功能可控型聚羧酸减水剂的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羧酸减水剂是继木质素、萘系之后的新一代减水剂,以其优良的分散性和分散保持性及良好的力学性能在公路、铁路、水利工程、房建等领域得到了广泛应用,已成为未来减水剂的发展方向。
     本论文依托于国家“863“(2005AA332010)“高抗渗长寿命大管径隧道管片材料结构设计与工程应用”、国家“973”(2001CB610704-3)“化学外加剂对高性能水泥水化与结构的作用机理研究”、建设部软科学研究项目(2007-k4-3)“功能可控制型聚羧酸系高性能混凝土减水剂的研究”,主要针对聚羧酸减水剂合成及应用过程中存在的问题,进行了系统研究,确定了大单体及聚羧酸减水剂制备的最佳工艺条件;研究分析了分子结构对C_3A、C_3S及普通硅酸盐水泥水化历程的影响,实现减水剂的功能可控制;提出了优先吸附理论,制备了低成本高性能聚羧酸减水剂,并应用于商品混凝土;通过体积稳定性、水化热电性能及对水化产物的微观分析,研究了减水剂对水泥水化的调控机理。主要技术成果如下:
     1.研究了聚羧酸减水剂大单体制备工艺及减水剂合成工艺,确定了最佳工艺参数:
     (1)利用有机无机复合预处理的方法制备了甲基丙烯酸高效阻聚,克服了传统阻聚剂不稳定的缺点,使大单体酯化率可达到99%。
     (2)确定了中间大单体的最佳合成工艺:当催化剂掺量为5~6%;酸醇比为(1.15~1.2):1;溶剂甲苯掺量为50%;温度控制为120℃。确定了聚羧酸减水剂合成的最佳工艺条件:引发剂用量为5~7%,聚合温度控制在80℃,反应7~8h。
     (3)通过引入两亲平衡值(P_0)、亲水平衡因子(k)、两亲匹配系数(λ)等概念,首次将两亲匹配理论应用于聚羧酸减水剂分子结构设计中。对于特定条件下的共聚物,可以通过计算两亲匹配系数,从而在聚合反应前预测其共聚物分散能力的大小,对聚羧酸减水剂的单体选择、配比优化设计有很强的指导作用。
     2.研究了二元共聚体系分子结构对C_3A、C_3S、普通硅酸盐水泥水化历程的影响规律,提出了功能可控制设计方法:
     (1)减水剂促进了2CaO·Al_2O_3·8H_2O结构向Al(OH)_3凝胶、3CaO·Al_2O_3·6H_2O结构的转化,但整体上抑制了C_3A的水化;从分子结构上来看,长侧链接枝密度越大,长侧链分子量越小,水化抑制作用越强;而大分子量长侧链有利于六方片状的C_2AH_8向立方状的C_3AH_6转化,小分子量长侧链的共聚物使水化产物中立方状C_3AH_6结晶更规则。
     (2)聚羧酸减水剂抑制了C_3S 1d的水化及CH的生成,随长侧链分子量的增加,水化抑制作用减弱;而随长侧链质量比的增加,水化抑制作用增强。聚羧酸减水剂对C_3S 7 d的水化抑制作用逐渐消失,促进CH晶体的生长。小分子量长侧链有利于CH的生长,使7 d水化产物中CH结晶更规则。从分子结构上来看,无论调整长侧链分子量还是长侧链的接枝密度,减水剂分子结构对于C_3S的水化7d影响不大,CH的生成量没有明显的区别,但都高于空白样,而主要影响CSH凝胶的形成。聚羧酸减水剂对C_3S 28 d的水化抑制能力逐渐消失。长侧链分子量越大,减水剂分子对C_3S 28d水化的抑制作用越弱。小分子量的长侧链有利于28 d CH的生长,而接枝高密度的羧基抑制了28d龄期CSH的生成。
     (3)功能可控制设计方法:羧基(COO-)和聚氧化乙烯基(-OCH_2CH_2-)是聚羧酸减水剂的主导官能团,对减水剂性能起决定作用,调整聚羧酸减水剂侧链接枝密度及长侧链分子量可实现减水剂分散性及分散保持性、凝结时间、引气量、早期强度、水化热、电阻率、化学收缩的可控制性。
     3.优先吸附与低成本聚羧酸减水剂的制备
     (1)提出优先吸附设计方法,利用低成本有机物,优先吸附于颗粒表面,有效屏蔽水化活点水化,从而提高减水剂分散性及分散保持性;配制的混凝土具有良好的流动性和流动保持性及力学性能,性价比明显高于萘系减水剂。
     (2)随羟基羧酸盐掺量的增加,聚羧酸减水剂的初始分散性提高。从作用机理上来看,羟基羧酸盐抑制初期C_3S的水化而加速C_3A初期的溶解和AFt的形成,作用效果随掺量的增加而增强。磺化多元醇与聚羧酸减水剂共同作用可提高分散保持性。随掺量的增加,分散保持性提高;从作用机理上来看,磺化多元醇抑制了早期C_3S、C_3A的水化及AFt的形成。
     (3)对于羟基羧酸盐、磺化多元醇、聚羧酸减水剂三元组分,随羟基羧酸盐掺量的增加,初始分散能力提高,而分散保持性缓慢下降,3d、7d、28d强度均下降;随磺化多元醇掺量的增加,初始分散性增加不明显,而流动保持性提高,当掺量达到0.3%时,1h无损失;当掺量小于0.3%时,3d、7d强度随掺量的增加逐渐下降,而对28d强度的影响较小。当羟基羧酸掺量为0.04~0.1%,磺化多元醇掺量为0.1~0.3%时,可有效提高聚羧酸减水剂的分散性和分散保持性而不影响后期力学性能。
     4.减水剂对水泥水化历程的调控作用机理:
     (1)随木钙掺量的增加1 d化学收缩变化不明显。而对于FDN、KH高效减水剂,1 d的化学收缩随掺量的增加而降低。与萘系、木钙减水剂相比,聚羧酸减水剂较大程度上减小早期化学收缩,降低开裂敏感性,抑制早期开裂。
     (2)对于木钙,由于对C_3A的促溶作用,结构形成期及结构稳定期电阻率随木钙掺量的增加变化不明显,但水化放热峰明显延迟并且放热峰削弱。对于FDN、聚羧酸减水剂,随掺量的增加,对浆体早期的水化的抑制作用增强,水化放热峰明显推后并且放热峰削弱,溶解平衡期延长。
