西北戈壁地区高性能混凝土耐久性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西北戈壁地区具有大风、干燥、大温差的气候特点,既有高速铁路高性能混凝土的经验,不能完全适用于戈壁环境。随着西北地区高速铁路大规模建设的开展,研究戈壁环境下高性能混凝土耐久性的实现途径,成为高性能混凝土在戈壁地区得以推广应用迫切需要解决的问题。本文解决戈壁地区高性能混凝土的耐久性问题主要采用“三优化”方法:优化掺合料、优化集料、优化养护技术。
     首先,矿物掺合料的使用是高性能混凝土实现耐久性所必须的,本文采用Aim和Goff堆积密实模型及扫描电镜,分析了矿物掺合料在水泥基胶凝材料颗粒体系中的作用效应。并且,基于灰色系统理论,分析了矿物掺合料粒度分布、颗粒细度与其胶砂性能之间的相关性,建立了相应的灰色系统模型。
     本文基于灰系统理论对混凝土所用矿物掺合料进行优化配伍选择,分析了孔结构对混凝土性能的影响规律,并建立了混凝土强度与孔径分布之间的灰系统模型。基于回归方法,建立了孔结构主要参数与混凝土后期强度之间的多元线性数学模型。结果表明:对强度及耐久性要求较低的混凝土可采用单掺粉煤灰;对强度及耐久性要求较高的混凝土可采用粉煤灰和硅灰双掺,考虑经济性则可以采用粉煤灰和矿粉双掺;对强度及耐久性要求高的混凝土可采用粉煤灰、矿粉和硅灰的三掺方式进行配制。
     其次,现行相关规范对人工集料的使用没有提出明确的指导意见,特别是对碎卵石使用过程中必须要考虑的破碎面问题,说明太过笼统。本文系统研究了碎卵石混凝土的宏观性能,并建立了混凝土强度及耐久性与碎卵石破碎面比例之间的数学关系式。研究表明:高水胶比混凝土可将破碎面控制在40%~60%左右,低水胶比混凝土必须将破碎面控制到60%~80%左右。另外,采用计算机仿真技术建立了卵石粒径与碎卵石破碎面比例之间的模型。结果表明:粒径20mm以下的卵石不可用于破碎碎卵石,粒径30~80mm卵石经一定破碎次数后可获得40~60%左右的破碎面,而粒径在90mm以上的卵石破碎后即可获得70%以上的破碎面。
     再次,本文采用MIDAS有限元分析软件对桥墩混凝土的温度场进行了模拟,以寻求适宜于戈壁环境的混凝土养护技术。分析表明:采用保温保湿膜养护的桥墩混凝土可以降低混凝土内外最高温差,使表面及中心应力低于允许抗拉强度,避免了温度裂缝的产生。对这一理论研究又采用室内试验进行了验证。为了研究环境对混凝土孔结构的影响规律,本文模拟了大风、干燥、大温差的戈壁环境,采用压汞法测试了混凝土的孔结构分布。结果表明:大风、干燥、大温差对混凝土内部孔隙分布影响显著,会大量增加大的有害孔含量,提高孔隙率,显著增大平均孔径和最可几孔径;若采用保温保湿膜养护,就可显著降低以上危害的程度。
     本文以兰新二线(新疆段)为依托工程,在具有典型戈壁环境的沿线标段,现场浇筑实体混凝土桥墩。进行了现场实体桥墩的温度场测试及混凝土宏观性能测试。最终,采用实体试验充分说明了戈壁环境下采用保温保湿养护技术的有效性。
The Gobi area in northwestern China is characterized by a climate of strong wind, great drought and acute temperature change. So far, the techniques concerning high-performance concrete for high-speed railways built elsewhere have not been well adapted to this area. With the rapid development of high-speed railway construction in this area, the durability research of high-performance concrete for this area is urgently needed. This dissertation deals with the durability problem in three aspects, that is, optimizing the application of admixtures, improving aggregates and enhancing curing techniques, which are detailed as follows, respectively.
