黄沙坪铅锌多金属矿床成矿机理及其预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在充分分析和综合前人工作成果的基础上,以宏观地质为基础,重点对前人研究的较为薄弱的热力学计算、同位素分布及演化特征、微量元素分布及演化特征入手,以多因复成成矿理论为指导,对矿床的物质来源、矿床成因、矿床的成矿作用以及矿床定位预测作了许多新的尝试和研究。
     通过对比研究黄沙坪、水口山、东坡、瑶岗仙、香花岭五大矿田的区域构造特征、区域地球化学异常特征以及区域重磁异常特征,总结了湖南大型矿床产出的构造及重磁、化探异常特征。
     根据黄沙坪矿田的地质特征、岩浆岩岩石学和岩石化学特征、微量元素及稀土元素地球化学特征,对矿区岩浆来源、成岩机制以及演化特征进行了详尽的研究,得出矿区的成矿岩体的形成具有多源、多因、多阶段的特点的新认识。
     用挥发作用、混合作用、水岩交换作用模型考查碳酸盐岩的碳氧同位素变化原因,获得雨水+岩浆流体混合再与碳酸盐岩发生同位素交换作用的模式;用二组正常铅、短期内形成的异常、两阶段异常铅和简单三阶段异常铅等模式考察矿区铅同位素组成,获得两阶段异常铅模式可以很好解释矿区的铅同位素组成;用同位素平衡系数外推法获得两组δ_(34)S∑S值,两组δ~(34)S_(∑S)值表明热液中硫可能有岩浆和沉积地层两种来源。
     首次通过成矿物理化学环境研究,获得矽卡岩阶段成矿温度为430℃~570℃;成矿压力约为1000×10~5Pa;XCO_2在0.22~0.01之间;由于流体温度下降和H_20参与活动,使得晚期矽卡岩成岩流体温度下降,XCO_2下降;硫化物阶段成矿压力为0.9×10~5Pa~300×10~5Pa,盐度为13.9~34wt(%),成矿温度为200℃~350℃,并获得各成矿阶段的硫、氧和二氧化碳逸度值及pH值。
     通过硫化物阶段温度、氧逸度、硫逸度、pH值和矿物包裹体的盐度的测定,计算出硫化物成矿时金属元素的搬运形式,并得出第一阶段铜、锌和第二阶段铅、锌、银的搬运形式,主要以氯络合物为主,氢羟基络合物和硫化氢络合物次之;第二阶段碲是以HTe~-、HTeO_3~-、H_2TeO_3形式搬运为主。
     通过对黄沙坪铅锌多金属矿床地质特征、成矿地质条件、成矿作用、控矿因素、地球化学特征以及成矿过程的分析,认为矿床的形成经历了地台阶段的沉积成矿阶段、沉积成岩成矿阶段和地洼阶段的岩浆热液成矿阶段。并通过对黄沙坪铅锌矿成矿岩体、构造、地层多因素耦合成矿定位机制的综合研究,总结了找矿标志;同时针对具体的找矿预测靶区开展了卓有成效的地质、构造地球化学和三频激电找矿预测研究。
Huangshaping lead-zinc deposit is a large-scale oer deposit, which is needed to find new resource urgely because of long time mining. Therefor it has a great theory and practice significance for researching for mineralization mechemism and metallogenic prediction. From points of isotopic and trace elements compostion and their evolution features, ad based on the polygenetic metallogenic theory, the origin of mineralization material, ore deposit genetics, minerogenesis and location prediction of orebodies were thoroughly researched.
     The anomaly characteristics of regional structure, geochemistry, magnetogravity were concluded by comparing their features of Huangshaping, Shuikoushan, Dongpo, Yaogangxian and Xianghualing polymetal ore deposits.
