某橡胶沥青混凝土低温性能评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的高速发展和综合国力的日益壮大,公路建设在国家基础设施建设中扮演着越来越重要的角色。而由于沥青路面具有整体性好、行车舒适性强、施工快捷迅速、维修养护方便等优点,在公路建设中所占的比例逐年增加。但是,由于交通荷载的逐年增加,环境因素的剧烈变化,以及不规范施工操作等原因,沥青路面的各种早期破坏也困扰着各国的公路建设者。采取何种方法既能够提高沥青路面抵抗各类病害的能力,又不增加太多的经济投入,已经成为各界专家所关注的热点问题。
     橡胶沥青是通过把废旧汽车轮胎在常温条件下进行粉碎,形成一定细度的橡胶粉颗粒,然后将橡胶粉颗粒在高温条件下与基质沥青进行拌合,并且经过充分的熔胀反应,而形成的一种新型的沥青路面胶结材料。橡胶沥青是在基质沥青中掺加了橡胶粉,提高了基质沥青的低温抗裂性能、高温稳定性能以及疲劳耐久性能。同时,与广泛采用SBS改性沥青相比,橡胶沥青具有成本低廉的经济性优势。目前,回收再利用固体废弃物是国家现阶段比较重视问题,橡胶沥青广泛应用在一定程度上解决了大量废旧汽车轮胎的回收再利用问题,正逐步地受到国家及相关建设主管部门的青睐。
     本文对橡胶沥青和90#沥青的针入度、延度、软化点、弹性恢复和粘附性等基本性能指标进行了室内试验研究。主要针对东北季冻区的环境特点,进行了低温针入度、低温延度和低温弹性恢复试验研究,得出了橡胶沥青比重交通90#沥青具有高低温针入度大、低温延展性好、低温弹性恢复能力强的特点。同时,橡胶沥青比90#沥青软化点有较大提高,高温的稳定性较为突出。通过采用电磁炉,对粘附了橡胶沥青和90#沥青的粗集料进行大功率和长时间的水煮法试验,定量的得到了橡胶沥青抵抗剥落的显著优势。
     本文分别采用橡胶沥青和90#沥青制作了沥青混凝土试件,主要有小马歇尔试件、车辙板试件以及由车辙板试件切割成的小梁试件,并进行了相应的路用性能试验研究。通过对车辙板试件进行60℃的高温车辙试验和45℃的低温车辙试验,得出了橡胶沥青无论在高温地区还是低温地区都有良好的高温稳定性能。通过对小马歇尔试件进行低温劈裂试验、对小梁试件进行低温弯曲试验和低温冲击韧性试验,得出了橡胶沥青具有较好的低温稳定性。通过小马歇尔试件的马歇尔稳定度试验、劈裂试验和冻融劈裂试验,得出了橡胶沥青具有较好的水稳定性能。通过对小马歇尔试件进行间接拉伸疲劳试验,得出了橡胶沥青具有较好疲劳耐久性能。
     本文通过动态压缩试验和间接拉伸劲度(动态)模量试验,通过对比相应的动力学参数,得出了橡胶沥青的动力学特性。通过动态压缩试验,分析了橡胶沥青在不同频率荷载下动态压缩模量和滞后相位角?的变化规律。通过动态压缩模量的分析,得出了橡胶沥青混凝土动态压缩模量在整个测试频域范围内均小于90#沥青混凝土的动态模量,说明橡胶粉的加入明显的增加了沥青混凝土的柔性,有利于提高橡胶沥青混凝土的低温稳定性能。通过滞后相位角?的分析,得出了橡胶沥青混凝土相位角?在整个测试频域范围内变化不大,基本上趋于一条平直线,说明加载频率对橡胶沥青混凝土的滞后相位角?受加载频率的影响较小。通过间接拉伸劲度(动态)模量试验,分析了不同试验温度下动态间接拉伸劲度模量的变化规律,得出了橡胶沥青混凝土受温度的影响较小,尤其在温度较低的情况下,橡胶沥青混凝土可以提供较好的抗变形能力,具有较高的低温抗变形能力。
     本文采用cooper试验机进行30℃、40℃和50℃的蠕变试验,通过提取相关参数,分析了橡胶沥青的粘弹性能。在同一温度下,橡胶沥青混凝土的蠕变变形均小于90#沥青混凝土,这表明橡胶粉的加入改善了沥青混凝土的蠕变性能。通过计算卸载后的回弹模量,发现在温度相对较低的情况下,两种沥青混凝土的回弹模量值相差不大,但在高温时橡胶沥青混凝土的回弹模量值远远高于90#沥青混凝土,表明橡胶沥青混凝土的高温优势显著。
Along with the high-speed development of our national economy and comprehensive national strength growing increasingly, highway construction in the national infrastructure construction plays a more and more important role. And because the bituminous pavement has good overall performance, drive comfort is strong, quick construction quickly, repair maintenance is convenient wait for an advantage, in the highway construction in the proportion has increased year by year. However, due to traffic load has increased year by year, the dramatic changes in environmental factors, as well as non-standard construction operation and other reasons, asphalt pavement early damage is also plagued by various national highway builder. The method not only can improve the ability of resistance to various diseases of asphalt pavement, without too much investment, has become the hot issue concerned by all circles expert.
