黑龙江完达山—太平岭成矿带成矿系列与找矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质找矿工作目前已由直接的露头找矿阶段而转变为以间接推断为主的理论找矿阶段。地质异常成矿预测就是我国学者根据新时期地质找矿需要而发展的新的成矿预测方法,其机理在于在地质异常致矿新思路的指导下,运用多学科信息,以非线性科学和高新信息处理技术如GIS平台为手段,以研究和圈定不同尺度和不同类型的地质异常为基本途径,实现对工业矿体的逐渐逼近。
     黑龙江东南部完达山-太平岭成矿带为该省重要的多金属成矿带。由于该成矿带多属森林覆盖区,基岩出露少,覆盖较厚,地质工作程度较低,仍有较大的找矿潜力,急需开展成矿预测方面的研究工作。本次工作对该成矿带的发现的各类贵金属、有色金属矿床进行总结,发现该成矿带主要发育斑岩型、矽卡岩型、热液型和岩浆熔离-贯入型等矿床系列,代表性的矿床包括四平山金矿床、先锋北山金矿床、跃进山铜矿床、五星铂-钯-铜-钴-镍矿床、四山林场银金矿床和洋灰洞子铜矿床等。通过对该成矿带成矿系列和成矿规律的总结,为矿产预测打下坚实的基础。应用GIS技术开展了矿资源预测和方法研究工作,提交了矿产资源预测成果和预测技术方法。
     在预测的三个图幅中,共圈出Ⅰ级异常5处,Ⅱ级异常5处,Ⅲ级异常23处,其中:穆棱镇公社幅圈定Ⅰ级异常3处,Ⅱ级异常3处,Ⅲ级异常10处。鸡东县幅圈定Ⅱ级异常1处,Ⅲ级异常11处。珍宝岛幅圈定Ⅰ级异常2处,Ⅱ级异常1处,Ⅲ级异常2处。
     经验证本次所预测的“珍宝岛幅IAuAg1号靶区”内已发现岩金矿,鸡东县幅的预测的IIAu1号异常在已知银金矿床的外围的扩大了矿体规模,并在矿体的外围新发现了铜钼矿体。所预测的靶区成矿前景较好,对指导找矿有重要的意义。对本次工作圈定的靶区和GIS技术在完达山-太平岭地区地质异常成矿预测研究靶区统计表中所建议验证的靶区进行验证。
Geological prospecting has entered into the stage of theoretical exploration mainly by the indirect deduction rather than facing the outcrops directly. Geoanomaly-based mineral resource prediction is one of the new theories suggested by Chinese geologists for the metallogenic prognosis to fulfill the urgent needs of mineral prospecting in the new century. The philosophy of this new method is to study and contour the geoanomalies with different proportions and types utilizing the multidisciplinary information, and nonlinear scientific and high-tech information processing technologies such as GIS platform, supervised by the thoughts of geoanomaly associated with mineral resources, so as to approaching the industrial ore body gradually.
     Wandashan-Taipingling area located in the southeast of Heilongjiang is the most important polymetallogenic zone of the province. Covered with forests and thick Quarternary sediments in the most of the area, this metallogenic zone still has high patential for the geological prospecting when one noticed that the geological works are not enough because few rocks outcropped. The research on the metallogenic prognosis are badly need for this area. This work summarized the metallogenesis of the noble and nonferrous mineral deposits, and found that main mineral deposits series in the area were composed of porphyry-, skam-, hydrothermal, and magmatic-immiscibility-injection types. The representatives include Sipingshan and Xianfengbeishan Au deposits, Yuejinshan and Yanghuidongzi Cu deposits, Wuxing Cu-Pd-Cu-Co-Ni deposits, Sishanlingchang Ag-Au deposits. On the basis of comprehensive collections of the geological information of Wandashan-Taipingling polymetallogenic zone, this work conducted the metallogenic prognosis for this area utilizing the GIS platform supervised by the theory of geoanomaly-based mineral resource prediction. The outcome and methodologies of the thesis has been submitted.
