高寒地区大体积混凝土表面保温效果仿真计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大体积混凝土结构在工程中的应用越来越广泛,由于温度变化而引起的裂缝是长期困扰人们的问题。在冬季负温季节或者突遇寒潮时,表层混凝土的温度梯度很陡,使混凝土表面的拉应力超限而产生很多表面裂缝,特别是当混凝土的龄期还很短,抗拉强度还很低,更容易产生裂缝。在混凝土表面铺设一定厚度的保温板可以有效的降低混凝土表面的拉应力,防止裂缝的产生。因此,研究大体积混凝土表面保温板的保温效果是很有意义的。
     本文依据大体积混凝土的温度场和温度应力场的有限单元法计算理论,以大型通用软件ANSYS为平台,采用APDL语言编制了碾压混凝土重力坝施工期和运行期的温度场、温度应力场的仿真计算程序。该程序在编制过程中考虑了碾压混凝土分层浇筑、施工间歇、弹性模量变化、绝热温升过程、环境温度的变化、混凝土徐变、不同蓄水高程等因素对坝体温度场及应力场的影响。用“生死”单元模拟混凝土的浇筑过程。在混凝土还没有浇筑的时候,单元是“死”的,没有温度值和应力值;当混凝土浇筑以后,激活单元,其温度场和应力场开始发展,这样就能形象的模拟和仿真混凝土的浇筑过程,计算出来的结果可以比较真实的反映大体积混凝土的真实工作性态。
     本文结合某高寒地区的碾压混凝土重力坝,采用表面散热系数法计算了无保温板覆盖和有不同厚度的保温板覆盖条件下的坝体温度场和温度应力场,并专门分析计算了寒潮对混凝土表面应力的影响。计算结果表明,在大坝上下游面铺设6cm厚的XPS保温板,进行长期永久保温,减弱了混凝土与外界的热交换,提高了混凝土表面的温度,使原来表层混凝土温度梯度变化最陡部位发生在保温材料内,而使表层混凝土温度变化速度减缓,梯度变平,从而减小冬季或突遇寒潮时表层混凝土的温度应力,有效的防止了表面裂缝的产生。同时,还分析了保温板的厚度、种类、保温时间、外界环境温度年变幅对混凝土表面保温效果的影响,对选择合适的保温板具有一定的参考价值。
The mass concrete structures are applied more and more abroad in engineering project, the problem of the crack which is caused by temperature change is puzzled people always. In the winter negative temperature season or suddenly confronted cold wave, the concrete surface temperature gradient is precipitous, so concrete surface cracks occurs when the tension stress of concrete surface overrun, especially in the early-age of concrete the tensile strength is low and the crack easily occurs. Laying certain thickness heated board can reduce the concrete surface tension stress effectively to prevent crack. So researching the heat preservation effect of concrete surface heated board is significative.
     In this article according to finite element computational theory of mass concrete temperature field and temperature stress field, based on large general-purpose software ANSYS, using APDL language to design the simulation calculation program of roller compacted concrete gravity dam temperature field and temperature stress field in construction stage and during operation period. During preparation period of this program, we consider the effectiveness of stratified pouring,construction interval、the change of modulus of elasticity,the adiabatic rise of temperature,the change of ambient temperature,concrete creep,the breach flow of the roller compacted concrete gravity dam and so on. The‘life and death’unit is used to simulate the concrete casting process. Before placement of concrete, the unit is considered‘death’, there is no temperature and stress; When the concrete after pouring, the unit is activated, the temperature field and stress field begin to develop, so the image can be simulated and the simulation of concrete pouring process, the calculated results can more genuinely reflect mass concrete behavior.
     In this article, an alpine region of a roller compacted concrete gravity dam, equivalent surface coefficient of heat transfer method and compared is used to calculate the non-covered heated board and heated board covered with different thickness of the dam under the condition of the temperature field and temperature and stress field, and devoted to the analysis of the cold calculation of the impact of stress on the concrete surface. Results the surface of the dam upstream face laying 6cm thickness XPS heated board, long-term permanent heat preservation, weaken heat transmission between concrete and environment, raising the temperature of the concrete surface, so that the original surface concrete temperature gradient occurs in the steepest parts of heat preservation material inside, leaving the surface of concrete temperature change slowed down, the gradient flattens, thereby reducing the winter or cold temperature stress when the concrete surface, effective to prevent the generation of surface cracks. At the same time, also analyzed the surface of heated board thickness, type, holding time, annual percentage change in the external environment on the concrete surface temperature heat preservation effect, which is useful for selection of suitable heated board.