     Rubber asphalt is through the discarded automobile tires at room temperature under the conditions of the pulverization, formed certain fine rubber powder particles, then the rubber powder particles in high temperature conditions and matrix asphalt mix, and after full swelling reaction, and the formation of a new asphalt pavement cementing materials. Rubber asphalt in asphalt added with crumb rubber, improves the matrix asphalt low temperature crack resistance, high temperature stability and fatigue performance. At the same time, with the widespread adoption of SBS modified asphalt, asphalt rubber with low cost economic advantage. At present, recycling of solid waste is the state pay more attention to issues, rubber asphalt is widely used in some extent to solve a large number of scrap tire recycling problem, is gradually by the state and relevant departments in charge of construction 's favor.
     The rubber asphalt and 90 # asphalt penetration, ductility, softening point, elastic recovery and adhesion and the basic performance indicators of indoor experimental study. Aimed at the northeast of the seasonally frozen areas environmental characteristics, were low penetration, ductility at low temperature and low temperature elastic recovery test of asphalt rubber, the proportion of traffic 90 # asphalt has discretion warming needle penetration, low temperature ductility, low temperature elastic recovery capability. At the same time, more than 90 # rubber asphalt softening point of asphalt has bigger rise, high temperature stability is more prominent. Through the use of electromagnetic furnace, the adhesion of asphalt rubber and 90 # asphalt coarse aggregate for high power and long time boiling test, quantitative obtained remarkable advantages of asphalt rubber spalling resistance.
     The rubber asphalt and asphalt production 90 # asphalt concrete test piece, mainly pony Richelle specimen, rutting plate specimens as well as by rutting plate specimen is cut into small beam specimens, and the corresponding experimental research on road performance. The track plate specimens of 60 DEG C high temperature rutting test and 45 DEG C temperature rut test, the rubber asphalt in high temperature area or the low temperature region has good high temperature stability. The pony Richelle specimen by low temperature splitting test, the small beam specimen bend test at low temperature and low temperature impact toughness test, the rubber asphalt has better stability at low temperature. The pony Marshall test piece Marshall stability test, tensile test and freeze-thaw splitting test, the rubber asphalt has good water stability. The pony Richelle specimen by indirect tensile fatigue test, the rubber asphalt has good fatigue performance.
     This article through the dynamic compression test and indirect tensile stiffness ( dynamic ) modulus test, through comparing the corresponding kinetic parameters, the dynamic characteristics of rubber asphalt. Through the dynamic compression test, analyzed the rubber asphalt in different frequency load under dynamic compressive modulus and the lagging phase angle change rule. Through the analysis of the dynamic compressive modulus, the rubber asphalt concrete dynamic compressive modulus in the whole test frequency range were less than 90 # dynamic modulus of asphalt concrete, rubber powder obviously increases the flexibility of asphalt concrete, is beneficial to improve the rubber asphalt concrete at low temperature stability. The lagging phase angle analysis, the rubber asphalt concrete phase angle in the whole test frequency range change is not big, basically tends to be a straight, description of the loading frequency on rubber asphalt concrete the lagging phase angle by load frequency effect. By indirect tensile stiffness ( dynamic ) modulus test, analysis of different test temperature dynamic indirect tensile stiffness modulus variation, reached rubber asphalt concrete affected by temperature is small, especially in the low temperature condition, the rubber asphalt concrete can provide good deformation resistance, with a high temperature deformation resistance ability.
