波形反演遗传算法与走时反演微分算法及其在地震宽角反射折射资料解释中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Genetic Algorithms in Seismic Waveform Inversion and Calculus-based Algorithms in Traveltime Inversion and Their Applications in Seismic Wide-angle Reflection and Refraction Data
  • 作者:王夫运
  • 论文级别:博士
  • 学科专业名称:固体地球物理学
  • 学位年度:2005
  • 导师:张先康
  • 学科代码:070801
  • 学位授予单位:中国地震局地球物理研究所
  • 论文提交日期:2005-04-01
摘要
本文系统地研究了地震体波波形数据遗传反演的理论和方法,将遗传算法和Kennett体波理论地震图算法结合,提出新的地震体波波形反演算法,进行了数值检验,并用于达日—兰州—靖边深地震测深部分人工爆破地震记录波形的反演,结合波形正演拟合得到了青藏高原东北部典型地块的地壳精细结构。引进了利用深地震测深走时数据同时反演二维地壳结构和构造的Rayinvr算法,讨论了算法应用一些值得注意的事项和经验,提出算法需进行速度和深度参数归一化及反演参数改正量限制的改进建议,在准葛尔、长白山、华北和燕山盆山耦合区、青藏高原东北缘等地深地震测深走时数据反演中得到较好的应用。
     本文的主要工作如下:
     系统回顾了深地震测深的主要进展。观测仪器已由传统的模拟仪发展到专门的数字化地震仪采集系统。如DAS—1新型数字化地震采集系统,具有动态范围大,信号记录频带宽的特点,设计多种工作方式,即可用于人工地震数据采集,也可用于天然地震观测。观测系统已从满足二维、区域地壳结构研究要求发展到满足三维、上地幔结构和精细地壳结构研究要求的三维、超长排列超长剖面和高分辨地震折射观测系统。全新的数据库技术的应用使得地震宽角反射折射数据的交换、共享和长期保存、资料的重复利用以及面向数据库的资料解释程序的共享可以更方便快捷地实现。基于波动方程高频近似的二维复杂介质中射线追踪解和程函方程有限插分解及其算法,为深地震测深走时数据反演提供了理论基础和反演的实现。全球范围内大陆地壳结构探测表明,大陆地壳呈现明显的横向不均匀性和分区特征。简要回顾了我国深地震测深的发展和取得的重要成果。
     分析了地震宽角反射所射走时数据的特点。回顾了走时数据解释从定性到定量、从一维到二维乃至三维的发展过程,以及各种解释方法的基本原理和优缺点。认为走时数据解释方法应进一步发展反演算法,正演计算宜采用较为稳定有效的有限差分时间场算法,并尽可能引进地震波振幅信息,反演计算宜采用全局优化算法。
     分析了地震宽角反射/折射波形数据的特点及其获得地壳细结构的重要作用。回顾了利用波形数据获得地壳结构的方法的发展。认为尽管地震波形数据受影响的因素较多,难以综合模拟,但是波形反演作为一种解释方法,具有不可替代的重要理论价值和实用价值。如天然地震远震体波波形的接收函数反演方法,在揭示地壳上地幔精细结构方面已经取得了巨大成功。
     简要总结了青藏高原东北部和华北及首都圈地区地壳结构的研究。已有的地球物理深部探测揭示出,青藏高原东北部地壳厚度较大,达50~60km;地壳平均速度低,6.0~6.1km/s之间;中下地壳普遍表现为强反射性,可能是由地幔热物质上涌侵位和下地壳长期流变作用的结果;重大地块边界地壳和上地幔结构构造变化剧烈。首都圈地区地壳结构和地表地质构造密切相关,华北盆地内地壳厚度小、平均速度低,太行山和燕山地区地壳厚度大、平均速度高;张渤构造带的地壳深部结构构造变化强烈。
     详细研究了非线性全局优化非数值算法—遗传算法和广义反射/透射理论地震图算法。遗传算法利用模型空间中一组初始模型而非单个初始模型,模型参数的二进制编码和所有模型参数的编码的字符串而非模型参数值本身,通过初始模型字符串之间的随机的交换、变异和再生的运算及叠代而模型参数本身的非确定性的运算,仅利用目标函数值而不需知道其偏微商信息,从而有效地使初始模型群体稳定地达到总体最优。Kennett广义反射/透射理论地震图算法能够精确模拟薄互层结构中波的传播;震源和接收点可以有不同的结构,能同时模拟震源—结构响应和接收点—结构响应;引进复地震速度,把介质非弹性(衰减)因素包含在内;广义反射透射系数矩阵确保了数值计算的精度;可以计算介质的完全响应,也可合成任
In this paper, the seismic body waveform inversion is systematically studied, a new method for seismic body waveform inversion is presented by combination of Kennett seismogram and Genetic algorithm. The inversion algorithm is tested with synthetic data typical of crustal seismic experiments to (1) study that it recovers the true model in several idealized cases, (2) understand the effects of different Genetic algorithm parameters, (3) study its convergence behaviour and sensitivity. Inversions with modeling of refraction and reflection waveform from the Dari— Lanzhou—Jingbian Deep Seismic Sounding experiment reveales images on fine crustal structure at northeasten region of the Qinghai-Xizang plateau. A new method of seismic traveltime inversion for simultaneous determination of 2-D velocity and interface structure is developed that is applicable to Deep Seismic Sounding data. The methodology and practical consideration necessary for handling real