     This work contoured 14 anomalies of grade one, 11 anomalies of grade two, and 32 anomalies of grade 3 for the total five maps. Dalomizhengongshe map has 1 anomaly of grade two, 4 anomalies of grade three. 9 anomalies of grade one, five anomalies of grade two and five anomalies of grade 3 were discovered in the Hualinzhen map. The work contoured 3 anomalies of grade one, 3 anomalies of grade two and 10 anomalies of grade three. 1 anomaly of grade two and 11 anomalies of grade three distributed in the Jidong map. Zhenbaodao map is of 2 anomalies of grade one, 1 anomaly of grade two and 2 anomalies of grade three.
     Rock gold ore has been discovered in the IAuAg1 target region of Zhenbaodao map predicted by this work. The scale of the ore body of the predicted IIAu1 anomaly has been increased and the Cu-Mo ore has been found in the outer region of the known Au-Ag deposit during the conduction of the project. The prospecting scope of the predicted target region is well for supervising the geological exploration. We propose that the verification work could be conducted in these predicted target regions.
引文
[1] Trautwein C M. "GIS applications to conterminous United States Mineral AssessmentProgram Investigations", Abstracts of GIS Symposium on Integrating Technology andGeosciences Applications, 1988, 20‐21.
    [2] Agterberg F P. Systematica Program Proaeh to dealing with uncertainty of geoscienceinformation in mineral exploration. Application of Computers and Operations ResearchingThe Mineral Industry,1989a:165‐178.
    [3] Agterberg F P. Computer programs for mineral exploration. Sciences,1989b,245(4913):76‐81.
    [4] Cheng Q,Agterberg F P. Fuzzy weights of evidence method and its application in mineralpotential mapping. Natural Resources Research, 1999, 8(l): 27‐35.
    [5] Ping A,. Wooil M M, and Andy R. Application of fuzzy set theory to integrated mineralexploration. Canadian Journal of exploration geophysics,1991, 27(l):l‐10.
    [6] Luo X,Dimitrakopoulos R. Data‐driven fuzzy analysis in quantitative mineral resourceassessment. Computers & Geosciences,2003,29: 3‐13.
    [7] Singer D A, and Kouda R. Examining risk in mineral exploration. Natural ResourcesResearch,1999,8(2): 111‐122.
    [8] Singer D A,Kouda R. Application of a feed forward neural network in the search for Kurokodeposition the Hokuroku district Japan. Math.Geol., 1996,28: 1017‐1023.
    [9] Porwal A,Emmanuel J M,and Hale A. A hybrid fuzz weights of evidences model formineral potential mapping. Natural Resources Research,2006,21:12‐19.
    [10] An P. Spatial reasoning techniques and integration of geophysical and geologicalinformation for resource exploration. [PhD dissertation]. Manitoba:The University ofManitoba,1992.
    [11] An P,Moon W M,Bonham‐Carter G F. An object oriented knowledge representationstrueture for exploration data integration. Nonrenewable Resources,1994, 3:132‐145.
    [12] Chung C F,Fabbri A G,The representation of geosciences information for data integration.Nonrenewable Resources,1993,(2): 122‐139.
    [13] Wright D F,Bonham‐Carter G F. VHMS favorability mapping with GIS‐based integrationmodels, ChiselLake‐Anderson Lake area. In: Bonham Carter,Galley,Hall (Eds.),EXTECHI:A multidisciplinary approach to Massive Sulfide Research in the Rusty Lake‐Snow LakeGreenstone Belts, Manitoba. Geol. Survey Can. Bull.,1996:426:339‐376.
    [14] Lord D,Etheridge M A,Willson M,Hall G,Uttley P J. Measuring exploration success: analternative to the discovery‐cost‐per‐ounce method of quantifying exploration success. SEGNewsletter, 2001,45,l: 10‐16.