     This paper uses the Cooper test machine to 30℃, 40℃and 50℃of the creep test, through the extraction of relevant parameters, analysis of the viscoelastic properties of asphalt rubber. Under the same temperature, the rubber asphalt concrete creep deformation were less than 90 # asphalt concrete, which indicated that the rubber powder to improve the asphalt concrete creep properties. Through the calculation of the unloading rebound modulus, found in relatively low temperature conditions, two kinds of asphalt concrete modulus of resilience of difference is not big, but at high temperature rubber asphalt concrete modulus of resilience is far higher than the 90 # asphalt concrete, indicated that the rubber asphalt concrete high temperature advantages.
引文
[1]肖鹏.SBS物理和化学改性沥青及混合料性能评价对比研究[D].河海大学,2005年
    [2]原健安.PE改性沥青中几个问题的讨论[J].西安公路交通大学学报,1999年1月,第19卷,第1期,p13-23
    [3]邱欣,凌建明,张敏江.新型改性沥青混合料路用性能评价研究[J].沈阳建筑大学学报(自然科学版),2006年11月,第22卷,第6期,p885-889
    [4]于凯,刘力,余强,朱坦,刘双喜.废轮胎胶粉和废PE复合改性沥青性能研究[J].环境工程学报,2010年3月,第4卷,第3期,p689-692
    [5]张永明,李一鸣.橡塑沥青改性机理分析[J].公路,1997年,第7期,p46-50
    [6]杨志峰,李美江,王旭东.废旧橡胶粉在道路工程中应用的历史和现状[J].公路交通科技,2005年7月,第22卷,第7期,p19-22
    [7]马翔,倪富健,顾兴宇,沈恒.聚脂纤维沥青混合料路用性能研究分析[J].公路交通科技,2006年1月,第23卷,第1期,p24-27
    [8]彭波.改性沥青玛蹄脂及沥青玛蹄脂碎石路用性能[J].长安大学学报(自然科学版),2005年11月,第25卷,第6期,p18-21
    [9]许淳.玻璃纤维—硅藻土复合改性沥青混凝土性能研究[D].吉林大学,2010年
    [10] L.Zanzotto and G.J.Kennepohl,“Development of Rubber/Asphalt Binders by Depolymerization/Devulcanization of Scrap Tires in Asphalt”,Presented at 75th Annual Meeting of the Transportation Research Board,Washington,D.C.,1996.
    [11] T.C.Billiter,R.R.Davison,C.J.Glover,and J.A.Bullin,“Production of Asphalt–Rubber Binders by High-Cure Conditions”,Transportation Research Record 1586. Washington, D.C.,1997,pp.50–56.
    [12] T.J.Lougheed and A.T.Papagiannakis,“Viscosity Characteristics of Rubber-Modified Asphalts”,Journal of Materials in Civil Engineering,ASCE,8(1996),pp.153–156.
    [13] J.W.H.Oliver,“Optimizing the Improvements Obtained by the Digestion ofComminuted Scrap Rubber in Paving Asphalts”,Proceedings of Association Asphalt Paving Technology,51(1982),pp.169–188.
    [14] T.S.Khedaywi,T.Abdel Rahaman,H.R.Al-Masaeid,and K.Khamaiseh,“Laboratory Investigation of Properties of Asphalt–Rubber Concrete Mixtures”, Transportation Research Record 1417.Washington,D.C.:Transportation Research Board, 1993, pp. 93–98.