     (3)微观结构分析表明,减水剂进入水泥体系后,抑制了C_3S的水化及CH的形成,掺量适中时,对后期水化的抑制作用渐渐消失。对于木钙,抑制了C_3S早期的水化及CH结晶,同时促进了C_3A的溶解和AFt形成。FDN抑制了C_3S 1 d的水化,促进了7d、28dC_3S的水化及CH的形成;聚羧酸减水剂抑制了1d、7d C_3S的水化,而不影响28d的水化。
Polycarboxylate superplasticizer is the third generation water-reduce after naphthalene superplasticizer and lignin.With the high dispersibility and holding dispersibility,the polycarboxylate superplasticizer,which is widely used in construction of highway,railroad,water conservancy and building,is the direction of development of water-reducer.In the paper,financial supported by China "863" Program "2005AA332010" and "973" Program"2001CB610704-3" from the Ministry of Science and Technology and the "2007-k4-3" from Ministry of Construction of the P.R.China,the synthesis and application of polycarboxylate superplasticizer have been researched.Optimum conditions of synthesis middle-monomer and water-reducer has been confirmed;Effect of molecular structure on hydratation of cement clinker mineral phase and Portland cement have been researched to realize the controllability function;The assume of preferential adsorption has been put forward to prepare the low-cost water-reducer and use in the ready-mixed concrete;Mechanism of three generations water-reducer has been compared.The main work and results are listed as follow:
     1.Researching the synthesis technology of middle-monomer and polycarboxylate superplasticizer to make sure the optimum conditions and also constructing the production line:
     (1) The inhibitor for methacrylic acid is beforehand prepared by organic-inorganic composite. The inhibitor has good performance of stability that conversion rate of esterification can reach 99%
     (2) The optimum conditions of synthesis of middle-monomer:when the addition of activator is 5-6%,proportion of acid and alcohol is(1.15-1.2):1,toluene is 50%,and the temperature is 120℃.The optimum conditions of synthesis of water-reducer:when the addition of initiator is 5-7%,the temperature is 80℃,and it reacts for 7-8h,the copolymer has good dispersibility and holding dispersibility.
     (3) Introducing amphiphilic balance(P_0),hydrophilic balance(k),amphiphilic matching coefficient(λ),the amphiphilic balance and comb-shaped copolymers of the polycarboxylate superplasticizer have been researched.In some condition,the matching coefficient can confer the dispersing ability and monomer matching before we synthesize the copolymer.