data is discussed, the improvements on model parameter normalization and control of model parameter adjustment value for the algorithm is presented. The inversion method is well applied to the seismic wide-angle reflection and refraction data acquired at Zhungeer's basin, Changbai's mountain and the region between the north of Huabei's basin and the south of Yan mountain.The major studies are as follows:The basic developments of the seismic wide-angle reflection and refraction profile are reviewed, (l)digital seismograph nearly substitutes for analogue seismograph. For example, DAS-1 digital seismograph specialized for seismic wide-angle reflection and refraction experiment is widely used. It is characterized by large dynamic measurement range, wide frequency band, different working ways, and is used to observe seismic wave excited by not only explosion but also earthquake. (2)The seismic observation geometry of 3D and super-long profile for studying 3D crustal and upper mantle structure is well used. (3)Applications of database technology to seismic wide-angle reflection and refraction profile conveniently bring about data share, data commutation, data access, data repeated process, and share of object-to-database data processing programs. (4)The ray theory based on approximate high-frequency solution of elastodynamic equations and finite-difference solution of eikonal equation in inhomogeneous media lay a foundation of the inversion of seismic traveltime data. (5)the crustal structure probe in world reveals that the continental crust is characterized by lateral inhomogeneity and blacks in structure. The developments and major results on Deep Seismic Sounding in China are briefly reviewed.The characteristic of seismic wide-angle reflection and refraction traveltime data are analyzed. The development, fundamentals, advantage and disadvantage of the different interpretation methods on traveltime data are expounded in detail. We think that the interpretation of traveltime data are made further advances on inversion, it would be best if forward modeling could use finite-difference algorithm of traveltime field, and inversion could use global algorithm.The characteristic effect on determining the fine crustal structure of seismic wide-angle reflection and refraction waveform data are discussed. Although it is very difficult to inverting waveform data on a suitable match between the observed and synthetic waveform, yet it is very of
引文
Ansorge,J., Mueller,S. The fine structure of the upper mantle in Europe and in North America.
    Proc. 12~(th) Gen. Ass. Europ. Seisrnol. Comm. (Luxembourg, 1970), Obs. Royal de Belgique, Comm.Sen A-S° 13, Sen Geophys. 101,196-197,1971.
    Benz, H. M. and Smith, R .B., Simultaneous inversion for lateral velocity variations and hypocenters in the Yellowstone region using earthquake and refraction data, J. Geophys. Res.,89,1208-1220, 1984.