    [15]韦大川,王云鹏,李世武,邱雪鹏,冉祥海,姬相玲.橡胶粉与SBS复合改性沥青路用性能与微观结构[J].吉林大学学报(工学版),2008年5月,第38卷,第3期,p525-529
    [16]张洪伟,高志伟,常明丰,王华晟.橡胶颗粒沥青混合料矿料级配的分形评价[J].武汉理工大学学报,2011年1月,第33卷,第1期,p82-85
    [17]徐鸥明,韩森,张洪伟,郭于铖.橡胶颗粒沥青混合料抑制结冰试验研究[J].公路,2010年1月,第1期,p153-156
    [18]闫翠香,田腾辉,赵宏亮.橡胶沥青LSPM的路用性能研究[J].中外公路,2011年10月,第31卷,第5期,253-256
    [19]孙雪伟,唐颂,王建军,陈候杰.橡胶沥青低温延度影响因素研究与分析[J].中外公路,2010年10月,第30卷,第5期,p310-313
    [20] U.Isacsson and X.Lu,“Characterization of Bitumens Modified with SEBS,EVA and EBA Polymers”,Journal of Materials Science, 34(1999), pp.3737–3745
    [21] Way,G.B.Prevention of Reflection Cracking in California.In Transportation Research Record 756,TRB,National Research Council,Washington,D.C.,1980
    [22] Charania,E.,Cano,J.O.,and R.H.Schnormeir.Twenty Year Study of Asphalt Rubber Pavements in Phoenix,Arizona.In Transportation Research Record 1307, TRB,National Research Council,Washington,D.C.,1991
    [23] Lee,S.-J.,Amirkhanian,S.,and Shatanawi,K.(2006).“Effects of crumb rubber on aging of asphalt binders.”Asphalt Rubber 2006, Vol.3,pp.779-795,Palm Springs, California
    [24] Liang,R.Y.and Lee,S.(1996).“Short-term and long-term aging behavior of rubber modified asphalt paving mixtures.”Transportation Research Record:Journal of the Transportation Research Board, No.1530,pp.11-17
    [25] Putman,B.J.(2005).Quantification of the effects of crumb rubber in CRM binder,PhD Dissertation,Clemson University
    [26] Cooper,S.B.,Mohammad,L.N.,and Abadie,C.(2007).Evaluation of field projects using crumb rubber modified asphalt concrete, FHWA;393,pp.1-8
    [27]杨志峰,李美江,王旭东.废旧橡胶粉在道路工程中应用的历史和现状[J].公路交通科技,2005年7月,第22卷,第7期,p19-22
    [28] Lee,S.-J.,Amirkhanian,S.,Putman,B.,Kim,K.W.(2007).“A laboratory study of the effects of compaction on the volumetric and rutting properties of CRM asphalt mixtures.”Journal of Materials in Civil Engineering, ASCE, Vol.19, No.12:1079-1089
    [29] Raad.L.,Saboundjian,S.,and J.Corcoran.Remaining Fatigue life Analysis:A Comparison between Conventional Asphalt Concrete and Asphalt Rubber Hot Mix. In Transportation Research Record 1388,TRB,National Research Council, Washington, D.C.,1993
    [30] Saboundjian,S.Fatigue Behavior of Conventional and Rubber Asphalt Mixes.Ph.D. Dissertation,University of Alaska Fairbanks,May 1999
    [31] Airey,G.,Singleton,T.M.,and Collop,A.(2002).“Properties of polymer modified bitumen after rubber-bitumen interaction.”Journal of Materials in Civil Engineering, ASCE, Vol.14,No.4,pp.344-354
    [32] Amirkhanian,S.and Corley,M.(2004).“Utilization of rubberized asphalt in the united state—An overview.”Proceedings of Advanced Technologies in Asphalt Pavements, South Korea,pp.3-13
    [33] Biro,S.,Gandhi,T.,and Amirkhanian,S.(2009).“Midrange tem-perature rheological properties of warm asphalt binders.”Journal of Materials in Civil Engineering, ASCE,Vol.21,No.7,pp.316-323
    [34] Roberts,F.L.,Kandhal,P.S.,Brown,E.R.,Lee,D.Y.,and Kennedy,T.W.(1996). Hot mix asphalt materials,mixture design,and construction,National Asphalt Pavement Association EducationFoundation,Lanham,MD
    [35]弥海晨,胡苗,祁峰,郭平.橡胶沥青结合料对混合料高温抗车辙性能的影响[J].中外公路,2011年2月,第31卷,第1期,203-205
    [36]李廷刚,李金钟,李伟.橡胶沥青微观机理研究及其公路工程应用[J].公路交通科技,2011年1月,第28卷,第1期,25-30
    [37]高俊启,季天剑.橡胶沥青应力吸收层力学与疲劳性能研究[J].实验力学,2009年8月,第24卷,第4期,341-346
    [38]刘子兴,常立峰.橡胶沥青性能试验及影响因素分析[J].公路,2011年4月,第4期,174-177
    [39]许云.橡胶沥青应力吸收层作用机理的研究[J].中外公路,2010年12月,第30卷,第6期,221-225
    [40] Ruth,B.E.and Roque,R.(1995).“Crumb Rubber Modifier(CRM)in asphalt pavements.”Proceedings of the Transportation Congress, pp.768-785
    [41] Shen,J.,Amirkhanian,S.,and Lee,S.-J.(2005).“Effects of reju- venating agents on recycled aged rubber modified binders.”The International Journal of Pavement Engineering, Vol.6,No.4,pp. 273-279
    [42] Y.Yildirim,“Polymer Modified Asphalt Binders”,Journal of Construction and Building Materials,Elsevier,2005
    [43] [43]M.Hossain,S.Swartz,and E.Hoque,“Fracture and Tensile Characteristics of Asphalt–Rubber Concrete”,Journal of Materials in Civil Engineering, 11(1999), pp.287–294.