     1. Mineral admixtures are much essential to achieve specified durability for high-performance concrete. Based on Aim-Goff packing model, the effect of mineral admixtures on cement-based composite cementitious systems is analyzed by using scanning electron microscopy (SEM). Based on grey theory, this dissertation discusses the effect of particle size distribution (PSD) and particle fineness of mineral admixture on macro properties of the mortars and establishes a corresponding grey incidence model. The optimal combination of mineral admixtures is studied by using grey analysis and the effect of pore structure on macro properties of the concrete is evaluated, with a grey model for the correlation between pore size distribution and concrete strength presented. A multivariate linear model for the relationship between pore structure parameters and the late strength of the concrete is developed by using regression methods.
     It is shown that for concrete with low requirements of both strength and durability, a single admixture of fly ash can be adopted; for concrete with high requirements of both strength and durability, a double combination of fly ash and silica fume (alternatively, mineral powder, for economic consideration) can be utilized; for concrete with very high requirements of both strength and durability, a triple combination of fly ash, silica fume and mineral powder can be implemented.
     2. The current material-related codes and specifications are short of clear instructions on the use of artificial aggregates, especially on the prescription of fracture surface, which shall be considered for crushed cobble. This dissertation includes a systematical study on the macro properties of crushed-cobble concrete, establishing a mathematical relationship of concrete strength and durability versus fracture surface ratio of crushed cobble, and introducing a computer model for particle size versus fracture surface ratio of crushed cobble.
     The analysis indicates that for the concrete with a large water-cement ratio, the fracture surface ratio should be limited to 40-60%, while for the concrete with a small one it can be 60-80%, so as to achieve necessary strength and durability; generally, cobbles of less than 20mm in size should not be used to make aggregate for concrete; for cobbles of 30-80mm in size, the fracture surface ratio can reach 40-60% after several times of crushing; for cobbles of greater than 90mm in size, the fracture surface ratio would be more than 70% once they are crushed.
     3. To investigate proper techniques to cure concrete in Gobi's inhospitable environment, a numerical simulation for the temperature field of concrete in piers of a bridge is performed by using MIDAS, a FEM (finite element method) based software. The analysis shows that the membrane curing can reduce the temperature difference between the inner part and the surface of the pier, make the surface and center stresses lower than the allowable tensile stress, and avoid the occurrence of temperature cracking. Corresponding laboratory tests are also performed to verify the theoretical analysis. With the Gobi environment simulated, the pore structure and distribution are tested by using mercury injection method. The results suggest that the harsh environmental factors, including strong wind, great aridity and acute temperature change as mentioned above, have a significant influence on the pore distribution in the concrete, resulting in the dramatic increase of harmful pore content, porosity, average pore size and the most probable pore size; a membrane curing based on heat and wet preservation can substantially decrease the unfavorable influences.
     With solid concrete piers constructed on site in the typical Gobi environment of Xinjiang section of the Second Lanzhou-Xinjiang Railway Line, the concrete temperature field is real-monitored and the concrete macro properties are measured to further verify the validity of the membrane curing technique based on heat and wet preservation in Gobi environment.
引文
[1]王稷良,李勇,宁琰,等.集料对混凝土强度与界面特性影响的研究[J].混凝土,2006,11:39-41.
    [2]吴历斌,颜志勇,江莞.高强高性能混凝土中的集料研究[J].四川建筑科学研究,2002,28(3):55-58.
    [3]T. Du, W. H. Wang, H.L. Lin, Z.X. Liu, and J. Liu. Experimental Study on Interfacial Strength of the High Performance Recycled Aggregate Concrete[J]. Engineering, Science, Construction, and Operations in Challenging Environments,2010:2821-2828.
    [4]张士萍,邓敏,吴建华,唐明述.孔结构对混凝土抗冻性的影响[J].武汉理工大学学报,2008,30(6):56-59.
    [5]陈立军.混凝土孔径尺寸对其使用寿命的影响[J].武汉理工大学学报,2007,29(6):50-53.
    [6]李金玉,邓正刚,曹建国.混凝土抗冻性的定量化设计[A].北京:中国建材工业出版社,2001.
    [7]杨明,周士琼,李益进,等.粉煤灰高性能混凝土养护方法的试验研究[J].混凝土与水泥制品,2001,5:10-12.