    Berry,M.J.,West,GF. 1966 An interpretation of the first-arrival data of the Lake Superior experiment by the time-term method, Bull. Seism. Soc. Am.,56:141 — 171
    Brochman,B., Woelcken,K. 1929 Bemmerkungen zu den Beobachtungen bei Steinbruchsprengungen. Z. Geophys. 5,163—171.
    Brochman,B. 1931 Seismische Beobachtungen bei Steinbruchsprengungen. Z. Geophy. 7, 295 ~317
    Byerly,R, Dyk,K. 1932 Richmond quarry blast of Sept. 12, 1931, and the surface layering of the earth in the region of Berkeley, Bull. Seis. Soc. Amer., 22:50—55
    Byerly,P., Wilson,J. 1935 The Richmond quarry blast of August 16,1934, Bull. Seis. Soc. Amer.,25:259—268
    Cary, P. W. & Chapman, C. H. 1988 Automatic 1-D waveform inversion of marine seismic refraction data, Geophys. J., 93:527—546
    Cerveny V, Molotkov I A, Psencik I. 1977. Ray Method in Seismology. Prague: University of Karlova,79~86
    Chapman, C. H., 1978. A new method for computing synthetic seismograms, Geophys. J. R. astr.Soc, 54: 481-518
    Chapman, C. H. & Orcutt, J. A. 1985 Least squares fitting of marine seismic refraction data,Geophys. J.R.astr.Soc, 82,339-374
    Davis, L., & Steenstrup, M., 1990, Genetic algorithms and simulated annealing : An overview, in Genetic Algorithms and Simulated Annealing, 1 — 11, ed. Davis, L., Pitman, London.
    Ding G Y (Chief editor). Lithospheric dynamics of China. Beijing: Seismological Press, 1991
    Ewing,M., Crary,A., and Lohnse,J. 1934 Seismological observations on quarry blasting, Trants. Amer. Geophys. Un., 15~(th) Ann. Meeting, pp. 257~296
    Firbas P. 1987. Tomography from seismic profiles. In: Nolet G ed . Seismic Tomography.Dordrecht: Reidel Press, 189—202
    Fuchs, K., and Muller, 1971, Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. Astron. Soc.,23:417~433
    Fuis,G.S., Ryberg,T., Lutter,W.J. et al. Seismic mapping of shallow fault zones in the San Gabriel Mountains from the Los Angeles region seismic experiment, southern California, J.Geophys.Res., 106(b4):6549-6568,2001.
    Galve A, Hirn A, et al, Modes of raising northeastern Tibet probed by explosion seismology,Earth Planet. Sci. Lett., 2002, 203: 35—43
    Gamburtsev,GA. 1954 On new methods and devices for recording seismic phenomena(in Russian), Trudy geofiz, Akad. Nauk SSSR, no.25,152
    Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA
    Helmberger, D. V., 1968, The crust-mantle transition in the Bering Sea. Bull. Seismol. Soc. Am.58:179-214
    Helmberger, D. V., Fine structure of an Aleutian crustal section, Geophys. J. R. astr. Soc, 48,81-90, 1976.
    Holbrook,W.S., Mooney,W.D., Christensen,N.I., 1992, The seismic velocity structure of the deep continental crust, 1—34, in:Continental Lower Crust, edited by:Fountain,D.M., Arculus,R., and Kay,R.W., Elsevier,New york.
    Holland, J. H. 1975, Adatptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor
    Holland J, 1992, Genetic algorithms, Scientific American, July, 44—50
    Huang H, Spencer C , Green A. 1986. A method for the inversion of refraction and reflection travel times for laterally varying velocity structures. Bull Seism Soc Amer, 76: 837~846
    Jackson, W. H., Stewart, S. W. Pakiser, L. C. (1963). Crustal structure in eastern Colorado from seismic-refraction measurements. J. Geophys. Res. 68, 5767-5776.
    Kennett,B.L.N.& Kerry,N.J. (1979). Seismic waves in a stratified half space, Geophys J. R..astr.Soc, 57, 557-584.
    Katz, S. and M. Ewing (1956). Seismic-refraction measurements to the Atlantic Oceean, Part Ⅶ:Atlantic Ocean Basin, west of Bermuda, Bull .Geol. Soc. Am. 67, 475-510.