    [44] M.A.Abdelrahman and S.H.Carpenter,Mechanism of Interaction of Asphalt Cement with Crumb Rubber Modifier,Transportation Research Record 1661. Washington, D.C.:Transportation Research Board,1999,pp.106–113
    [45] L.Raad,S.Saboundjian,and G.Minassian,“Field Aging Effects on Fatigue asphalt Concrete and Asphalt Rubber Concrete”,Transportation Research Record 1767. Washington D.C.:National Academy Press,2001
    [46] Crockford,W.W., Makunike,D., Davison,R.R.,Scullion,T.and Billiter,T.C. Recycling Crumb Rubber Modified Asphalt Pavements.Report FHWA/ TX-95 /1333 -1F Texas. Transportation Institute, May 1995
    [47]庞传琴,毕玉峰.不同改性沥青性能的对比分析[J].中外公路,2005年12月,第25卷,第6期,p120-124
    [48]秦永春,徐剑,黄颂昌,李福普.道路用乳化沥青技术要求的研究[J].公路交通科技,2005年2月,第22卷,第2期,p17-19
    [49]陈子建.橡胶沥青低温性能研究[J].公路,2010年6月,第6期,p185-187
    [50] AASHTO T315-02.“Determining the Rheological Properties of Asphalt Binder Using Dynamic Shear Rheometer”,Standard Specification for Transportation Materials and Methods of Sampling and Testing.T315-02 Part 2B. American Association of State Highway and Transportation Officials,2002
    [51] F.L.Roberts,P.S.Kandhal,R.E.Brown,D-Y.Lee,and T.W.Kennedy,Hot Mix Asphalt Materials,Mixture Design, and Construction.2nd edn.Lanham,Md.:National Asphalt Pavement Association Education Foundation Inc.,1996
    [52] Jian-Shiuh Chen,Min-Chih Liao,and Ming-Shen Shiah,“Asphalt Modified by Styrene–Butadiene–Styrene Triblockopolymer:Morphology and Mode”,Journal of Materials in Civil Engineering,14(2003),pp.224–229
    [53] Anderton,G.L. Summary of Research on Asphalt-Rubber Binders and Mixes. Volume 1, Army Corps of Engineers Waterways Experiment Station,Construction Productivity Advancement Research,Asphalt Rubber Producers Group,May 1992
    [54] Gaines,L.L., Wolsky,A.M. Discarded Tires:Energy Conservation Through Alternative Uses,Energy&Environmental Systems Division,United States Department of Energy December,1979
    [55] Gardner,T.M.,Cole,K. State of California Integrated Waste Management Board Tire Program Evaluation,Vitetta Group, February 1999
    [56] G.D.Airey,“Rheological Evaluation of Ethylene Vinyl Acetate Polymer Modified Bitumen”,Construction and Building Materials Journal,16(2002),pp.473–487.
    [57] J.Oliver and P.Tredrea,“Relationships between Binder Properties and Asphalt Rutting”,18th ARRB Transport Research Conference,Christchurch,New Zealand, 2(1996),pp.149–163..
    [58]康爱红.活化废胶粉改性沥青机理研究[J].公路交通科技.2008年7月.第25卷,第7期,p12-16 .