     2.Research the effect of molecular structure on hydration of cement clinker mineral phase and Portland cement and establish the method of controllability function
     (1) Polycarboxylate superplasticizer accelerates the transformation from 2CaO·Al_2O_3·8H_2O to Al(OH)_3 and 3CaO·Al_2O_3·6H_2O.It restrains hydration of C_3A the as a whole.The ability to delay hydration of C_3A becomes strong with little molecular weight and less grafting density of long-side chain.The big molecular weight of long-side chain is advantaged to transformation of C_2AH_8 to C_3AH_6.The little molecular weight of long-side chain is advantaged to better crystallization of C_3AH_6.
     (2) Polycarboxylate superplasticizer restrains hydration of C_3S and formation of CH at 1d.With increase addition of molecular weight of long-side chain,ability to restrain hydration becomes weaker.With grafting density increasing of long-side chain,ability to restrain hydration becomes strong.It accelerates formation of CH,and has little ability to restrain hydration of C_3S at 7d.Water-reducer with little molecular weight of long-side chain is advantage to crystallization of CH.No matter how to adjust molecular weight and grafting density of long-side chain,weight of CH in hydration products is little change,but more than control.It mainly effects the formation of CSH at 7d.The ability to restrain hydration nearly disappears at 28d.The bigger molecular weight of long-side chain is,the weaker ability to hydration at 28 d is.The little molecular weight of long-side is advantage to form the CH, but the more grafting density of carboxyl accelerates formation of CSH at 28d.
     (3) Method of Controllability function of KH:carboxyl and gather oxygen ethylene,which are the main groups of polycarboxylate superplasticizer,has primary effect on the performance. To adjust grafting density and molecular weight of long-side chain can achieve to control dispersibility and holding dispersibility,setting time,air-entrained performance,early strength,hydration heat,electrical resistivity,chemical shrinkage of KH
     3.Preferential adsorption and low-cost polycarboxylate superplasticizer:
     (1) Low-cost organic compounds preferentially adsorb on the surface of cement particles to shield active hydrating points.In this way,dispersibility and holding dispersibility have been enhanced.The cement with KH-d has good fluidity and holding fluidity and mechanical properties,but the cost is lower than naphthalene superplasticizer.
     (2) With increasing addition of hydroxy carboxylate,initial dispersibility increase.Hydroxy carboxylate restrain the hydration of C_3S,but accelerate the hydration C_3A and formation of AFt.With sulfonation-polyol,holding dispersibility of polycarboxylate superplasticizer increases.Sulfonation-polyol restrains hydration of C_3S,C_3A and formation of AFt.
     (3) In system of hydroxy carboxylate,sulfonation-polyol and polycarboxylate superplasticizer, initial dispersibility increases and holding dispersibility reduces with addition of hydroxy carboxylate.And compressive strength also reduces at 3d,7d and 28d.Initial dispersibility has little change and holding dispersibility increases with addition of sulfonation-polyol. There is little loss of fluidity for 1h with addition of 0.3%,but compressive strength of 3d and 7d reduces and strength of 28d doesn't drop.When addition of hydroxy carboxylate is 0.04-0.1%and addition of sulfonation-polyol is 0.1-0.3%,polycarboxylate superplasticizer has good dispersibility,holding dispersibility and mechanical properties.
     4.Mechanism of water-reducer in cement hydrating process:
     (1) Restrains hydration of C_3S and accelerates hydration C_3A at 1d.The chemical shrinkage with Calcium lignosulfonate for 1d has little change with addition.For FDN and KH,the chemical shrinkage for 1d reduces with addition.Compared with calcium lignosulfonate and FDN,KH is advantage to reduce cracking sensitivity and prevent early-age cracking behavior.
     (2) Because of acceleration of Calcium lignosulfonate for C_3A,electrical resistivity change little with increase addition,but peak of hydration heat has been cut and delayed.For FDN and KH,ability to prevent hydration becomes strong in early age with increase addition.So peak of hydration heat has been cut and delayed.
     (3) Microanalysis shows:water-reducer restrains hydration of C_3S and formation of CH in early age.If there is a proper addition,restraint becomes weaker and weaker with time going. Calcium lignosulfonate restrains hydration of C_3S and formation of AFt.FDN restrain hydration of C_3S at 1d age,but accelerates hydration of C_3S of 7d and 28d and formation of CH.KH restrain hydration of C_3S of 1d and 7d,but it has little effect on later hydration.