    Kennett B, Kerry N, 1979, Seismic waves in a stratified half space, Geophy. R. astr. Soc, 57:557—583
    Kennett,B.L.N. 1979. Seismic waves in a stratified half space—Ⅱ. Theoretical seismograms,Geophys.J.R.astr.Soc, 61,1-10.
    Kennett B, Illingworth M, Seismic waves to a stratified half space—Ⅲ.Piecewise smooth models, Geophy. R. astr. Soc, 1981, 66: 633—678
    Leet,L. D. 1936 Seismological data on surface layers to New England, Bull. Seis. Soc. Amer., 26:129—145
    Li J H, Kusky T M, Huang X N. 2002, Archean podiform chromitites and mantle tectonites in ophiolitic melange, north China craton: a record of early oceanic mantle processes. GSA Today,12 (7) : 4-11
    LI J H, FENG J, NIU X L et al. 2003, The preliminary report on the discovery of black smoker chimney within the Mesoproterozoic sulphide deposit of North China. Acta Petrologica Sinica,19(1): 167-168
    Lutter W J, Nowack R L, Braile L W. 1990. Seismic imaging of upper crustal structure using travel times from the PASSCAL Ouachita experiment. J Geophy Res, 95:4621 —4631
    Lutter, W. J., Jarchow, C. M. and Catchings, R. D., An image of the Columbia Plateau from inversion of high-resolution seismic data, Geophys., 59 1278-1289, 1994.
    Lutter, W. J., Fuis, G S., Thurber, C. H., et al., 1999. Tomographic images of the upper crust from the Los Angeles basin to the Mojave Desert, California: Results from the Los Angeles Region Seismic Experiment J. Geophys. Res. 104, 25543-25565,
    Ma X Y (Chief editor). Lithospheric dynamics atlas of China. Beijing: China Cartographic Publishing House, 1989
    Mellman, G R., A method of body-wave waveform inversion for the determination of earth structure, Geophy. J. R. astr. Soc, 62: 481-504, 1980.
    Mereu,R. F., Hunter,J. A. Crustal and upper mantle structure under the Canadian Shield from
     project Early Rise data. Bull. Seisin. Soc. Am. 59, 147—165, 1969.
    Muller, G. and Meisser, R., Inverting seismic section using synthetic seismograms. In: Explosion seismology in Central Europe. P. Giese, C. Prodehl, A. Stein, eds. Berlin, Heidelberg, New York:Springer 1976.
    Wiechert.E. 1926. Untersuchungen der Erdrinde mit Hilfe von Sprengungen. Geol. Rdsch. 17,339-346
    Officer, C. B., M. Ewing and P. C. Wuenschel. (1952). Seismic refraction measurements in the Atlantic Ocean. Bull. Geol. Soc. Am. 63, 777-808.
    Podvin, P. and Lecomte I., Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophys. J. Int., 105, 271-284,1991.
    Richards, P. G., 1971 Waves in stratified media, Geophysics, 36: 798-809
    Richard, P, G, 1973, Calculation of body waves for caustics and tunneling cors phases.Geophys.J.R.astr.Soc, 35:243~264
    Sambridge, M. and Drijkoningen, G. (1992) Genetic algorithms in seismic waveform inversion. Geophys J.Int .,109:323-342.
    Sandmeier,K.J., Wenzel,F., (1986). Synthetic seismograms for a complex crustal model.Geophysical Research Letters., 13(1): 22-25.
    Scheidegger,A.E.,Willmore,P.L. 1957 The use of a least squares method for interpretation of data from seismic surveys. Geophysics 22:9~22
    Scheider, W. A., Ranzinger, K. A., Balch, A. H., and Kruse, C., A dynamic programming approach to first arrival traveltime computation in media arbitrarily distributed velocities, Geophysics, 57,39-50,1992.
