ .Otherwise is worse.
    The result of corrosion 5%NaCl by 120h corrosion experiments shows that the green and brown ceramic films between 350 and 450V is better in corrosion resisting than white ones, and brown ones is better green ones. The corrosion resisting property is better when current density is between 1.2A/dm~2 and 2.8 A/dm~2 for green ones, is between 0.4A/dm~2 and2.0A/dm~2 for brown ones.
    The analysis shows that the content of vanadium, silicon and oxygen is increased gradually, and that of magnesium and aluminum is dropped off in the ceramic films as voltage is increased. And exist mainly magnesia, silicon oxide and vanadium oxide in the ceramic films. The vanadium of green ceramic film is exist V_2O_3 and VO_2,but that of brown ones is exist a little of V_2O_3 besides V_2O_3 and VO_2. the different content of these oxide leads to come into being different chroma ceramic films, and vanadium's oxide is mainly cause for altering film's chroma.
    
    
    
    
    
    The study is sponsored by the national 10~(th) five year science and technology plan for tackling key problem (2001BA311A06-3), and 863 plan item (2002AA331120).
引文
[1] 秦伟,李国强,朱永昌.中国镁业风光无限.中国有色金属协会镁业分会培训基地/镁业信息, http://www.hbzy.edu.cn/meiye.北京真望资讯研究中心,2005-4-24
    [2] 郭洪河,刘生发,黄尚宇,等.镁合金在汽车中的应用与发展.汽车工艺与材料[J].第10期,2003:34~36
    [3] 童建新.汽车和摩托车领域的镁合金压铸技术.制造技术与实践[J].2003,Vol.24(6):27~28
    [4] 戴长松,吴宜勇,王殿龙,等.镁及镁合金的化学镀镍.兵器材料科学与工程[J].1997,Vol.20(4):35~47
    [5] 曾爱平,薛颖.镁合金的化学表面处理.腐蚀与防护[J].2000,Vol.21(2):55~56,63
    [6] 钱建刚,李荻.镁合金的化学转化膜.材料保护[J],Vol.35(3),2002:5~6
    [7] 周婉秋,单大勇.镁合金无铬化学转化膜的耐蚀性研究.材料保护[J].2002,Vol.35(2):12~14
    [8] 罗守福,胡文彬.镁合金的化学镀镍.轻合金加工技术[J].1997,Vol.25(2):28~29,44
    [9] Bruckner J,Gunzel J,etal. Metal plasma immersion ion implantation and deposition (MPIIID):chromium on magnesium, Surface and Coatings Technology. 103-104,1998:227~230
    [10] Rajah Ambat, W.Zhou Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters, Surface and Coatings Technology. 179,2004:124~134
    [11] 陈长军,王东生.镁合金激光表面改性研究进展.材料保护[J].2003,Vol.36(1):25~26
    [12] 边凤刚,李国禄,刘金海,等.镁合金表面处理的发展现状.材料保护[J].2002,Vol.35(3):1~4
    [13] 郭兴伍,丁文江.镁合金阳极氧化的研究与发展状况.材料保护[J].2002,35(2):1~3
    [14] Schreckenbach.J, Schlottig F, Marx G, et al. Preparation and microstructure characterization of anodic spark deposited barium titanate films.J Mater Res,Vol:13,1993:1437~1443
    [15] 薛文斌,邓志威.有色金属表面微弧氧化技术评述.金属热处理[J].第1期,2000:1~3
    [16] 蒋百灵,张先锋.铝、镁合金微弧氧化技术研究现状和产业化前景.金属热处理[J].2004,Vol.29(1):23~29
    [17] Sundararajan G, Ramakrishna L. Mechanisms underlying the formation of thick aluminum coatings through the MAO coating technology. Surface and Technology [J],Vol:167,2003:269~277
    [18] J.Musil, J.Vlcek. Magnetron sputtering of hard nano-composite coatings and their properties. Surface and Coatings Technology [J],142-144,2001 : 557~566