     Based on the features of geology, magmatic rocks' lithology and petrochemistry, trace elements and rare earth elements, the source and diagenesis mechanism of magmatc rocks and their evolution were deeply discussed from which the new understanding of multiple sources, polygenetics and multi-phase were gained
     Checking the reason of change of carbon and oxigen isotope in barbonate by volatile action, mixing action rock-water exchanging action has comfirmed that there is an isotope exchanging in carbonate for rainwater + magma fluid and carbonate. The anomaly lead pattern with two stages can explain the isotope compostion by checking the patterns of two groups of normal lead, two stage anamaly lead formed short time and three stage anamaly lead. The two groups ofδ~(34)SΣS values obtained by extrapolation confirmed that there sedimentary and magmatic origins for sulfur in hydrothermal solution.
     The researching on physical-gecchemical environment has shown that the skarn-formed temperature are 430℃~570℃; ore-formed pressure is 1000×10~5Pa: Xco_2 is between 0.22~0.01, and the temperature of early stage skarn-formed fluid is more high and with high Xco_2.With the temperature decreasing of the fluid and joining of H_2O, which made temperature and Xco_2 of later skarn-formed fluid down.The pressure in the stage of mineralization for sulphide are 0.9×10~5pa~300×10~5Pa, the salinity are 13.9~34wt(%) and temperature are 200℃~350℃.
     The migration forms of metal elements have been obtained by the temperature, oxgen fugacity sulfur fugacity pH value and salinity of mineralization stage, the migration forms of lead zinc and silver are mainly chlorine complex and hydroxyl complex and hydrogen sulfide complex in the first stage and HTe,HTeO_3,H_2TeO_3 in the secondary stage.
     By synthetic analysis the geological features, mineralization conditions, metallogeny, ore-controlling factors, geochemical features and ore-forming process, it was suggested that formation of Huangshaping ore deposit underwent multiple phases of sedimentary mineralization, sedimentary and diagenesis mineralization phases in platform stage and magmatic fluid mineralization phase. Furhtermore, by integrating different location factors of the orebodies including magmatic intrusions, structures, strata, symbols of ore-hunting were summarized. Meanwhile, synthesis exploration works such as geological survey, structure geochemical and geophysical survey aimed to the target area were undertaken.
引文
[1] Abramovich I I. Klushin I G. Geodynamics and Metal Logeny of Folded Belts[J] . Oxford &IBHPublishing Co. PVT. LTD. 1990.
    [2] Agterberg F P. Application of Imge Analysis and Multivariate Analysis to Mineral Resource[J]. Economic Geology. 1981. 76: 1016~1031.
    [3] Agterberg F P. Automatic Contouring of Geological Map to Detect Target Area of Mineral Exploration[J]. Mathematical Geology. 1974. VOL. 6. No. 4.
    [4] Agterberg F P. Geomathematical Ecalution of copper and Zinc Potential of the Abtibi Area, Ontario and Quebec [J] . Geological Survry of Canada. 1972.
    [5] Agterberg F P. Kelly A M. Geomathematical Methods fos use in Prospecting[J]. Canadaian Mining Journal. 1971. No. 5. 61~72.
    [6] Ahmad. M. 1987. Mineralogical and Geochemical Studies of the Emperor Gold. Telluride deposit. Figi Econ Geol. P345-370.
    [7] Augustithis S S. Observation on petrology—tectonics—metallogeny [J]地学前缘,1998, 5(3): 51~58.
    [8] Bliss JD. Developments in Mineral Deposit Modeling[J] . U. S. Geological Survey Bulletin. 1992.
    [9] Bonham Carter G F. Agterberg F P. Wright D E. Integration of Geological Datasets for Gold Exploration in Nova Scotia[J]. Photo Grarnmetry and sensing. Vol. 54. No. 11:1585~1592.
    [10] Bonnemaison M. Marcoux E. Auriferous mineralization in some shear zones: a three stage-model ofmetallogenesis [J]. Mineralium Deposita. 1990. 25(2): 96~106.