    Schweydar,W., Reich,H. 1927 Kunstliche elastische Bodenwellen als Hilfsmittel geologischer Forschung. Gerl. Beitr. Z. Geophys. 17,121 —147
    Shedlock K M, Roceker S W. Elastic wave velocity structure under the crust and upper mantle beneath the North China. J.Geophys.Res. 1987, 92:19635-19646
    Show, P. R. & Orcutt, J. A. 1985 Waveform inversion of seismic refraction data and applications to yound Pacific crust, Geophys.J.R.astr.Soc, 82,375~414
    Slichter,L.B. 1938 Seismological investigations of the earth's crust using quarry blasts, Bull. Geol.Soc. Amer., 49:1927
    Slichter,L.B. 1939 Seismic studies of crustal structure in New England by means of quarry blasts, Bull. Geol. Soc. Amer., 50:1934
    Spence, G D. , Whittall, K. P. and Clowes, R. M., 1984. Practical synthetic seismograms for laterally varying media calculated by asymptotic ray theory, Bull. Seism. Soc. Am., 74,1209-1223,
    Spence G D. 1984. Seismic structure across the active subduction zone of western Canada. PhD thesis, University of Britsh Columbia, 34~37
    Spudich,P., Orcutt,J., (1980). Petrology and porosity of an oceanic crustal site: results from wave form modeling of seismic refraction data. J.Geophys.Res.,85:1409-1433.
    Steinhart, J. S. and R. P. Meyer (1961). Explosion Studies of Continental Structure, Carnegie Institution of Washington (Publ. 622).
    Tapponnier P., Xu Zhiqin, et al. Oblique stepwise rise and growth of the Tibet plateau. Science,2001 294 (23): 1671-1677.
    (?)arantola A, 1987. Inverse Problem Theory Methods for data fitting and model parameter estimation. Elsevier Science Publishers B. V.. 126~131
    Tatel, H. E., M. A. Tuve and L. H. Adams (1953). Studies of the Earth's crust using waves from exlosions, Proc. Am. Assoc. Petrol. Geologists 51, 223-234.
    Tuve. M. A. 1947 The earth's crust, Cannegie Inst. of Washington Year Book, no. 46:64~65
    Tuve, M. A. 1948a The earth's crust, Cannegie Inst. of Washington Year Book, no. 47:60~65
    Tuve, M. A., Goranson, R., Greig, J., Rooney, W., Doak, J., and England, J. 1948b Studies of deep crustal layers by explosive shots, Trans. Amer. Geophys. Un., 29:772
    Verfne J, Wittlinger G, et al, Seismic evidence for stepwise thichening of the crust across the NE Tibeten plateau, Earth Planet. Sci. Lett., 2002, 203:25—33
    Vidale, J. E., 1988. Finite-difference calculation of travel times, Bull. Seism. Soc. Am., 78, 2062-2076,
    Vidale, J. E., 1990. Finite-difference calculation of traveltimes in three dimensions, Geophysics, 55, 521-526,
    Vinnik, L. P. and Ryaboy, V. Z., (1981). Deep Structure of The East European Platform According To Seismic Data. Phys. Earth Planet. Inter., 25:27-37.
    Whittall K P, Clowes R M. 1979. A simple, efficient method for the calculation of traveltimes and raypaths in laterally inhomogeneous media, J. Can. Soc. Expl. Geophys. 15, 21~29
    Wiechert. E. 1929. Seismische Beobachtung von Steinbruchsprengungen. Z. Geophys. 5, 159~162
    Willmore, P. L., Bancroft, A. M. 1960 The time-term approach to refraction seismology. Geophys. J. R.. Astr. Soc., 3:419~432
    Wood, H., Richter, C. 1931 A study of blasting recorded in southern California, Bull. Seis. Soc. Amer., 21:28~46
    Wood, H., Richter, C. 1933 A second study of blasting recorded in southern California, Bull. Seis. Soc. Amer., 23: 95~110
    Woollard, G. P., W. E. Bonini and R. P. Meyer (1957). A seismic refraction study of the subsurface geology of the Atlantic coastal plain and continental shelf between Virginia and Florida, Univ. Wisc. Dept. Geol., Geophysics Sec., Madison, 128p.