引文
[1]吴中伟.高性能混凝土-绿色混凝土.混凝土与水泥制品,2000,(1):3-5
    [2]尚海萍,邓宇,周雅文.三聚氰胺系高效减水剂的发展现状及其新技术[J].杭州化工,2009,39(1):20-23
    [3]姜国庆.日本高性能AE减水剂研究进展及现状[J].化学建材,2000(2):42-44
    [4]冯浩,王兴国.中国混凝土外加剂50年[J].建筑技术,2000,31(1):15-16
    [5]卢璋.高效减水剂发展的历史、现状及趋势[J].工业建筑,1999(4):2-5
    [6]卞葆芝.混凝土减水剂国内外发展概况.施工技术.1986(5):5-10
    [7]田培等.我国混凝土外加剂发展现状[J].混凝土,2002(3):3-8
    [8]郭雅妮.高效减水剂的研究现状及发展趋势,云南建材,2000(4):8-11
    [9]雷道斌.对日本外加剂发展现状的思考.混凝土,2001(11):18-20
    [10]朱俊林,石小斌,戴文杰.对国内外聚羧酸减水剂研究进展的探讨[J].商品混凝土,2006(4):5-9
    [11]Nawa,T.,Ichiboji,H..Influence of temperature on fluidity of cement paste containing superplasticizer with polyethylene oxide graft chain,6th CANMET/ACI international conference "superplasticizer and other chemical admixture in concrete",ACI SP 173,1997,379-391
    [12]Singh N B,Sarvahi R,Sing N P.Effect of superplasticizers on the hydration of cement[J].Cement and Concrete Research,1992(22):725-735.
    [13]Tomomi Sugiyama,Taketo Uomoto.Effect of chemical admixture on microstructure of hardened cement composite.Cement Science and Concrete,1996(595):13-22
    [14]Morin V,Cohen Tenoudji F.Superplasticizer effects on setting and structuration mechanisms of ultrahigh-performance concrete.Cement and Concrete Research,2001(31):63-71
    [15]N.Spirators,C.Jplicoeur.21世纪混凝土化学外加剂发展趋势.第六届超塑化剂及其它混凝土外加剂国际会议译文集,1-9
    [16]V.S.Ramachdran Yoshihiko Ohama等.混凝土化学外加剂——国际研究最新进展,中国建筑材料科学研究院,2000:14-15
    [17]李永德.高性能减水剂的研究现状与发展方向[J].混凝土,2002(9):10-13
    [18]覃维祖,聚羧酸系高效减水剂的发展与应用,施工技术,2007,36(4):9-13
    [19]冉千平等.聚羧酸类高效减水剂现状及研究方向[J],化学建材,2001(12):25-27
    [20]张恂,顾丽瑛,张洪涛,国内聚羧酸系高性能减水剂的合成及研究状况,胶体与聚合物,2007(7):45-48
    [21]曹天霞.上海金茂大厦混凝土工程施工技术.施工技术,1999.28(5):28-30
    [22]杨华全,李维平,覃理利等.三峡工程掺高效减水剂和引气剂混凝土性能试验研究.混凝土,200(7):20-23
    [23]王立春.混凝土碱骨料反应浅析.应用技术,2008(7):77-78
    [24]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999.23-25
    [25]Daimon M.Roy D M.Theological properties of cement mixes(I):Methods,preliminary experiments and adsorotion studies.Cem.Conr.Res.,1978,8(6):753-764
    [26]程玉光,杨长辉,陈科等.氨基磺酸系复合减水剂在水泥颗粒表面的吸附特性及减水剂-水泥-水体系的动电性质试验研究.化学建材,2008,24(6):35-38
    [27]Hanehara,S.,Yamada,K..Interaction between cement and chemical admixture from the point of cement hydration,adsorption behavior of admixture and paste rheology.Cement and Concrete Research,1999,29(8) 1159-1165
    [28]陈建奎,混凝土外加剂原理与应用[M],第2板,北京,中国计划出版社,2004
    [29]瞿金东,彭家惠,陈明凤等.减水剂在水泥颗粒表面的吸附特性研究进展.建筑材料学报,2005,8(4):411-415
    [30]张冠伦,张云理.混凝土外加剂.上海:上海科学技术文献出版社.1985
    [31]何廷树.混凝土外加剂.西安:陕西科学技术出版社,2003.93
    [32]何廷树,胡延燕,泵送剂中葡萄糖酸钠掺量对混凝土性能的影响[J],混凝土,2006(04):32-33
    [33]G(o|¨)ril M(o|¨)schner,Barbara Lothenbach,Renato Figi.Influence of citric acid on the hydration of Portland cement.Cement and Concrete Research,2009,39(4):275-282
    [34]苏力军,刘昆鹏,闫国婷等.高效减水剂作用机理及研究进展.河北化工,2005(6):1-4
    [35]Furusawa K.Polymer Adsorption and its effect on the Colloid Stability.Kobunshi,1991,40(12):786-789
    [36]K Hattori,Mechanism of slump loss and its control,J Soc Mater Sci,Jpn,1980(29),240-240
    [37]T Sato、R Ruch,Surfactant series 9,stabilization of colloid dispersions by polymer adsorption,Marcel Dekker Inc,NY,1980
    [38]守屋庆龙等,高性能AE减水剂の最近の动向,材料,1994,43(491):919-922
    [39]马保国,谭洪波,廖国胜等.聚羧酸系高性能混凝土减水剂的试验研究.混凝土,2005(4):32-34
    [40]Johann Plank,Christian Hirsch.Impact of zeta potential of early cement hydration phases on superplasticizer adsorption.Cement and Concrete Research,2007,37(4):537-542
    [41]马保国,谭洪波,李亮等.聚羧酸减水剂缓凝机理的研究.长江科学院院报.2008,25(6):93-95
    [42]Etsuo,Sakai,Akira Kawakami,etc..Infuence of molecular structure of comb-typy polymer on the fluidity of CaCO3 suspension with inorganic salts.Journal of the Ceramic Society of Japan,2003,111(2):117-121.