引文
[1]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999
    [2]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997
    [3]朱伯芳.王同生,丁宝瑛,郭之章.水工混凝土结构的温度应力与温度控制[M].北京:水利电力出版社,1976
    [4]龚召熊.水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999
    [5]蔡正咏.混凝土性能[M].北京:中国建筑工业出版社,1979:198
    [6]刘秉京.混凝土技术[M].北京:人民交通出版社,1998:7
    [7]尹建勋.大体积混凝土施工表面温度裂缝控制工艺[J].山西建筑,2006,32(18):126
    [8]叶琳昌,沈义编著.大体积混凝土施工[M].北京:中国建筑工业出版社,1987
    [9]陈尧隆.高等水工结构[M].西安:西安理工大学水电学院,2001
    [10]丁宝瑛.大体积混凝土结构的温度应力与温度控制论文集[M].北京:兵器工业出版社,1991
    [11]魏雪英.碾压混凝土坝施工期温度场分区异步长仿真分析[D].西安:西安理工大学,1998
    [12]姜冬菊,张子明,王德信.计算温度应力的广义约束矩阵法[J].河海大学学报(自然科学版),2003,31(1):29-32
    [13]朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利学报,1983,(5):40-46
    [14]Wilson E L. The determination of temperatures within mass concrete structures (SESM Report No.68-17)[J]. Structures and Materials Research. Department of Civil Engineering, University of California, Berkeley, Dec.1968
    [15]Abdallall1.HuseinMalkawi,SaadA.Mutashe, Tony J.Qiu.Thermal-Structure Modeling and temperature Control of Roller Compacted Conerete Gravity Dam[J]. Journal of performance of Constructed Faeilities,Nov.2003:177-187
    [16]Barrett P K et al. Thermal structure analysis methods for RCC dams[J].Proceeding of conference of roller compacted contrete Ⅲ, Sam Diedo, California,1992:389-406
    [17]Tohru Kawaguchi and Sunao Nakane. Investigations on determining thermal stress in massive concrete structures[J]. ACI.1996,93(1):96-101
    [18]潘家铮主编.水工建筑物的温度控制[M].北京:水利电力出版社,1990
    [19]Zhu Bofang. Computation of thermal stresses in mass concrete with consideration of creep effect. Fifteenth International Congress on Large Dams, Lausanne, Suisse, Q.57. R.31,24-28, June,1985
    [20]Tatro Stephen B, Schrader Ernest K. Thermal considerations for roller-compacted concrete [J]. ACI Journal, March-Aprial,1988
    [21]朱伯芳.多层混凝土结构仿真分析的并层算法[J].水力发电学报,1994,(3):21-30
    [22]朱伯芳,许平.混凝土坝仿真计算的并层算法和分区异步长算法[J].水力发电,1996,(1):38-43
    [23]朱伯芳.不稳定温度场数值分析的时间域分区异步长算法[J].水力学报,1995,(8):40-52
    [24]朱伯芳.弹性徐变体的分区异步长算法[J].水利学报,1995,(7):23—27
    [25]朱伯芳.RCC坝仿真计算非均匀单元的初始条件[J].水力发电学报,2000,68(1):81-85
    [26]陈尧隆,何劲.用三维有限元浮动网格法进行碾压混凝土重力坝施工期温度场和温度应力仿真分析[J].水利学报,1998(增刊):2-5
    [27]yaolong Chen, changjiang Wang, shouy Li. Simulation analysis of thermal stress of RCC dams using 3-D finite element relocating mesh method[J]. ADVANCES IN ENGINEERING SOFTWARE,2001, 32 (9):677-680 (SCI,EI)