    Yegorkin, A. V., and Pavlenkova, N. I., (1981). Studies of Mantle Structure of U. S. S. R. Territory on Long-Range Seismic Profiles. Phys. Earth Planet. Inter., 25:12-26.
    Zelt C A, Ellis R M. 1988. Practical and efficient ray tracing in two-dimensional media for rapid traveltime and amplitude forward modeling. Can. J. Geophys., 24, 16~31
    Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int, 108: 16~34
    陈学波,吴跃强,杜平山等 龙门山构造带两侧地壳速度结构特征,见:国家地震局科技监测司编,中国大陆深部构造的研究与进展,北京:地质出版社,97—113,1988。
    崔作舟,卢德源,陈纪平等 攀西地区的深部地壳结构与构造,地球物理学报,30:566—580,1987。
    丁国瑜(主编).中国岩石圈动力学概论.北京:地震出版社,1991
    高锐,李朋武,李秋生等 青藏高原北缘碰撞变形的深部过程—深地震探测成果之启示,中国科学,D辑(增刊):66—71。
    国家地震局地球物理勘探大队译 欧洲中部爆破地震研究,地震出版社,1983。
    何建坤,刘福田,刘建华,等.1998.华北东部中新生代盆地构造特征与大陆动力学过程.见:
    陈颐,王水,秦蕴珊,陈邦彦主编.寸丹集—庆贺刘光鼎院士工作50周年学术论文集.北京:科学出版社.618~632
    胡鸿翔,陆涵行,王椿镛等 滇西地区地壳结构的爆破地震研究,地球物理学报,29:133—143,1986。
    金安蜀,刘福田,孙永智.北京地区地壳和上地幔的三维速度结构.地球物理学报,1980,23(2):172—182
    阚荣举,林中洋 云南地壳上地幔构造的初步研究,中国地震,2:50—61,1986。
    阚荣举,滕吉文。陈运泰,王椿镛,庆贺曾融生教授七十诞辰,见:中国固体地球物理学进
    展—庆贺曾融生教授诞辰七十周年,主编:陈运泰,滕吉文,阚荣举,王椿镛,北京:地震出版社,1—6,1994
    阚荣举,滕吉文,陈运泰,王椿铺,庆贺曾融生教授八十寿辰,见:中国大陆地震学与地球
    内部物理学研究进展—庆贺曾融生教授诞辰七十周年,主编:陈运泰,滕吉文,阚荣举,王椿镛,北京:地震出版社,5—12,1994
    李江海,冯军,牛向龙等.华北中元古代硫化物黑烟囱发现的初步报道.岩石学报,2003,19(1):167-168
    李秋生,卢德源,高锐 横跨西昆仑—塔里木接触带的爆炸地震探测,中国科学,D辑,2000,30(增刊):16—21。
    李清河,郭健康,周民都等 成县—西吉地壳速度结构,西北地震学报,13(增刊):37—43,1991。
    李松林,张先康,张成科等,玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究,地球物理学报,45:210—217,2002。
    廖其林,王振明,王屏路等 福州—泉州—汕头地区地壳结构的爆破地震研究,地球物理学报,31:270—280,1988。
    刘昌铨,杨健 京津及其外围地区地壳速度的初步研究,地震学报,4:217—226,1982。