    [43]Collepardi M.Admixture used to enhance placing characteristics of concrete.Cem.Concr.Comp.,1998,20(2/3):103-112
    [44]D.H Napper.Polymeric stabilization of colloidal dispersion.NY:Academic Press,1993
    [45]Tanaka,Y.O.A new admixture for high performance concrete.Proceedings of the Concrete in the Service of Mankind.Eds.R.K.Dhir & M.J.McCarthy,1996:291-300
    [46]Akira Ohta,Tomomi Sugiyama.Study on the dispersing effect of polycarboxylate-based dispersant.Cement Science and Concrete technology,1999(53):7-12
    [47]NawaT.The Effects of Chemical Structure of Super-plasticizers on the Fluidity of Cement Pastes and the Hydration of Cement.Semento,Konkuri-tou Ronbunshu,1999,(53):751.
    [48]M.Kinosita,T.Nawa etc..Effect of chemical on fluidizing mechanism of concrete superplasticizer containing polyethylene oxide graft chain.ACI-SP 195,163-180
    [49]Toyoharu Nawa,化学结构对聚羧酸基超塑化剂的空间稳定性的影响[J],范德科译,商品混凝土,2007(02):67-71
    [50]谭洪波,聚羧酸系混凝土减水剂的研究[D],武汉理工大学硕士论文,2006.5
    [51]胡建华,汪长春,杨武利等.聚羧酸系高效减水剂的合成与分散机理研究.复旦学报(自然科学版).2000,39(4):463-466
    [52]李崇智,冯乃谦,王栋民,侯云芬,梳形聚羧酸系减水剂的制备、表征及其作用机理[J]硅酸盐学报,2005(01):87-92
    [53]何靖,庞浩等,新型聚醚接枝聚羧酸型高效混凝土减水剂的合成与性能[J],高分子材料科学与工程,2005(9):44-47
    [54]马保国,温小栋,谭洪波等,直接酯化法合成甲基丙烯酸聚乙二醇单甲醚(400)酯,武汉理工大学学报,2007(2):20-22
    [55]Heon-Young Cho,Jung-Mok Suh.Effect of the synthetic conditions of polycarboxylate-gethylene glycol methyl ether on dispersibility in cement paste,Cement and Concrete Research,2005,Vol.35,891-899.
