用户名: 密码: 验证码:
高频冲击下凿岩台车钻臂动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凿岩台车是现代化的凿岩设备,主要用于隧道及地下工程、矿山开采,能方便移动并可同时支持多台液压凿岩机进行钻孔作业,具有作业效率高、钻孔定位准及作业环境好等特点。
     钻臂作为凿岩工作的直接完成者,在施工过程中既要承受拉压载荷、弯扭载荷,又要承受高频率的凿岩冲击荷载,钻臂在这种外载激励下的动态特性将影响整机性能的发挥。因此,要保证凿岩台车的正常工作,就必须准确了解钻臂的动态特性,从而验证其结构能否克服由动载荷引起的破坏。但目前,国内对凿岩台车钻臂的研究多是面对钻臂运动控制方面的运动学、动力学问题进行仿真分析,而对钻臂动态特性的研究还很少。
     本文针对国内现有钻臂研究中存在的不足,对钻头破岩过程、钻臂在高频冲击下的动态响应及疲劳寿命进行仿真分析,主要研究工作如下:
     1.利用LS-DYNA软件对凿岩台车钻头冲旋破岩过程进行数值模拟,分析了钻头破岩过程,得到钻头侵深、速度及凿岩反力的变化曲线,讨论了冲击能、转速对破岩的影响。凿岩反力的定量确定为钻臂动态特性的仿真提供了载荷信息。
     2.联合运用ADAMS和ANSYS建立了大臂为柔性体的钻臂刚柔耦合虚拟样机模型,为下一步的动态特性仿真奠定了基础。
     3.利用ADAMS对大臂在五种典型凿岩工况下的动态应力进行仿真,获得大臂的应力-时间历程曲线和瞬态应力分布云图,找出了大应力节点,从而校核了大臂的强度,也为后续的疲劳寿命计算提供依据。
     4.在ADAMS环境下对大臂做谐响应分析,得到不同激励频率下大臂上各测点的位移振动响应曲线,结果表明,大臂的振幅受自身姿态的影响较大,工况四为大臂振动最恶劣工况,大臂二、三节连接处刚度较弱为大臂的薄弱环节;对钎杆顶端点的位移-时间历程作时域、频域的统计分析,发现工况四下钎杆顶端的振动位移最大,平稳性最差。
     5.对钻臂展开过程进行刚、柔模型对比仿真,说明柔性体的引入使钻臂动力学特性发生了改变。
     6.借助动应力仿真结果,提取了大臂疲劳危险点的应力时间历程并对其进行雨流计数处理,再利用MSC.fatigue估算其失效循环次数,进而推导出钻臂的使用寿命。本课题旨在解决当前钻臂动力学研究中存在的不足,同时力求为在没有物理样机的情况下分析凿岩台车钻臂动态性能提供一套完整方法。
Drill jumbo is a modern drilling equipment which is mainly used in tunnel and underground engineering as well as mine exploitation. It can move expediently and support multiple rock drills simultaneously. It is precise in drilling position, has high working efficiency and provides good working environment.
     As the key executor of rock drilling, the drill jumbo boom needs to bear tensile compressive load, bending twisting load as well as high frequency impact load. Dynamic characteristics of the boom under such external excitation have direct influence on the overall performance of the equipment. Therefore, it is necessary to accurately understand the dynamic characteristics of drill jumbo boom and thus determine whether the structure can withstand the damage caused by the dynamic load. Recent research of drill jumbo boom in China has mainly been focused on its kinematics and dynamics with particular interests in the equipment's movement control. Research on dynamic characteristic of the drill jumbo boom is relatively rare.
     Realizing shortages in the research of boom, this work conducted simulation analysis on rock-breaking process of the drill bit, dynamic response and fatigue lifetime of the boom under impact load condition. Major contributions of this paper are listed as below:
     1. Rock-breaking process of the drill bit was numerically simulated using LS-DYNA software. Variation curves of penetration depth, velocity and resultant force were obtained from the simulation. Influences of impacting energy and rotary speed on rock crushing were discussed. The quantitative value of the resultant force provides basis for dynamic characteristics analysis.
     2. A rigid-flexible hybrid virtual prototype of the boom with all three sections of telescopic arm flexible was constructed by jointly using both ANSYS and ADAMS, which laid a foundation for further dynamic characteristic simulations.