    刘福田,曲克信,吴华等.华北地区的地震层面成像.地球物理学报,1986,29(5):442—449
    刘和甫.2001.盆地—山岭耦合体系与地球动力学机制.地球科学.26(6).581~596
    卢德源,陈纪平 青藏高原北部沱沱河—格尔木—带地壳深部结构,地质评论,33:122—128,1987。
    陆涵行,曾融生,郭建明,林中洋,1988,唐山地震区深反射剖面分析,地球物理学报,31(1):27—36
    卢造勋,刘国栋,魏梦华等 1990中国辽南地区地壳与上地幔介质的横向不均匀性与海城地震,地震学报,12:367—378。
    卢造勋,孟朴在,史书林1994闾阳—康平—长春剖面地壳上地幔的速度结构和电性结构,见:陈运泰等主编,中国固体地球物理学进展,北京:海洋出版社,128—134。
    马杏垣(主编).中国岩石圈动力学地图集.北京:中国地图出版社,1989
    闵祥仪,周民都,郭健康等,灵台—阿木去乎剖面地壳速度结构,西北地震学报,13(增刊):29—36,1991。
    Muller,G.,Meisser,R.用理论地震图反演地震记录,见:欧洲中部爆破地震研究,编辑:Giese,P.,Prodehl,C.,Stein,A.1983,国家地震局地球物理勘探大队译,119~129
    孙若昧,刘福田.京津唐地区地壳结构与强震的发生—I.P波速度结构.地球物理学报,1995,38(5):599—607
    孙若昧,赵燕来,吴丹.京津唐地区地壳结构与强震的发生—Ⅱ.S波速度结构.地球物理学报,1996,39(3):347—355
    孙武城,祝治平,张家茹等华北地区深地震测深,见:国家地震局《深部物探成果》编写组编,中国地壳上地幔地球物理探测成果,北京:地震出版社,20—123,1986。
    滕吉文,冯炽芬,李金森等 华北平原中部地区深部构造背景及邢台地震(一),地球物理学报,17(4):255—271,1974。
    滕吉文,熊绍柏,尹周勋等 喜玛拉雅北部地区的地壳结构模型和速度分布特征,地球物理学报,26:525—540,1983。
    滕吉文,尹周勋,熊绍柏 西藏高原北部地区色林错—蓬错—那曲—索县地带地壳结构与速度分布,地球物理学报,28(增刊Ⅰ):28—42,1985。
    王椿镛 二维合成地震图的计算及平凉—渭南地震测深剖面的解释,地震研究,8:608—616,1985。
    王椿镛,楼海,宋亦青 人工地震测深数据库系统,地震学报,16:89—95,1994。
    王椿镛,林中洋,地壳地震学研究进展,见:陈运泰主编,地球与空间科学观测技术进展,北京:地震出版社,120—282,1995。
    王椿镛,张先康,陈步云等 大别造山带的地壳结构研究,中国科学(D辑),27:221—226,1997。
    王椿镛,皇甫岗,万登堡等 滕冲火山区地壳结构的人工地震探测,地震研究,23:148—155,2000。
    王椿铺,楼海,吴建平等 滕冲火山地热区地壳结构的地震学研究,地震学报,24:231—242,2002a。
    王椿镛,吴建平,楼海等 2003川西藏东地区的地壳P波速度结构,中国科学(D辑),33(增刊):181~189。
    王椿镛,1997,中国岩石层结构研究的回顾和展望,地球物理学报,40(增刊):82~109
    王椿镛,王贵美,林中洋,等.1993.用深地震反射方法研究邢台地震区地壳细结构.地球物理学报.36(4).445~451
    王夫运,张先康,杨卓欣 用地震走时反演长白山天池火山地区的二维速度结构,地震学报,24:144—152,2002.