    [8]Kenneth W Meeks, Nicholas J Carino. Curing of High-Performance Concrete [R]. Report of the State-of-the-Art Building and Fire Research Laboratory Gaithersburg, MD.1999:9(1),170-173.
    [9]N.R.Shattaf, A.M.Alshamsi, R.N.Swamy. Curing/Environment Effect on Pore Structure of Blended Cement [J]. Journal of Materials in Civil Engineering,2001,5:380-388.
    [10]TAN Ke-feng, John M Nichols. Performances of Concrete under Elevated Curing Temperature [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2004,19:65-67.
    [11]张亮亮,赵亮,袁政强,陈天地.桥墩混凝土水化热温度有限元分析[J].重庆大学学报(自然科学版),2007,30(10):73-76.
    [12]Yu-fang HAN, Jiu-jun YANG, Guo-yu LIU, Zhan-you YAN, Ying ZHOU. Research on the High Performance Concrete Used for Pile Foundation in Qinghai-Tibet Plateau Permafrost Region[J]. Green·Intelligent·Reliable,2010,3391-3400.
    [13]黄士元,蒋家奋,杨南如,等.近代混凝土技术[M].西安:陕西科技出版社,1998.
    [14]陈肇元.高强与高性能混凝土的发展及应用[J].土木工程学报,1997,30(5):2-11.
    [15]廉慧珍,陈恩义.原材料和配合比对高强与高性能混凝土性能的影响[J].混凝土,1996,5:10-17.
    [16]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.
    [17]吴中伟.高性能混凝土[M].北京:中国铁道出版社,1999.
    [18]黄士元.21世纪我国混凝土技术发展中的几个重点问题[J].混凝土,2002,3:3-7.
    [19]冷发光,韩跃伟.高强和高性能混凝土的发展与应用以及对高性能混凝土的讨论[J].工业建筑,2000,30(11):75-78.
    [20]吴中伟.高性能混凝土(HPC)的发展趋势与问题[J].建筑技术,1998,29(1):8-13.
    [21]李金玉,曹建国,徐文雨,等.混凝土冻融破坏机理的研究[J].水利学报,1999,1:41-49.
    [22]李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究[J].混凝土与水泥制品,2004,2:6-8.
    [23]王信刚,马保国,胡明玉.水泥基材料的微观结构与离子传输性能[J].材料科学与工程学报,2009,27(6):880-884.
    [24]唐明,巴恒静.超细粉煤灰分形特征与活性的研究[J].材料科学与工艺,2002,10(1):89-92.
    [25]唐明,潘吉,巴恒静.水泥基粉体颗粒群分形几何密集效应模型[J].沈阳建筑大学学报(自然科学版),2005,21(5):515-518.
    [26]郝文霞,张雄.粉煤灰颗粒群特征及其与水泥胶砂性能的关系[J].建筑材料学报,2005,8(3)244-249.
    [27]张永娟,张雄.矿渣微粉颗粒尺寸分布与水泥浆流变性能的灰色关联分析[J].硅酸盐学报,2002,30(6):795-797.
    [28]黄士元.混凝土早期裂纹的成因及防治[J].混凝土,2000,7:3-6.
    [29]J.Byfors. Plain Concrete at Early Ages[M].CBI research,1980.
    [30]杨明,周士琼,李益进,等.粉煤灰高性能混凝土养护的试验方法[J].混凝土与水泥制品,2001,5:10-12.
    [3 1]丁全兵.高性能混凝土自养护技术研究[B].合肥工业大学,2006.
    [32]徐姗姗.高性能混凝土养护效率的评价及养护对其性能的影响研究[S].重庆大学,2009.
    [33]Jin-Keum Kim, Chil-sung Lee. Moisture diffusion of concrete considering self-desiccation at early ages[J]. Cement and Concrete Research,1999,29:21-27.
    [34]P.C.Aitcin,徐志慧,刘数华.高性能混凝土耐久性综述商品混凝土[J].2011,2:33-38.
    [35]P.C. Aitcin. The durability characteristics of high performance concrete:a review. Cement and Concrete Research.2003,25:409-420)
    [36]艾红梅,白雪娇.高性能混凝土收缩开裂与对策研究[J].商品混凝土,2010,10:19-21.