    [56]孙曰圣,欧阳杰,吴勇等.聚乙二醇与甲基丙烯酸的酯化工艺及动力学研究.南昌大学学报(工科版),200,28(2):122-125
    [57]张新民,冯恩娟,徐正华等,聚羧酸类减水剂中间大分子单体的合成工艺.化工进展,2008,27(5):736-739
    [58]穆铁铮,刁香丁,文光等.可回用高效催化剂催化合成甲基丙烯酸丁酯的工艺研究.精细石油化工进展,2001,2(8):26-27
    [59]丁伟,于涛,张荣明.酯交换法合成甲基丙烯酸二甲胺基乙酯.精细化工,2002(8):122-123
    [60]屈铠甲,蒋卫和.酯交换法制备丙烯酸正戊酯.热固性树脂,2004,19(5):29-30
    [61]马保国;潘伟;温小栋.马来酸双聚乙二醇单甲醚酯合成影响因素分析.武汉理工大学学报,2008,30(1):44-47
    [62]马保国;潘伟;温小栋.马来酸单聚乙二醇单甲醚酯的合成工艺.化学工程.2007,35(8):68-69
    [63]刘治猛,罗远芳等,新型聚羧酸类高效减水剂的合成及性能研究,新型建筑材料2003(4):16-18
    [64]王正祥,张志军等.聚氧乙烯(或丙烯)类新型减水剂.化学建材,1996(1):28-29
    [65]潘祖仁.高分子化学[M],第三版,北京,化学工业出版社,2003,P100-101
    [66]李崇智,冯乃谦,王栋民等.梳形聚羧酸系减水剂的制备、表征及其作用机理[J].硅酸盐学报,2005(01):87-92
    [67]何靖,庞浩等.新型聚醚接枝聚羧酸型高效混凝土减水剂的合成与性能[J],高分子材料科学与工程,2005(9):44-47
    [68]刘俊元,王子明,聚羧酸高性能减水剂的制备、性能与应用现状[J],商品混凝土,2005(1):22-25
    [69]王可良,马德富,刘凯等.聚羧酸减水剂对混凝土抗劈裂性能的影响及其机理探讨[J].水泥与混凝土制品,2007(1):1-7
    [70]王可良,刘玲,聚羧酸减水剂官能团及分子结构影响水泥初期水化浆体温升的研究,硅酸盐通报,2008,27(2):415-418
    [71]李崇智等,聚羧酸系混凝土减水剂结构与性能关系的试验研究[J],混凝土,2002(4):3-5
    [72]Moukwa M,Youn D,Hassanali M.Effects of degree of polymerization of water soluble polymers on concrete properties.Cement and Concrete Research.1993,23(1):122-13
    [73]韩明,高蓓蕾,陈树东等,聚羧酸系高效减水剂的合成研究,新型建筑材料,2008(3):19-22
    [74]马保国,谭洪波,潘伟等,聚羧酸系混凝土减水剂合成工艺及性能研究,新型建筑材料,2007(6):48-51
    [75]马保国,谭洪波,孙恩杰.聚羧酸系高性能混凝土减水剂构性关系的研究[J].化学建材,2006(2):36-38.
    [76]Shawl E T,Zhou X.Method of making a water reducing additive for cement:US,5985989[P].1999,11-16.
    [77]张新民,冯恩娟,徐正华等,聚羧酸类减水剂的分子设计与结构性能关系,化工进展,2008,27(6):913-916
    [78]韩明,张福强,陈树栋等,聚羧酸系高效减水剂的合成及性能研究,化学建材,2008,27(4):38-40
    [79]Uchikawa H,Hanehara S,Sawaki D.The role of steric repulsive forcein the dispersion of cement particles in fresh paste preparedwith organicadmixture[J].Cement and Concrete Research,1997,27(1):37-50.
    [80]Yoshioka K,Sakai E,Daimon M,et al.Role of steric hindrance in theperformance of superplasticizers for concrete[J].American Ceramagnet Society,1997,80(10):2667-2671.
    [81]李忠莉,陈克强,陈永芬等.ACS新型高效减水剂的研究(2)[J].成都大学学报,2000,32(6):71-73.
    [82]Kinoshita M,Nawa T,Iida M,et al.Effect of chemical structure on fluidizing mechanism of concrete superplasticizer containing polyethylene oxide graft chains[C]//Sixth CANNET/ACI International conference on superplasticizers and Other Chemical Admixture in Concrete.USA:American Concrete Institute,2000,163-197.
    [83]Sakai E,Kang J K.Dsimon.Action mechanisms of comb-type superplasticizers containing grafted polyethylene oxide chain[C]//Sixth CANNET/ACI International conference on superplasticizers and Other Chemical Admixture in Concrete.USA:American Concrete Institute,2000:75-89
    [84]Nawa T,et al.温度对掺聚环氧乙烷接枝共聚物超塑化剂水泥净浆流动度的影响[C]//中国混凝土外加剂协会第六届超塑化剂及其他混凝土外加剂国际会议论文译文集(上).法国尼斯,2000:124-134.
    [85]李崇智,李永德,冯乃谦.聚羧酸系高性能减水剂的研制及其性能[J].混凝土与水 泥制品,2002,2(4):3-6
    [86]马保国,谭洪波,李亮,张慢.功能可控制型聚羧酸减水剂,济南大学学报,2008(04):338-342
    [87]Kazuo Yamada,Tomoo Takahashi.Effects of chemical structure on the properties of polycarboxylate-type superplasticizer[J].Cement and Concrete Research,2000,30(2):197-207.