    王夫运,张先康,波形反演的遗传算法—地震宽角反射/折射数据,见:中国大陆地震学与地球内部物理学研究进展—庆贺曾融生院士八十寿诞,陈运泰,滕吉文,阚荣举,王椿镛,主编(2004).北京:地震出版社,2004.256—269
    王夫运,张先康,李丽,陈颐,等.2004.张渤构造带中东段二维P波速度结构:安新—香河—宽城剖面(J),地震学报,26(增刊),31—41。
    熊绍柏,滕古文,尹周勋 西藏高原地区的地壳厚度和莫氏面的起伏,地球物理学报,28(增刊Ⅰ):16—27,1985。
    熊绍柏,滕吉文,尹周勋等 攀西构造带轴部地区地壳与上地幔结构的爆炸地震研究,地球物理学报,29:235—245,1986。
    徐果明等,二维复杂介质的块状建模及射线追踪,石油地球物理勘探,36(1),2001。
    徐朝繁,张先康,等,复杂介质结构中折射界面的哈格多恩原理波前成像,地震地质,24(4),542—548,2002。
    徐锡伟,Tappponnier P.,等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论,中国科学,D辑,2003,33(10):967-974
    杨卓欣,张先康,杨健 地壳三维构造反演和速度层析成像,地球物理学进展,12:41—52,1997。
    原秦喜,孙鸿,戴鹏等,人工地震测深和天然地震流动观测兼用的轻便数字地震仪系统,中国地震,15(2):159—166,1999。
    张成科,张先康,赵金仁等长白山天池火山区及邻近地区壳幔结构探测研究,地球物理学报,45:812—820。
    张成科,张先康,赵金仁,等.2002.渤海湾及其邻区壳幔速度结构研究与综述.地震学报.24(4).428~435。
    张培震,王琪,Freymueller Jeffrey T.2001.中国大陆现今地壳运动和构造变形——速度场和活动地块.中国科学 D辑 31(7):529~536
    张少泉,武利均,郭建明等中国西部地区门源—平凉—渭南地震测深剖面资料的分析解释,地球物理学报,28:349—361,1985。
    张先康,祝治平,张成科,等.1998.张家口—渤海地震带及其两侧地壳上地幔构造与速度结构研究[A].见:活动断裂研究编委会和中国地震局科技发展司编.活动断裂研究(6)[C].北京:地震出版社,1~16
    张先康,李松林,王夫运等2003青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异,地震地质,25:52—60。
    张先康,杨玉春,赵平等,唐山滦县震区的三维地震透射研究—中、上地壳速度层析成像,地球物理学报,37:759—766,1994。
    张先康,杨卓欣,杨玉春等地壳三维结构的层析成像方法—爆炸和地震资料的联合反演,地震学报,17:422—431,1995。
    张先康、刘国栋、刘泰升等,华北地壳结构的三维探测和研究,见:中国地质与地球物理研究所编。寸丹集—庆贺刘光鼎院士工作50周年学术论文集。北京:科学出版社,715—720。1998。
    张先康,赵金仁、刘国华等,2002.三河—平谷8.0级大震区震源细结构的深地震反射探测研究。中国地震。18(4):326~336
    张先康、赵金仁、张成科等,帕米尔东北侧地壳结构研究,地球物理学报,45(5),665—671,2002。
    张先康,张成科,赵金仁,等.2002.长白山天池火山区岩浆系统深部结构的深地震测深研究[J].地震学报,24(2):135~143
    张先康,王椿镛,刘国栋,等.1996.延庆—怀来地区地壳细结构——利用深地震反射剖面.地球物理学报.39(3):356~364
    张中杰,王光杰,等,地壳与上地幔精细结构研究的CDP成图法,中国地球物理学会年刊,291,2002。
    于湘伟,陈运泰,王培德.京津唐地区中上地壳三维P波速度结构.地震学报,2003,25(1):1-14
    岳华峰,宋战隆.1988.从石家庄—喀喇沁旗人工地震测深结果看燕山山区与华北平原区地壳深部结构的差异.见:国家地震局科技监测司编.中国大陆深部构造的研究与进展.北京:地质出版社。216~226
    曾融生,陆涵行,丁志峰,1990,从地震折射和反射剖面结果讨论唐山地震成因,地球物理学报,31(4):383—437
    曾融生,阚荣举,何传大 柴达木盆地低频地震探测结晶基底的工作方法,科学通报,10:313—316,1960。
    曾融生,阚荣举 柴达木盆地西部地壳深界面反射波,地球物理学报,10:120—125,1961。
    曾融生,阚荣举,何传大 柴达木盆地地震探测的基岩首波和大角度反射,地球物理学报,10:54—66,1961。
    曾融生,滕吉文,阚荣举等 我国西北地区地壳中的高速夹层,地球物理学报,14:94—106,1965。
    赵金仁,张先康,张成科,等.1999.香河—北京—涿鹿及其相邻地区壳幔构造与速度结构

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700