    [37]周俊,黄慎江.高性能混凝土自收缩问题的研究[J].安徽水利水电职业技术学院学报,2010,10(4):34-37.
    [38]李风生.超细粉体技术[M].北京:国防工业出版社,2000.
    [39]王晓钧.粉煤灰机械研磨中物理与机械力化学现象的研究[B].南京工业大学,2003.
    [40]Stovall T, Larrard F, Bull M. Liner packing density model of grain mixtures[J]. Power Technol,1986, 48 (1):1-12.
    [41]Lange F, Mortel H, Rudent V. Dense packing of cement pastes and resulting consequences on mortar properties[J]. Cement and Concrete Research,1997,27 (5):685-695.
    [42]Larrard F, Stovall T. Optimization of ultra-high performance concrete by the use of a packing
    model[J]. Cement and Concrete Research,1994,24 (6):997-1009.
    [43]龙广成,王新友,肖瑞敏.矿物掺合料对C3S胶凝体系的填充密实效应研究[J].建筑材料学报,2002,5(3):215-219.
    [44]谢友均,刘宝举,龙广成.水泥复合胶凝材料体系密实填充性能研究[J].硅酸盐学报,2001,29(6):512-517.
    [45]刘思峰.灰色系统理论及其应用[M].北京:科学出版社,2004.
    [46]傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    [47]秦力川,杨峻峰.建筑材料微观测试分析基础。重庆大学出版社,1990.
    [48][10] Powers, T. C.."Void Spacing as a Basis for Producing air-Entrained Concrete," ACI Journal, Vol. 50, May 1954,741~760.
    [49]姚燕,王玲,田培.高性能混凝土[M].北京:化学工业出版社,2006.
    [50]张永娟,张雄,窦竞.矿渣微粉颗粒群分布与其活性指数的灰色关联分析[J].建筑材料学报,2001,4(1):44-48.
    [51]Cai Yuebo, Kwan Kwokhung, Cheung Yaukai, etal. High performance concrete and its typical mixes[J]. China Ocean engineering,1995,9(3):335-344.
    [52]Langley W S, Carette G G, Malhotra V M. Structural concerte incorporating high volumes of ASTM class F fly ash[J]. ACI Mater J,1989,86(5):507-514.
    [53]Naik T R, Ramme B W. High-strength concrete containing large quantities of fly ash[J]. ACI Mater J, 1989,82(2):111-116.
    [54]蒋林华.高掺量粉煤灰(HVFA)混凝土的水化、微结构和机理研究[D].南京:河海大学,1998,114-117.
    [55]刘斌云,张胜,李凯.桥墩抗裂抗腐高性能混凝土试验研究[J].建筑技术,2011,42(1):71-76.
    [56]Sidney Mindess. D. Whiting in permeability of concrete[M]. Detroit:American Concrete Institute, 1988:195-222.
    [57]张士萍,邓敏,吴建华,唐明述.孔结构对混凝土抗冻性的影响[J].武汉理工大学学报,2008,30(6):56-59.
    [58]王玲,姚燕,高春勇,等.中等强度等级混凝土高性能化的研究[C].深圳:沿海地区混凝
    土结构耐久性及其设计方法科技论坛暨全国第六届混凝土耐久性学术交流会会议论文集,2004:97-103.
    [59]温宝山,王兴庭,周明学.水工混凝土抗冻性能影响因素研究[J].东北水利水电,2010,1:56-58.
    [60]王立久,王丹江.混凝土的冻融破坏研究现状[C].沈阳:第五届全国高性能混凝土学术交流会会议论文集,2004:350-356.
    [61]胡曙光.先进水泥基复合材料[M].北京:科学出版社,2009.
    [62]王培铭,丰曙霞,刘贤萍.水泥水化程度研究方法及其进展[J].建筑材料学报,2005,8(6):646-652.
    [63]ESCALANTE GARCIA J I. Non evaporable water from neat OPC and replacement materials in composite cement hydrated at different temperatures [J]. Cement and Concrete Research,2003,33 (11): 1883-1888.
    [64]张谦,宋亮,李家和.水泥水化热测定方法的探讨[J].哈尔滨师范大学自然科学学报,2001,17(6):8-9.