    [11] Bourcier. W.L., and Barnes. H L., 1987. Ore solution chemistry -Vll. stabilities or chloride and bisulfide complexes ofzioce to 350℃. Econ Geol V82 P1839-1863.
    [12] Bowan R, et al. Contact skarn formation at Elkhorn mountains Ⅱ Origin and Evolution of C-O-H Skarn Fluids. Econ Geol 1985,V285,621-660.
    [13] Bowman J.R, e .1984. contact skarn formation at Elkhorn Montana. J. P-T component activity conditions of early skarn formation Am.Jour Sci. V284 P597-650.
    [14] Bown P.E, Bowman. J R and Kelly WC. 1985.
    [15] Bryant D G. Intrusive breccias associated with ore, Warren(Bisbee) Mining District, Arizona [J]. Economic Geology. 1968. 63(1): 1~12.
    [16] Craig J.R., etl. 1973. Themochemieal Approximations for Sulfosalts Econ Geol. V68 P493-506.
    [17]Crerar DA. etl. 1978. Solubility of the buffer assemblage pyrite+ pyrrhotite + magnetite in Nacl Solution from 200℃ to 350℃: Geochim et Cosmochim. Acta. V42 P1427-1437.
    [18]Doe B.R.,1974.The application of the lead isotopes to the problems of ore genesis and ore prospet evoluation. A Econ Geol. V69 P75 7-776.
    [19]Eckstrand O R. Sinclair W D. Thorpe R I. Geology of Canadian Mineral Deposit Types [J] . Geological Survry of Canada. 1996.
    [20] Ferry J M, Dipple G M . Fluid flow, mineral reactions, and metasomatism [J]. Geology. 1991: 211—214.
    [21]Freenwood G J. 1967. Wollastonite stability in H_2O-CO_2 mixtures and occurrence in a contact-metamorphic aureole near salmo. British Columbia. Canada, Am mina.52 1669-82.
    [22]Fyfe W S. Price N J. Thompson A B. Fluid in the Earth' s crust [M] . Elsevier ScientificPublishing Company. New York. 1978: 1-365.
    [23] G arven G. Bull S W. Fluid flow modeling of the HYC oer system, Mc Arthur Basin, Australia[A] . In: geochemistry of Hydrothermal ore Deposits. Edited by Hubert L B. New York. 1997: 849-852.
    [24] G arven G. Raffensperger J. Hydrogeology and geochemistry of ore genesis in sedimentary basins[A] . In: geochemistry of Hydrothermal ore Deposits. Edited by Hubert LB. New York. 1997: 125-289.
    [25]Geigove Simon. 1996. Phase Relations among selenides Sulfides Tellurides and Oxides. I Thermodynamic Properties and Calculated Equilibria. Econ Geol. V91 P1183-1208.
    [26]Geigoze Simon. 1977. Phase Relation among Selenides. Sulfides Tellurides and Oxides: II. Applications to Selenide-Bearing Ore Deposits. Econ Geology.
    [27]Helgeson. H.C., 1969 Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am Jour. Sci., V267 P729-804.
    [28]Helgeson. H.C., 1978 Summary and critique of the thermodynamic properties of rock-forming minerals Am.Jour Sci., V278A 229P.
    [29] Kelly, Rye. Geology fluid inclusion and stable isotope studies of the Sn-W deposits of Panasqueira, Portugal. Econ Geol, 1974:1721 -1822.
    [30]Kerrick.D.M.,1974. Review of metamorphic mixed-volatile equilibria. Am. mineralogist. V59 P29-762.
    [31]Kirkham R V. Sinclare W D. Thirpe R I. Duke J M. Mineral Deposit Model ing[J] . Geological Association of Canada . 1993.
    [32] Knox Robinson C M. Wyborn L A I. Towards A holistic Exploration Strategy: Using Geographic Information Systems as a Tool to Enhance Exploration[ J ] . Australian Journal of Earth Sciences. 1997. Vol. 44: 453—463.