    [19] B.L.Mordike, T.Ebert. Magnesium properties-applications-potential. Materials Science and Engineering [J], A302,2001:37~45
    [20] 李建中,邵忠财,田彦文,等.不同含磷电解液在微弧氧化过程中的作用.中国腐蚀与防护学报[J].2004,Vol.24(4):222~225
    [21] 刘文亮.铝合金在不同溶液中微弧氧化膜层的性能研究.电镀与精饰[J].1999,Vol.21(4):9~11
    [22] 阎凤英,石玉龙,周旋.微弧氧化电解液配方改良的初步研究.电镀与涂饰[J].2003,Vol.22(1):5~7
    [23] Van T. B., Brown S.D. and Wirtz G.p. Mechanism of Anodic spark Deposition. Am, Ceram. Soc Bull [J], Vol:56,Iss:6,1977:563~566
    [24] Krysmann W., Kruze E, Diltrich K.H., Schneider H.G. Process characteristics and Parameters of Anodic Oxidation by spark Discharge (ANOF). Cyst. Res. Technology [J], Vol: 19, Iss: 7, 1984: 973~979
    [25] Wirtz G.P., Brown S.D., Knven W.M. Ceramic Coatings by Anodic spark Deposition. Mater.Manuf.Process [J], Vol:6,Iss: 1,1991: 87~115
    [26] Gnedenkov S.V., Gordienko P.S., Sinnebryukhov S.L., et al. Anti scuff coatings obtained by micro-arc oxidation of titanium alloys. Russian Journal of Applied Chemistry[J], Vol:73,Iss:1, 2000:6~9
    [27] Gnedenkov S.V., Vovna V.I., Gordienko P.S., et al. Chemical composition of antifriction Micro-arc Oxidation coatings on titanium alloy BT16. Protection of Metals[J], Vol:37,Iss:2, 2001:192~196
    [28] 薛文斌,邓志威,来永春,等.ZM5镁合金微弧氧化膜的生长规律.金属热处理学报[J].1998,Vol.19(3):42~45
    [29] 刘凤岭,骆更新,毛立信.微弧氧化与材料表面陶瓷化.材料保护[J].1998,Vol.31(3):22~24.
    [30] Bakovets V.V., et al. Zashch.Met, 22(3), 1986:440
    [31] 刘建平.微弧氧化技术及其发展.材料导报[J].1998,Vol.12(5):27
    [32] Rudilf Hradeovshy. Process of Forming a Silicate Coating on Metal [P].US Pat.4082626. 1978-04-04
    [33] Rudilf Hradcorsky. Method of Loating Aluminum With Alkali Metal Molybdenate-Alkali Metal Silicate or Alkali Metal Tungsten ate-Alkali Metal Silicate and Electrolytic Solutions Therepor [P].Us Pat,5275713.1991
    [34] Rudilf Hradcorsky. Loated Valve Metal Article Formed By Spark Anodizing [P]. Us,Pat,3956080.1976
    [35] Kurze P, Krysmann W, Schreckenbach J, Schwarz Th, Rabending K. Colored ANOF layers on aluminum. Cryst. Res. Technol [J], 1987,22(1):53~58
    [36] 邓志威,薛文斌,汪新福,等.铝合金表面微弧氧化技术.材料保护[J].1996,Vol.29(2):15~16
    [37] 姜兆华,辛世刚,王福平,等.(NaPO_3)6-NaAlO_2体系铝合金微等离子体氧化研究.材料工程[J].第7期,2000:40~42
    [38] 王永康,郑宏晔,李炳生,等.铝合金微弧氧化溶液中添加剂成分的作用.材料保护[J].2003,Vol.36(11):63~64
    [39] 张欣宇,方明,吕江川,等.电解液参数对铝合金微弧氧化的影响.材料保护[J].2002,Vol.35 (8):39~41
    [40] 蒋百灵,张淑芬,吴国建.镁合金微弧氧化陶瓷层耐蚀性的研究.中国腐蚀与防护学报[J].2002,Vol.22(5):300~303
    [41] 徐京辉,姚伟勇,范风华.影响产品盐雾试验的因素及预防对策.环境技术[J].第6期,1997:15~18
    [42] 卫中领,陈秋荣,郭歆聪,等.镁合金微弧氧化膜的微观结构及耐蚀性研究.材料保护[J].2003,Vol.36(10):21~23
    [43] 邓世均主编.高性能陶瓷涂层[M].北京:化学工业出版社,2004.116~117
    [44] 邓志威,薛文彬,陈如意,等.微弧氧化铝镁合金材料表面陶瓷化处理.表面工程杂志[J].1996,Vol.33(4):43~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700