    [65]MOU MANGA P, KHELAIDJ A, BARO GHEL-BOUNY A. Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach[J]. Cement and Concrete Research,2004,34 (2):255-266.
    [66]李言荣,恽正中.材料物理学概论[M].北京:清华大学出版社,2001.
    [67]廉慧珍,董良,陈恩义.建筑材料物相研究基础[M].清华大学出版社,1996.
    [68]Matte, V., Moranville, M. Durability of reactive powder composites:influence of silica fume on leaching propeities of very low water/binder pastes[J]. Cement and Concrete Composites 21,1999:1-9.
    [69]谢友均,马昆林,龙广成,石明霞.矿物掺合料对混凝土中氯离子渗透性的影响[J].硅酸盐学报,2006,34(11):1345-1350.
    [70]Sukhvarsh Jerath, Nicholas Hanson. Effect of fly ash content and aggregate gradation on the durability of concrete pavements[J]. Journal of materials in civil engineering,2007,19(5):367-375.
    [71]David Conciatori, Emmanuel Denarie, Hamid Sadouki, Eugen Bruhwiler. Chloride penetration model considering microclimate[J]. Life-Cycle Cost Analysis and Design of Civil Infrastructures Systems,2003, 240(8):67:74.
    [72]Corina-Maria Aldea, Surendra P. Shah, Alan Karr. Effect of cracking on water and chloride permeability of concrete. Journal of materials in civil engineering,1999,181(11):181-187.)
    [73]Amir Koubaa, Mark B. Snyder. Assessing Frost Resistance of Concrete Aggregates in Minnesota[J]. J. ColdReg. Engrg,2005,15 (4):187-210.
    [74]Dr. J. J. Beaudoin. Frost Resistance of Concrete:Proceedings of the International RILEM Workshop on Resistance of Concrete to Freezing and Thawing With or Without De-Icing Chemicals[J]. J. Cold Reg. Engrg,1999,13 (1):56-58.
    [75]刘斯凤,孙伟,林玮,赖建中(LIU Sifeng, et al).掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报(J Chin Ceram Soc),2003,31(11):1080-1085.
    [76]李永鑫,陈益民,贺形洋,韦江雄,张文生,张洪淘,郭随华.粉煤灰-水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J].硅酸盐学报,2003,31(8):775-779.
    [77]Johansson L. The effect of aggregate grading and mix proportions on the workability for concrete made with entirely crushed aggregate[J]. Swedish cement and concrete research institute,1979:147~160.
    [78]B.P.Hudson. Manufactured sand for concrete[J].5th ICAR Symposium, E2-2-1. Austin, Texas,1997.
    [79]周明凯.石粉对机制砂混凝土性能的影响及机理研究[B].武汉理工大学,2006.
    [80]B.P.Hudson. Manufactured sand for concrete[J].5th ICAR Symposium, E2-1-1, Austin, Texas.1997.
    [81]B.P.Hudson. Manufactured sand for concrete[J].5th ICAR Symposium, E2-1-1, Austin, Texas.1997.
    [82]Sr.J.M.Shilstone. Concrete mixture optimization[J]. Concrete International:Design and Construction, Vol 12, No 6, June 1990:33-39.
    [83]H.Waddell. Volume, shape, and roundness of rock particles[J]. Journal of Geology,1932,40:443-451.
    [84]J.C.Santamarina, G.Cascante. Effect of surface roughness on wave propagation parameters[J]. Geotechnique,1998,48(1):129-137.
    [85]蔡基伟.石粉对机制砂混凝土性能的影响及机理研究[B].武汉理工大学,2006.
    [86]钱春香,黄蓓,董华.集料尺寸和形状及掺合料对混凝土界面的影响[J].东南大学学报,2009,39(4):840-843.
    [87]王稷良,李勇,宁琰,等.集料对混凝土强度与界面特性影响的研究[J].混凝土,2006,11:39-41.
    [88]BA RKER G C.Computer simulations of granular materials[A]. In:METHA A ed. Granular Matter: An interdisciplinary approach[M]. New York:Springer-Verlag 1994:35-83.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700