    [88]王国建,黄韩英.聚羧酸盐高效减水剂的合成与表征[J]。化学建材,2003(7):47-51.
    [89]王少江,马锋玲等,采用聚羧酸减水剂配制的C50高性能混凝土在南水北调中线干线工程漕河渡槽中的应用,第六届全国高强与高性能混凝土会议论文集,441-448
    [90]刘治猛,陈应钦,焦元启等,超高层混凝土泵送与超高性能混凝土技术的研究与应用国际研讨会论文集(中文版),2008年,121-127
    [91]刘岭,李顺清,李桂青等.聚羧酸KJ-JS高性能减水剂在白马河特大桥高性能混凝土中的应用,商品混凝土,2007(3):29-33
    [92]孙振平,金慧忠,蒋正武等,聚羧酸系减水剂在钢管混凝土桥拱施工中的应用,建筑技术,2006,37(1):60-63
    [93]廖国胜;马保国.丙烯酸系减水剂在水工混凝土中的应用.混凝土,2004(9):75-77
    [94]王可良,马德富,姚坤刘等,聚羧酸减水剂的研制及其在溪洛渡水电工程中的应用,山东建材,2006(1):44-47
    [95]孙树,苏祖平,欧阳华林.聚救酸系外加剂在杭州湾跨海大桥工程海工高耐久硷中的应用.江苏建材,2005(1):21-23
    [96]刘秉京.国内外混凝土外加剂现状.中国港湾建设,2002,(2):7-10
    [97]董荣珍.化学外加剂对高性能水泥水化及初始结构形成的调控机理的研究[D],武汉理工大学博士学位论文,2005.6
    [98]Z.He,Z.Li.Non-contact resistivity measurement for characterisation of the hydration process of cement-paste with excess alkali[J].Advances in Cement Research,2003,15(1):1-6
    [99]朱洪波.高钙灰胶凝材料的制备与性能研究[D].武汉理工大学,2006.6
    [100]何真,李宗津,李文莱.一种椭圆形环约束开裂自动监测试验装置[P].ZL02284045.1
    [101]陈建奎,混凝土外加剂的原理与应用,中国计划出版社[M],北京,1997年4月出版,17-34
    [102]葛兆明,混凝土外加剂,化学工业出版[M],北京,2005年出版,92-94
    [103]熊大玉,混凝土外加剂,化学工业出版社发行部[M],北京,2002年1月出版,40-54
    [104]袁润章,胶凝材料学[M],武汉,武汉工业大学出版社,1996,119-120
    [105]L.E.Copeland G.J.Verbeck.硬化水泥浆的结构和性质.第六届国际水泥化学会议论文集.第二卷 水泥水化与硬化(一).北京:中国建筑工业出版社.1982,11,488-552
    [106]Feldman R.F.,Ramachandran V.S.Influence of CaSO_4·H_2O upon the hydration character of 3CaO·Al_2O_3.Mag.Cem.Concr.Res.,1966,18(57):185-196
    [107]Skalny J.and Tadros M.E..Retardation of Tricalcium Aluminate hydration by sulfate.J.Am.Ceram.Soc.,1977,60(3-4):174-175
    [108]Tadros M.E.,Jackson W.Y.and Skalny J..Colloid and Interface,Vol.Ⅳ,ed.By Kerber M.,Academic Press,New York,1977
    [109]Massazza,F.& Costa,U.Effects of superplasticizers on the C_3A hydration.In Proceddings of 7th congress international de la chimie des ciments,Paris,Vol.Ⅳ,1980,529-534
    [110]De Jong J.G.M.,Stein H.N.,Stevels J.M.Mutual Interaction of C_3A and C_3S during hydration,ibid,1962 p.311-327
    [111]D.D.Double,A.Hellawell,S.J.Perry.The hydration of Portland cement.Proc.Roy.Soy.Landon,Ser.A,1975,p.360-445
    [112]Barret.Mehnismes d hydration des silicates de calcium(C_3S,C_2S) cinsituants des ciments vus a travers les concepts de la reactiviate des solides.7th Symp.Chemistrz of Cement,Paris,I,86-92
    [113]Rassem.An NMR investigation of C_3S hydration in paste and in stirred diluted suspension.Hydration and setting of cements.Ed.By A.Nonat and J.C.Mutin.St Edmundsbury Press Ltd.1992,77-85
    [114]M.Meyn,K.Beneke and G.Lagaly.Anion-Exchange Reaction of Layered Double Hydration.Inorg.Chem.,1990(29):5201-5207
    [115]F.Leroux,P.Aranda,J.P.Besse,E.Ruiz-Hitzky.Interaction of Poly Derivatives into Layered Double Hydroxides.Euro.J.Inorg.Chem.,2003(6):1242-1251
    [116]V.Fernon,A.Vichot,N.Le Goanvic,P.Colombet.Interraction between Portland cement hydrates and polynaphthalene sulfonates.