    
    [33]Laznicka P. Empirical Metalogeny, Part A and Part B [J]. Elsevier. 1985.
    [34]Lister G S. Davis G A. The origin of metam orphic core complexes and detachment fault formed during Tertiary continental extention in the Northern Colorado River region, USA [J]. Journal of Structural Geology. 1989. 11(1—2): 65—94.
    [35] Lowell J D. Nelson T H. Genik G J. et al . .Petroleum and plate tectonics of the southern Red Sea [A]. In: Fischer A G. Judson S. eds. Petroleum and Globe Tectonics [C]. Princeton: Princeton University Press. 1975: 129—153.
    [36]Mortean, et al. Rare-earth element and oxygen isotope studies of altered Variscan granites. The Wesxern Harz Germany and Southern Sardinia (Italy).chemical Geol,1986.54:53-68.
    [37]Munksgard, et al. Oxygen isotope systematics indicating large-scale circulation of fluid in granite rocks from southwest Sweden. Chemical Geol,1985, 51:238-246.
    [38]Munksgard,Zeck. Oxygen isotope systematics of a strongly by recrystalized granite rock complex Grenvillian Belt SW Sweden. Contr. Min. Petrol, 1984,85:676-730.
    [39]Nablek H,et al.Vapor phase exsolution as a controlling farctor in hydrogen isotope variation ingranitic rocks the norch peakg granitic stock utah. Earth Planet Sci Lett 1983.V66.137-150.
    [40]Naumov GB.,etl. 1974. Handbook of thermodynamic data U.S.Dept of Commerce Natl Tech Inf service 328.
    [41]Newton.R.C. 1966. Some calc-silicate equilibrium relations. Am jour sci. V264 p204-222.
    [42]Norton D L. Cathles L M. Breccia pipes, products of exsolved vapor from magmas [J]. Economic Geology. 1973. 68(3): 540—546.
    [43]Ohmoto. H. and Rye. Ro., 1979 Isotope of Sulfur and Carbon. In Geochemistry of Hydrothermal ore Deposits.(ed. H.L Barnes), and Edition. John Wiley and Sons. New York, P509-567.
    [44] Ohmoto. H., 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol. V67 P551-54.
    [45]Ohmoto.H and Goldhaber M.B., 1997. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits (ed.HL. Barnes), 3rd Edition. John wiley and sons. New York. P517-611.
    [46] Peter, Taylor. An oxygen isotope study of water-rock in teraction in the granite of cataract Gulch, Western San Juan Mountains. Colerado. Bull Geol Soc Am, 1986,97:595-602.
    [47]Petrologic and stable isotope constrants on the source and evolution of skarn-forming fluids at pine creet. California. Econ. Geol., 81 7272-95.
    [48] Philips G N. Groves D. Kreeich R. Facters in the formation of the giant Kalgoorlite gold deposit[J] . Ore Geology Reviews. 1998. 10(3-6): 295—317.
    [49]Potter.R.W., II 1977. The volumetric properties of aqueous sodium chloride solutions from 0℃ to 500℃ at pressures up to 2000 bars based on regression of available data in the literation: U.S Geol, Surrey Ball. 1421.C.P.136.
    [50]Sawkins F J. Metal Deposits in Relation to Plate Tectonics[ J ] . SpringER Verlag, Berlin. 1990. 461.
    [51]Seward. T M. 1976. The stability of chloride complexes of silver in hydro thermal. Solutions up to 350℃ Geochim et Gosmochim Acta. V44 P1329-1341.
    [52] Seward.T. W, 1984. The formation of lead(II) chloride compleses to 300℃. Geochin et cosmochim Acta. V48 P121-134.
    [53] Sharp J E. Cave Peak, a Molybdenum—Mineralized Breccia Pipe Complex in Culberson County, Texas [J]. Economic Geology and the Bulletin of the Society of Economic Geologists. 1979. 74(3): 517—534.