    [15] Clark J R, Meier A L. Enzyme leaching of surficial geo‐chemical samples for defininghydromorphic trace‐element anomalies associated with precious/metal mineralizedbedrock buried beneath glacial overburden in northern Minnesota. Gold, 1990, 2: 189‐207.
    [16] Antropova L V, Goldberg I S, Voroshilov N A. New methods of regional exploration for blindmineralization: application in the USSR. J Geochem Explor, 1992, 43: 157‐166.
    [17] WANG Xueqiu. Leach of mobile forms of metals in overburden: development andapplication. J Geochem Explor., 1998, 61: 39‐55.
    [18] Cameron E M,Leybourne M. Sampling in Chile 1999. Report,CAMIRO Deep‐PenetratingGeochemistry,1999. Phase II.,16 pp. Http://www.appliedgeochemists.org.
    [19]赵逊.第31届国际地质大会的启示.国土资源科技管理,2001,18(2):1-2
    [20]陈毓川.建立我国矿产资源可持续安全供应体系及对策.国土资源,2002,(5):4-7.
    [21]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展.地学前缘,2003,10(2):455‐462.
    [22]谢学锦,邵跃,王学求主编.走向21世纪矿产勘查地球化学.地质出版社,1999,1‐256.
    [23]朱裕生,李纯杰,王全明,等.成矿预测方法通则之一—成矿地质背景分析.地质出版社,1997,1-143.
    [24]黄永卫.黑龙江省东南部完达山—太平岭一带浅成低温热液矿床区域成矿规律及找矿前景研究. [博士学位论文].北京:中国地质大学(北京),2010.
    [25]黑龙江省地质矿产局.黑龙江省区域地质志.地质出版社,1993,1‐160.
    [26]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化.北京:地质出版社,1999.
    [27]赵春荆,彭玉鲸,党增新,等.吉黑东部构造格架及地壳演化.沈阳:辽宁大学出版社,1996.
    [28]韩振新,综衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化.哈尔滨:黑龙江人民出版社,2004.
    [29]徐文喜.黑龙江金厂金矿金(铜)矿田地质特征、成矿规律与成矿模式. [博士学位论文].北京:中国地质大学(北京),2009.
    [30]董传统.黑龙江省鸡东县金厂沟铜钼矿床地质特征及找矿潜力评价. [硕士学位论文].长春:吉林大学,2009.
    [31]梁树能.黑龙江省鸡东与基性杂岩有关的Cu‐Ni‐Pt矿床成因研究. [硕士学位论文].长春:吉林大学,2007
    [32]孙荣祥,全传顺.黑龙江虎林先锋北山金矿床蚀变及矿床特征.黄金,2003,24(6):24‐30.
    [33]全传顺等2008.黑龙江省第一地质勘察院黑龙江省虎林市四平山岩金矿深部普查报告.(未刊).
    34]汪明启,孔牧,任天祥,等.黑龙江森林沼泽景观区异常追踪和查证方法研究.物探与化探,2002,26(2):97‐101.
    35]胡忠贤,程志中,王学求.黑龙江省中部森林沼泽区金在土壤A层中的富集规律.物探与化探,2008,32(1):33‐35.
    36]胡忠贤,杨兆武,程志中.等.黑龙江省中部森林沼泽区超低密度深穿透地球化学调查采样介质的确定.物探与化探,2005,29(2):105‐108.
    37]王世称,陈永良,夏立显.综合信息矿产预测理论与方法.北京:科学出版社,2000.
    38]王世称,王龄天.综合信息解译原理与矿产预测图编制方法.长春:吉林大学出版社,1989.
    39]肖克炎,张晓华,宋国耀,等.应用GIS技术研制矿产资源评价系统.地球科学,1999,24(05):525‐528.
    40]胡光道,陈建国.金属矿产资源评价分析系统设计.地质科技情报,1998,17(1): 45‐49.