    [117]J.Plank,Z.Dai,P.R.Andres.Preparation and characterization of new Ca-Al-polycarboxylate layered double hydroxides.Materials Letters,2006,12(60):3614-3617
    [118]Morita Hiroshi etal.Additive for Cement Mortar and/or Concrete[P].JP315994.1991
    [119]Bonen,D.,Sarkar,S.L.The superplasticizers adsorption capacity of cement pastes pore solution composition,and parameters affecting flow loss.Cement and Concrete Research.1995,25:1423-1434
    [120]Uchikawa H.,Sawaki D..Influence of lind and added timing of organic admixture on the composition,structure and property of fresh cement paste.Cement and Concrete Research,1995(25):353-364.
    [121]Luke,K.& Aitcin,P.-C.Effect on superplsticizer on ettringite formation.In conference on advances and cementitious materials,national institiute of standards and technology.Gaithersburg,MD,July 1990,17-30
    [122]U Maser,Isochober,F.wombacher,D.Ludirdja,Polycatrboxylate Polymers and blends in different cement,Cement,Cencrete and Aggregates,2004,26(2):110-114
    [123]廖国胜,聚丙烯酸系混凝土高性能减水剂的研究[D],武汉理工大学硕士论文,2003.5
    [124]Andersen P J.The effect of superplasticizers and air-entraining agents on the zeta potential of cement particles.Cem.Concr.Res.,1986,16:931-940
    [125]T.cerulli,P.Clemente.Anem superplasticizer for early high strength development in cold climates,ACI-SP 217,133-126
    [126]McCARTER W J,BROUSSEAU R.The A.C.response measurements on cement paste.Cem Concr Res,1990,20(6):891-900
    [127]GU P,XIE P,XU Z,et al.A rationalized AC impedance model for microstructural characterization of hydrating cement systems[J].Gem Concr Res,1993,23(2):359-367.
    [128]马保国,张莉,张平均等,蔗糖对水泥水化历程的影响[J],硅酸盐学报,2004(10):1285-1288
    [129]马保国,许永和,董荣珍,糖类及其衍生物对硅酸盐水泥水化历程的影响[J],硅酸盐通报,2005(04):45-48
    [130]马保国,谭洪波,李亮等.葡萄糖酸钠对水泥水化微观结构的影响.武汉理工大学学报.2008,30(11):50-53
    [131]Melta P K.混凝土的结构、性能与材料[M],祝永年,沈威,陈志源译,上海:同济大学出版社,1991
    [132]P.BARNES等著.吴兆琦,汪瑞芬等译校.水泥的结构和性能[M].北京:中国建筑工业出版社,1991
    [133]李著,唐明述,水泥和混凝土化学[M],第3版,北京,中国建筑工业出版社,1980
    [134]外加剂译文集,北京,中国建筑工业出版社[M],1978
    [135]A.D.Jensen,S.Chatterji.State of the Art Report on Micro-cracking and Lifetime of Concrete-Part Ⅰ.Materials and Structure.1996,29(1):3-8
    [136]B.Persson.Experimental studies on shrinkage of high performance concrete.Cement and Concrete Research.1998,28(7):1023-1036
    [137]M.H.Zhang,C.T.Tam,M.P.Leow.Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete.Cement and Concrete Research.2003,33(10):1687-1694
    [138]John M.Scanlon,Concrete International[M],Oct.,1992
    [139]胶凝材料编写组.胶凝材料学[M].北京:中国建筑工业出版社,1980
    [140]陈肇元.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003
    [141]沈威等译.水泥水化与硬化(二).第六届国际水泥化学会议论文集(Ⅱ).北京:中国建筑工业出版社.1981
    [142]第七届国际水泥化学会议论文集.北京:中国建筑工业出版社.1985,p.169-230
    [143]冯浩,朱清江.混凝土外加剂工程应用手册.北京:中国建筑工业出版社.1999
    [144]姚佳良.水泥混凝土异常凝结初探.混凝土,1998(4)
    [145]L.E.Copeland G J.Verbeck.硬化水泥浆的结构和性质.第六届国际水泥化学会议论文集.第二卷 水泥水化与硬化(二).北京:中国建筑工业出版社.1982,11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700