     3. Dynamic stresses of the telescopic arm in five working conditions were simulated using ADAMS. Stress-time curves and transient stress distribution cloud atlas of the telescopic arm were obtained. Maximum stress point of the telescopic arm was found and thus verified the dynamic strength of the arm and provided data to the calculation of fatigue strength that may follow this work.
     4. The resonance response of the telescopic arm was simulated using ADAMS. Response curves of separately placed testing points on the telescopic arm under different driving frequencies were generated. The results showed that the swing of telescopic arm was greatly influenced by its pose. Working condition four was the worst for vibration. And the connection between2nd and3rd arm was a weak position of the structure because of its poor stiffness. Statistical analysis of displacement response at the top end of the drill rod in time and frequency domains indicated that the maximum vibration displacement and worst smoothness both happened under working condition four.
     5. Simulations for smooth deployment process of the boom with rigid mode and rigid-flexible coupling mode were conducted respectively. Comparison of simulation results indicated that dynamic characteristics of the boom changed when flexible body was induced.
     6. Based on the simulation results, stress-time history at weak points on the telescopic arm was extracted. Fatigue lifetime of the boom was estimated using the stress spectra obtained by rain-flow counting method with MSC.fatigue.
     The purpose of this study is to solve some open problems in the research of drill jumbo boom and at the same time trying to provide a set of methods for studying boom dynamic characteristics when no physical prototype is available.
引文
[1]Stig Olofsson. Blasting Technology, FACE DRILLING (3rd Edition)[M].Oerebro:Atlas Copco Rock Drills AB,2004
    [2]郭娜.轻型凿岩机器人运动学及力学分析与仿真[D].东北大学硕士学位论文,2006
    [3]黄志强,范永涛,魏振强,等.冲旋钻头破岩机理仿真研究[J].西南石油大学学报(自然科学版),2010,32(1):148~150
    [4]谭力,徐延金,黄志强,等.气动冲旋钻头破岩过程仿真研究[J].西部探矿工程,2008,(4):69~71
    [5]何霞,王德贵,刘清友,等.空气锤钎头破岩机理仿真分析[J].石油机械,2011,39(7):15~18
    [6]祝效华,罗衡,贾彦杰.考虑岩石疲劳损伤的空气冲旋钻井破岩数值模拟研究[J].岩石力学与工程学报,2012,31(4):754~761
    [7]金鑫.物探潜孔钻头破岩机理、动力学研究及结构改进[D].西南石油学院硕士学位论文,2005
    [8]黄志强,谭力,金鑫,等.基于LS-DYNA的冲旋钻头牙齿破岩机理仿真研究[J].天然气工业,2007,27(4):76~78
    [9]卜长根,龚汉松,夏柏如.空隙率对潜孔锤凿岩瞬态冲击过程的影响[J].探矿工程(岩土钻掘工程),2011,38(4):6-9
    [10]Bu C.G., Qu Y.G., Cheng Z.Q., Liu B.L., Numerical Simulation of Impact on Pneumatic DTH Hammer Percussive Drilling[J] Journal of Earth SCIENCE,2009,20(5):868-878
    [13]赵正军.煤岩冲击破碎过程的力学行为分析[D].太原理工大学硕士学位论文,2005
    [14]刘海龙,邓嵘.牙轮钻头破岩的计算机仿真[J].黑龙江科技信息,2007,(13):68
    [11]Lundberg B. Computer modeling and simulation of percussive drilling of rock[J].Comprehensive Rock Engineering,1993,4:137-154
    [12]Izquierdo L,Chinang L.A methodology for estimation of the specific rock energy index using corrected down-the-hole drill monitoring data[J].Min Tech IMM Trans Sect A,2004,12:225-236