    [59] Huffman,J.E.,Sahuaro. Concept of Asphalt-Rubber Binders, Presentation at the First Asphalt Rubber User Producer Workshop, Scottsdale Arizona, May 1980
    [60] Scofield,L.A. The History Development and Performance of Asphalt Rubber at ADOT. Report AZ-SP-8902.Arizona Transportation Research Center,Arizona Department of Transportation,December,1989
    [61] Way,G.B. Flagstaff I-40 Asphalt Rubber Overlay Project,Nine Years of Success Arizona Department of Transportation.Paper Presented to the Transportation Research Board,78th Annual Meeting,August 1999
    [62] Winters,R.E.,The Conception and Development of Asphalt Rubber, Presentation to the National Seminar on Asphalt Rubber, Kansas City Missouri,October 1989
    [63] Zhu,H.,Carlson,D.A Spray Based Crumb Rubber Technology in Highway Noise Reduction Application,Article submitted to Journal of Solid Waste Management, October 1999
    [64]汪水银,郭朝阳,彭锋.废胎胶粉沥青的改性机理[J].长安大学学报(自然科学版),2010年7月,第30卷,第4期,p34-38
    [65]肖鹏,陈洋洋.胶粉物理与化学改性沥青性能对比试验研究[J].公路,2010年3月,第3期,p130-133
    [66]弥海晨,胡苗,祁峰,郭平.橡胶沥青结合料对混合料高温抗车辙性能的影响[J].公路,2011年2月,第31卷,第1期,p203-205
    [67]刘少文,李智慧.应用回弹恢复评价橡胶沥青的弹性恢复能力[J].公路交通科技,2009年7月,第26卷,第7期,p22-26
    [68] G.D.Airey,“Rheological Evaluation of Ethylene Vinyl Acetate Polymer Modified Bitumen”,Construction and Building Materials,16(2002),pp.473–487.
    [69]王笑风,曹荣吉.橡胶沥青的改性机理[J].长安大学学报(自然科学版),2011年3月,第31卷,第2期,p7-11
    [70]张丽萍,邱欣,薛亮,徐晓明,索智.废旧轮胎橡胶改性沥青混合料路用性能的室内试验[J].沈阳建筑大学学报(自然科学版),2005年7月,第21卷,第4期,p293-296
    [71]汪水银.干拌橡胶沥青混合料抗剪能力试验分析[J].公路,2010年3月,第3期,p134-140
    [72]孙雪伟,唐颂,王建军,陈候杰.橡胶沥青低温延度影响因素研究与分析[J].中外公路,2010年10月,第30卷.第5期,p310-313
    [73]《公路工程沥青及沥青混合料试验规程——T0604-2000沥青针入度试验》[S].北京:人民交通出版社,2000年
    [74]王新宽.橡胶沥青室内制作及性能研究[D].长安大学,2010年
    [75]胡霞光,李德超,田莉.沥青混合料动态模量研究进展[J].中外公路,2007.36(1):132-136
    [76]胡旭东,张起森,范勇军.HMA动态模量Witczak和Hirsch预测模型[J].中外公路,2006.26(6):204-207
    [77]胡旭东,张起森,范勇军.HMA动态模量Witczak和Hirsch预测模型[J].中外公路,2006.26(6):204-207
    [78]马林,张肖宁.间接拉伸与单轴压缩模式沥青混合料动态模量比较分析[J].公路交通科技,2009.26(10):11-17
    [79]郭乃胜.聚酯纤维沥青混凝土的静动态性能研究[D].大连海事大学,2007.03
    [80]马林,张肖宁.基于间接拉伸试验模式的沥青混合料动态模量[J].华南理工大学学报,2008.36(10):86-91
    [81]郭乃胜.聚酯纤维沥青混凝土的静动态性能研究[D].大连海事大学,2007.03
    [82]邓学钧.路面设计原理与方法[M].北京:人民交通出版社,2001.5
    [83]赵延庆,吴剑,文健.沥青混合料动态模量及其主曲线的确定与分析[J].公路,2008.8(8):163-166
    [84]羊明.沥青混合料动态模量研究[D].长沙理工大学,2007.4
    [85]詹小丽,张肖宁,王端宜,卢亮.改性沥青非线性粘弹性本构关系研究及应用[J].工程力学,2009.26(2):85-90
    [86]范兵.沥青混合料粘弹特性分析[J].路基工程,2009(5):151-152
    [87]彭妙娟,许志鸿.沥青路面永久变形的非线性本构模型研究[J].中国科学.G辑,2006.36(4):415-426

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700