    [54]Sheppard S MF. Nielesen R L. Taylor HP Jr. Oxygen and hydrogence isotope ratios of clay minerals from porphyry copper deposits [J]. EconomicGeology. 1969. (64): 755-777.
    [55]Taylor H P Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition [J]. EconomicGeology. 1974. (69): 843— 883.
    [56] Taylor H.P, et al. Stable isotope studies of matasomatic Ca-Fe-Al-Si skarn and associated metamorphic and igneous rock. Osgood Mountains. Nevada. Contr. Min. Petrol, 1977, V63.p1-50.
    [57] Taylor H.P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. Geochemistry of hydrothermal Ore Deposit. 1997 Third edition: New York. John Wiley and Sons.229-302.
    [58] Taylor H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol. 1974.69.843-883.
    [59] Valley J W., 1986. stable isotope geochemistry of metamorphic rocks. In stable isotopes in High Temperature Geological processes (J W Valley. HT Taylor J r and R O'neil) rev. Mineral., 16 445-489.
    [60] XiAomao Zhang. 1994. Calculated stability of aqueous Tellurium Species. Calaverite and Hessite at Elevated Temperatures. Econ Geol. V89 P1152-1166.
    [61] Xiaomav Zhang. 1994. Petrological mineralogical. Fluid Inclusion. And Stable Isotopes Studies of the Gies Gold-Silver. Telluride Deposit. Judith Mountains. Momana Econ Geol. V89 P602-627.
    [62] 白大明,刘光海.甚低频电磁法在老硐沟氧化淋滤型金矿勘查中的应用效果[J].地质与勘探,1998,34(2):46~49.
    [63] 曹利国.核地球物理勘查方法[M].北京:原子能出版社,1991:1~2.
    [64] 陈国达.成矿构造研究法[M].北京:地质出版社,1985:1~376.
    [65] 陈国达.地台活化及其找矿意义[M].北京:地质出版社,1959:1~55.
    [66] 陈国达.多因复成矿床并从地壳演化规律看其形成机理[J].大地构造与成矿学,1982,6(1):1~55.
    [67] 陈好寿.同位素地球化学研究[M].浙江大学,1994.
    [68] 陈永良,李学斌,许亚光.秩特征分析方法在矿产资源预测中的应用[J].地质与勘探,1998,34(2):37~42.
    [69] 陈毓川,朱裕生。中国矿床成矿模式[M].北京:地质出版社,1993:1~7.
    [70] 陈毓川.矿床的成矿系列研究现状与趋势[J].地质与勘探,1997,33(1):21~25.
    [71] 戴福盛.构造蚀变岩成矿观点在云龙锡矿找矿上的应用[J].地质与勘探,1990,26(3): 63.
    [72] 高乾兰.放射性测量法寻找斑岩铜矿床[J].桂林冶金地质学院院报,1985,5(2):162.
    [73] 华东.新疆北部地质矿产遥感[M].北京:科学出版社,1995:1~244.
    [74] 绍勋、段家瑞、刘继顺等.韧性剪切带与成矿[M].北京:地质出版社.1996:1~16.
    [75] 德乐,魏文芹,王可勇.X射线荧光技术及其在江西金山地质找矿上的应用效果[J].地质科技情报,1993,12(3):89~92.
    [76] 旺亮,吕瑞英,高怀忠等.矿床统计预测方法流程研究[J].地球科学,1995,20(2):128~133.
    [77] 国夫,叶树林,万骏.地面氡法测量技术在普查层间氧化型砂岩铀矿中应用的可行性探讨[J].矿床地质,1998,17(增刊):913~916.
    [78] 克斯.D.P和辛格.D.A编.宋后庆、李文祥、朱裕生等译:矿床模式[M].北京:地质出版社,1990年第1版.
    [79] 斯.地电化学勘探法[M].张肇元译.北京:地质出版社,1986:5~50.
    [80] 李春昱,王荃,刘雪亚.中国的内生成矿与板块构造[J].地质学报,1981,55(3):195~204.