    41]赵鹏大.矿产勘查理论与方法.武汉:中国地质大学出版社,2001.
    42]邵军.黑龙江省呼玛一漠河地区岩金矿综合信息成矿预测. [博士学位论文].长春:吉林大学,2005.
    43]谭承印.黑龙江省主要金属矿产构造‐成矿系统基本特征. [博士学位论文].北京:中国地质大学(北京),2009.
    44] Coleman R G. Continental growth of Northwest China. Tectonics,1989,8(3):621‐635.
    45]双宝,田世良,李守义,等.黑龙江省主要金属矿产找矿潜力分析.金属矿山,2008,383(5):89‐92.
    46]赵鹏大,池顺都.初论地质异常.地球科学—中国地质大学学报,1991,16(3):241‐248.
    47]赵鹏大,陈永清.地质异常矿体定位的基本途径.地球科学—中国地质大学学报, 1998,23(2): 111‐114.
    48]赵鹏大,孟宪国.地质异常与矿产预测.地球科学—中国地质大学学报,1993,18(1):39‐46.
    49]赵鹏大,池顺都.当今矿产勘探问题的思考.地球科学—中国地质大学学报,1998,23(1):70‐74.
    50]赵鹏大,池顺都,陈永清.查明地质异常:成矿预测的基础.高校地质学报,1996,2(4):361‐373.
    51]赵鹏大,池顺都.初论地质异常.地球科学—中国地质大学学报,1991,16(3):241‐248.
    52]赵鹏大,王京贵,饶明辉,等.中国地质异常.地球科学‐中国地质大学学报,1995,20(2):117‐127.
    53]赵鹏大.“三联式”资源定量预测与评价—数字找矿理论与实践探讨.地球科学—中国地质大学学报,2002,27(5):482‐489.
    [54]赵鹏大.成矿定量预测与深部找矿.地学前缘,2007,14(5):1‐9.
    [55]左仁广.基于地质异常的矿产资源定量化预测与不确定性评价. [博士学位论文].武汉:中国地质大学,2009.
    [56]赵彬彬.地质异常各向异性定量化方法及其应用研究. [硕士学位论文].北京:中国地质大学(北京)硕士论文,2008.
    [57]成秋明,赵鹏大,陈建国,等.奇异性理论在个旧锡铜矿产资源预测中的应用.成矿弱信息提取和复合信息分解.地球科学—中国地质大学学报,2009,34(2):232‐242.
    [58]黄静宁.深层次致矿异常信息提取及其找矿应用研究. [博士学位论文].北京:中国地质大学(北京),2010.
    [59]黄静宁,赵鹏大.滇东地区深层次Pt‐Cu‐Au矿化异常定量提取与评价.地球科学—中国地质大学学报,2009,34(2): 365‐374.
    [60]金友渔.矿化地质异常的演化趋势因子分析.地球科学—中国地质大学学报,1991,16(3):295‐302.
    [61]曹瑜,胡光道,杨志峰,等. GIS环境下地质变量自动提取与地质异常的圈定.计算机工程与应用,2003a, 14:81‐85.
    [62]曹瑜,胡光道,杨志峰,等.基于GIS有利成矿信息的综合.武汉大学学报(信息科学版),2003b,28(2):167‐176.
    [63]曹瑜,胡光道.圈定“5P”找矿地段的GIS成矿预测空间模型及其应用.地球科学‐中国地质大学学报,1999,24(4):419‐412.
    [64]曹瑜,刘嘉麒,刘金英,等. GIS环境下地质背景圈定的设计与实现,计算机工程与应用,2000,12:163‐165.
    [65]陈永清,刘红光.初论地质异常数字找矿模型.地球科学—中国地质大学学报,2001,26(2):126‐134.
    [66]陈永清,夏庆霖.应用地质异常单元圈定矿产资源体潜在地段—以鲁西铜石金矿田为例.地球科学‐中国地质大学学报,1999,24(5):459‐467.