    [13]Wasfy TM,Noor AK.Computational procedure for simulating the contact/impact response in flexible multibody systems[J].Comput Meth Appl Mech Eng,1997,147:53-57
    [14]Luciano E. Chiang, Dante A. Elias. A 3D methodology for simulating the impact in rock-drilling harmers[J].Rock Mechanics and Mining Sciences,2008,45:701-711
    [15]周友行.凿岩机器人孔序规划的研究与实现[D].中南大学博士学位论文,2003
    [16]李力争.凿岩机器人双三角钻臂自适应控制策略研究[D].中南大学博士学位论文,2003
    [17]王恒升.凿岩机器人双三角臂定位及CAN总线控制系统研究[D].中南大学博士学位论文,2006
    [18]谢习华.隧道凿岩机器人控制系统及定位误差分析与补偿研究[D].中南大学博士学位论文,2009
    [19]刘泽鑫.电脑凿岩台车钻臂动力学分析[D].西南交通大学硕士学位论文,2012
    [20]刘建.掘进钻车钻臂的有限元分析[D].吉林大学硕士学位论文,2006
    [21]王彦生,侯华中,宁怀明,等.凿岩台车伸缩臂结构静力计算与试验研究[J].拖拉机与农用运输车,2010,37(5):22~23
    [22]丁丰梅,丁丰禄,王有和,等.JCZY-252凿岩钻车推进梁截面的优化设计[J].机床与液压,2011,39(2):53~56
    [23]宁怀明,陈殿云,王彦生,等.TR1000型凿岩机伸缩臂的有限元分析[J].凿岩机械气动工具,2005,(4):1~5
    [24]蔚艳庆.电脑凿岩台车快速施工技术研究[D].西南交通大学硕士学位论文,2007
    [25]葛修润,任建喜,蒲毅斌,等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191~195
    [26]倪骁慧,李晓娟,朱珍德.不同频率循环载荷作用下花岗岩细观疲劳损伤特征研究[J].岩石力学与工程学报,2011,30(1):164~169
    [27]赵丽娟,李发泉,王铜.基于H-J-C本构模型的掘进机截齿破岩过程的数值模拟[J].世界科技研究与发展,2012,34(1):62~65
    [28]李侯清.重型液压凿岩机冲击机构及其液压驱动系统研究[D].中南大学硕士学位论文,2010:20
    [29]姜力.弹头终点弹道的数值模拟研究[D].大连理工大学硕士论文,2007
    [30]时党勇,李裕春.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京:清华大学出版社,2005
    [31]John O H.User's manual for DYNA3D[R].California:Lawrence Livermore National Laboratory,1998
    [32]候炜.旋转侵彻体对混凝土的侵彻研究[D].南京理工大学硕士论文,2009
    [33]刘国志,吴烨.进口全液压凿岩台车主要系统结构与性能[J].工程机械与维修,1997,(6): 28~30
    [34]高澜庆等.液压凿岩机理论、设计与应用[M].北京:机械工业出版社,1998
    [35]田文元.轻型独立回转液压凿岩机的研究[D].东北大学博士学位论文,2005
    [36]冯豪,蒋绍军,陈云峰.基于ADAMS刚柔耦合的挖掘机工作装置仿真分析[A].第 四届中国CAE工程分析技术年会论文集[C].2007,96~100
    [37]杜武军.基于多柔体虚拟样机技术的组合臂架动力学仿真[D].武汉理工大学硕士论文,2007
    [38]郭孔辉,王爽,丁海涛,等.后悬架非对称式橡胶衬套弹性耦合特性[J].吉林大学学报(工学版),2007,37(6):1225~1228
    [39]麻文焱.振动压路机的橡胶减振器减振性能试验研究[D].吉林大学硕士学位论文,2004
    [40]陈欢.纵向力对货车车体结构的影响分析[D].大连交通大学硕士学位论文,2004
    [41]王乘云.基于虚拟样机技术的掘进机截割部振动特性研究[D].辽宁工程技术大学硕士学位论文,2009
    [42]孙利伟.基于刚柔混合模型的混凝土泵车臂架的仿真研究[D].吉林大学硕士学位论文,2006
    [43]裴中涛.装载机驱动桥动力学特性分析与桥壳疲劳寿命预测[D].浙江理工大学硕士学位论文,2012
    [44]孙玮光.柔性车体的随机振动性能和动应力分析[D].大连交通大学硕士学位论文,2008
    [45]刘德顺,李夕兵.冲击机械系统动力学[M].北京:科学技术出版社,1998
    [46]LUNDBERG B. Microcomputer simulation of percussive drilling[J].J Rock Mech Min Sci & Geom,1985,22(4)
    [47]David Marting.At last a Computer-controlled Jumbo That Really Works[J].Tunnels and Tunneling,1993,(5)
    [48]Changzhi J,Zhonghua D,Xingui W. Research on dynamic simulation of field machinery based on adams[J].Proceedings of the International Symposium on Test and Measurement,2011,(2)
    [49]ADAMS/VIEW User's Reference Manual.MDI Corporation,1999
    [50]Holmquist T J,et al.A computational constitutive model for concrete subjcoted to largestrains,high strain rates,and high pressures[C].Proceeding of the 14th International Symposium on Ballislics,Quebec,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700