    [81] 李人澍.成矿系统分析的理论与实践[M].北京:地质出版社.1996:1~15.
    [82] 李先福,余研.湖南桃林幕阜山地洼期变质核杂岩及剥离断层有关的铅锌矿化作用[J].大地构造与成矿学,1991,15(2):90~98.
    [83] 刘伟.超临界成矿流体地球化学研究及其展望[J].矿产与地质,2003,17(6):663~668.
    [84] 卢宇,李师兰,余成就.地质异常理论在找矿靶区优选与评价中的应用一以新疆“305”项目《阿其克布拉克一梧桐沟一带金铜成矿靶区优选与评价》为例[J].地质与勘探,1996,32(1):7~12.
    [85] 吕古贤.构造物物理化学成矿理论问题探讨[J].大地构造与成矿学,2003,27(3):250~263.
    [86] 罗先熔.地电提取测量寻找隐伏矿研究[J].地质与勘探,1989,(12):43~51.
    [87] 马东升.地壳中大规模流体运移的成矿现象和地球化学示踪一以江南地区中一低温热液矿床的地球化学研究为例[J].南京大学学报,1997,33:1~10.
    [88] 倪师军,滕彦国,张成江等.成矿流体活动的地球化学示踪研究综述[J].地球科学进展,1999,14(4):346~352.
    [89] 潘勇飞.原生金矿床磁异常特征[A].见:中国地质学会“七五”地质科技重要成果学术交流会议论文选集[C].北京:北京科学技术出版社.1992.363~365.
    [90] 彭程电.略论个旧锡矿床地质找矿的新发现及其途径[J].矿床地质,1986,5(3):37~48.
    [91] 邵跃,沈时全.岩石地球化学方法寻找隐伏热液矿床几个技术问题的讨论[J].地质与勘探,1992,28(7):45~48.
    [92] 谭义东.γ,能谱测量和甚低频波阻抗法在评价金家庄金矿区异常上的应用[J].地质与勘探,1991,27(3):37~43.
    [93] 田在艺,常承永,钱绍兴.隐蔽油气藏的勘探[A].见:《大庆石油地质与开发》编辑部.中国隐蔽油气藏勘探论文集[C].哈尔滨:黑龙江科学技术出版社.1984:39~49.
    [94] 涂光炽.过去20年矿床事业发展的概略回顾[J].矿床地质,2001,20(1):1~9.
    [95] 王世称,陈永清.成矿系列预测的基本原则及特点[J].地质找矿论从,1994,9(4):79~85.
    [96] 王永基.褶皱构造与隐伏矿床预测[J].地质与勘探,1990,26(7):10~15.
    [97] 王振东.浅层地震勘探应用技术[M].北京:地质出版社,1988:1~296.
    [98] 王志明.地球物理探矿方法在金矿勘查中的应用研究[J].矿产与地质,1996,10(2): 131~135.
    [99] 肖荣阁,张宗恒,陈卉泉等.地质流体自然类型与成矿流体类型[J].地学前缘,2001,8(4):245~251.
    [100] 谢学锦.勘查地球化学的现状与未来展望[J].地质论评,1996,42(4):346~356.
    [101] 徐相成.射线荧光法勘查金矿的效果[J].地质与勘探,1989,25(9):42~45.
    [102] 徐兴旺,蔡新平,秦大军等.山东七宝山角砾岩筒流体温压双重致裂成因机制与金铜成矿[J].中国科学(D辑),1999,29(3).
    [103] 徐兴旺,蔡新平.隐伏矿床预测理论与方法的研究进展[J].地球科学进展,2000,15(1):76~83.
    [104] 阳正熙.西方国家的”成矿规律与成矿预测研究”的发展和现状[J].成都理工学院学报,2000,27(增刊):259~263.
    [105] 杨长春,刘兴材,李幼铭等.地震叠前深度偏移方法流程及应用[J].地球物理学报,1996,39(3):409~415.