    [67]陈永清,赵鹏大.综合致矿地质异常信息提取与集成.地球科学‐中国地质大学学报,2009,34(2):325‐335.
    [68]池顺都,周顺平,吴新林. GIS支持下的地质异常分析及金属矿产经验预测.地球科学—中国地质大学学报,1997,22(1):99‐103.
    [69]孙华山,赵鹏大,张寿庭,等.基于5P成矿预测与定量评价的系统勘查理论与实践.地球科学—中国地质大学学报,2005,30(2):199‐205.
    [70]王军,陈振楼,许世远,等.基于GIS的地质异常空间结构分析方法.地球学报,2003,24(4):367‐370
    [71]王朴天.成矿预测单元的基本概念及其划分方法.地质论评,1990,36(6):489‐493.
    [72]池顺都,赵鹏大.地质建造组合熵异常与找矿有利地段圈定.现代地质,2000,14(4):423‐428.
    [73]朱亮璞主编.遥感地质学.北京:地质出版社,2001.
    [74]马跃良.遥感生物地球化学找金矿方法研究进展地球科学进展,2002,17(4):521‐527.
    [75]朱雅琼,袁艳斌,周尤,等.金矿资源定量预测的粗糙集方法,地球科学进展,2008,23(2):214‐218
    [76] Kristiansson K,Malmqvist L. Trace elements in geogas and their relation to bedrockcomposition. Geoexploration,1987, 24: 517‐534.
    [77]谢学锦,王学求.深穿透地球化学新进展.地学前缘,2003,10(1):225‐237
    [78]唐金荣,杨忠芳,汪明启,等.地气测量方法研究及应用.物探与化探,2004,28(3):193‐198.
    [79]童纯菡,李巨初,梁兴中,等.某金矿床地气异常初步研究及其地质意义.成都地质学院学报,1991,18(3):116‐121.
    [80]刘应汉,任天祥,汪明启,等.隐伏矿区地气测量试验及效果.有色金属矿产与勘查,1995,4:355‐360 .
    [81]汪明启.地球化学弱信息提取技术研究. [博士学位论文].北京:中国地质大学(北京),2002
    [82]汪明启,高玉岩,张得恩,等.地气测量在北祁连盆地区找矿突破及其意义.物探与化探,2006,30(1):7‐12.
    [83]王学求,谢学锦,卢荫庥.地气动态提取技术的研制及在寻找隐伏矿上的初步试验.物探与化探,1995,19:161‐171.
    [84]刘应汉,孔牧,孙忠军,等.纳米物质测量的液态捕集剂研究.物探与化探,2003,6:461‐464.
    [85]童纯菡,李巨初,葛良全,等.地气物质纳米微粒的实验观测及其意义.中国科学(D辑),1998,28:153‐155.
    [86]邓军,杨立强,方云,等.成矿系统嵌套分形结构和自有序效应.地学前缘,2000a,7(1):133‐145.
    [87]邓军,杨立强,翟裕生,等.构造-流体-成矿系统及其动力学的理论格架与方法体系.地球科学,2000b,25(1):71‐77
    [88]翟裕生.论成矿系统[J].地学前缘,1999,6(1):13‐28.
    [89]翟裕生.成矿系统研究与找矿[J].地质调查与研究,2003a,26(2):65‐71.
    [90]翟裕生.成矿系统研究与找矿[J].地质调查与研究,2003b,26(3):129‐135.
    [91]裴荣富,熊群尧.金属成矿省等级体制成矿与矿产勘查评价[J].当代矿产勘查评价的理论与方法.北京:地震出版社,1999,120‐130.
    [92]李光辉.黑龙江省五星Cu‐Ni‐Pt‐Pd‐矿床的PGE‐Au元素地球化学特征与成因探讨.地球科学‐中国地质大学学报,2009,44(1):118‐127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700