    [106] 杨开庆.动力成岩成矿理论的研究内容和方向[J].地质力学研究所所刊,1986,(7):1~14.
    [107] 杨开庆.构造动力作用中地球化学作用[J].大地构造与成矿学,1984,8(4):327~336.
    [108] 叶连俊.生物有机质成矿作用[M].北京:海洋出版社.1996:1~278.
    [109] 余振华、邱秀文.重力逼近法在预测油气资源中的应用[A].见:王思敬、易善峰.90年代的地质科学[C].北京:海洋出版社.1992.226~233.
    [110] 於崇文,岑况,鲍征宇等.成矿作用动力学[M].北京:地质出版社,1998:1~230.
    [111] 袁奎荣、邹进福.隐伏花岗岩预测及深部找矿的进展和展望[J].桂林冶金地质学院院报,1992,12(3):227~233.
    [112] 翟建华.西澳大利亚东部金矿田卡利翁地区的黄金找矿[J].地质与勘探,1992,26(2):51.
    [113] 翟裕生.走向21世纪的矿床学[J].矿床地质,2001,20(1):10~14.
    [114] 张德润.塔里木盆地高精度航磁测量的主要地质效果及油气勘探选区问题[A].见:中国地质学会“七五”地质科技重要成果学术交流会议论文选集[C].北京:北京科学技术出版社.1992:726~729.
    [115] 张理刚,陈振胜,刘敬秀等.胶东焦家式金矿水一岩交换作用一成矿流体氢氧同位素研究[J].矿床地质,1994,13(3):193~200.
    [116] 张理刚.成岩成矿理论及找矿[M].北京:北京工业大学出版社,1989:1~100.
    [117] 张理刚.稳定同位素在地质科学中应用[M].西安:陕西省科学出版社,1985:1~66.
    [118] 张连昌,赵伦山.成矿流体研究的若干进展与动态[J].地质与勘探,2001,37(1):7~10.
    [119] 张文淮,张志坚,伍刚.成矿流体及成矿机制[J].地学前缘,1996,3(3~4):245~252.
    [120] 张文佑.断块构造导论[M].北京:石油工业出版社,1984,267~326.
    [121] 张学文,张菊康.四维地震技术与油藏管理[J].地质科技情报,1998,17(2):55~59.
    [122] 章桦,侯胜利,程业勋等.桂西地区核地球物理学α卡法、γ能谱法、X射线荧光法现场勘查金矿研究[J].地质与勘探,1993,29(11):45.51.
    [123] 章桦,谢庭周,曹利国等.X射线荧光探矿技术[M].北京:地质出版社,1984,117~140.
    [124] 赵利青.蚀变带元素地球化学成矿预测法一以金龙山微细浸染型金矿为例[J].地质找矿论丛,1997,12(3):41~48.
    [125] 赵伦山.胶东金矿成矿构造地球化学动力学[J].现代地质,1996,10(2):219~221.
    [126] 赵鹏大,胡旺亮,李紫金.矿床统计预测[M].北京:地质出版社,1983:59~64.
    [127] 赵鹏大,孟宪国,地质异常与矿产预测[J].地球科学,1993,18(1):39~46.
    [128] 赵鹏大,王京贵,饶明辉.中国地质异常[J].地球科学,1995,20(2):117~127.
    [129] 赵玉琛.凹山玢岩铁流矿田的勘查历史和找矿预测[J].地质与勘探,1990,26(2):10~16.
    [130] 中国科学院矿床地球化学开发研究实验室.矿床地球化学[M].北京:地质出版社,1997:1~29.
    [131] 钟立志.云南西部某地隐埋石英脉型锡矿找矿方法试验及其效果[J].地质找矿论丛,1987,2(3):72~79.
    [132] 周瑞.~(218)po测氡及其找矿效果的初步探讨[J].华东地质学院学报,1983,9(2):60~68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700