    [28]张晓飞,李守义等.碾压混凝土拱坝温度场计算的浮动网格法[J].土木工程学报,2006,39(2):126—129
    [29]陈尧隆,李守义.高碾压混凝土重力坝温度应力和防渗措施研究[R].“九五”科技攻关报告,西安:西安理工大学水电学院,1999.11
    [30]王建江等.RCCD温度应力分析的非均质单元方法[J].力学与实践,1995,17(3):41-44
    [31]李克亮,方璟等.用并层非均值单元法分析碾压混凝土坝的温度应力[J].水利水运工程学报,2001,(9):41-47
    [32]王建江.碾压混凝土坝温度和温度应力的非均质单元法三维仿真分析[D].武汉:武汉水利电力大学博士学位论文,1995:20-34
    [33]黄达海,殷福新,宋玉普.碾压混凝土坝温度场仿真分析的波函数法[J].大连理工大学学报,2000,40(2):214-217
    [34]黄达海,殷福新,赵国藩.碾压混凝土坝温度应力仿真分析的进展[J].土木工程程学报,2000,(8):91-100
    [35]刘光廷,麦家煊,张国新.溪柄碾压混凝土薄拱坝的研究[J].水力发电学报,1997,57(2):19-28
    [36]和志发,陈卫国.大体积混凝土施工中表面保温.陕西水力发电[J],2000,Vol.16(1):53-55
    [37]黄达海.高碾压混凝土拱坝施工过程仿真分析[D].大连理工大学工学博士论文.1999.7
    [38]张国新.不同材料复合结构温度场的有限元算法改进[J].水力发电,2003,29(9):37—38
    [39]张国新.非均质材料温度场的有限元算法[J].水力学报,2004,(10):71—76
    [40]张洪济.热传导[M].高等教育出版社,1992
    [41]三峡水利枢纽混凝土工程温度控制研究编辑委员会编著.三峡水利枢纽混凝土工程温度控制研究[M].北京:中国水利水电出版社,2001
    [42]郭之章,傅华.水工建筑物的温度控制[M].北京:水利水电出版社,1990.
    [43]王勖成,邵敏.有限元法基本原理和数值方法[M].北京:清华大学出版社,1999
    [44]朱伯芳.有限单元法原理与应用[M].北京:中国水利电力出版社,1998
    [45]华东水利学院.弹性力学中的有限元法(修订版)[M].北京:水利出版社,1982.
    [46]卓家寿.弹性力学中的有限单元法[M].江苏:河海大学出版社,1988
    [47]海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981
    [48]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社,1979(1)
    [49]陈立新,陈芝春.寒潮期间大体积混凝土保温研究[J].三峡大学学报(自然科学版),2008,30(4):15-17
    [50]朱伯芳,吴龙坤,李玥,等.混凝土坝施工期坝块越冬温度应力及表面保温计算方法[J].水利水电技术,2007(8):34-37
    [51]朱伯芳.混凝土坝温度控制与防止裂缝的现状与展望[J].水利学报,2006(12):1424-1432
    [52]朱岳明,贺金仁,石青春.龙滩大坝仓面长间歇和寒潮冷击的温控防裂分析[J].水力发电,2003(5):6-9
    [53]汪强,王进廷,金峰.坝体保温层的等效模拟及保温效果分析[J].水利水电科技进展,2007,27(2):58-61
    [54]朱伯芳,许平.加强混凝土坝面保护尽快结束“无坝不裂”的历史[J].水力发电,2004,30(3):25-28
    [55]朱伯芳.混凝土坝温度控制与防止裂缝的现状与展望.水利学报,2006(12):1424-1432
    [56]詹剑霞,曾明.聚苯板保温材料在三峡工程中的研究与应用[J].中国三峡建设,2004(4):23-25
    [57]陈林,李林松,张绘.新型保温材料在三峡三期混凝土工程中的应用[J].人民长江,2006,37(5):28-29
    [58]朱伯芳,买淑芳.混凝土坝的复合式永久保温防渗板[J].水利水电技术,2006,(4):13-18
    [59]易厉生,朱伯芳等.寒冷地区拱坝苯板保温层的效果及计算方法[J].水利学报,1995(7):54-58.
    [60]Wu Yong. Numerical implementation of temperature and creep in mass concrete [J]. Finite Elements in Analysis and Design, Vol.37,2001(2),97-106
    [61]Guenot Isabelle, Torrenti Jean-Michel, Laplante Pierre. Stresses in early-age concrete:comparison of different creep models [J]. ACI Materials Journal, Vol.93,1996(5-6),254-259
    [62]Kogan, E.A. Creep of roller-compacted concrete [J]. Power Technology and Engineering, Volume 25, Number 3/March,1991:147-152
    [63]李永刚,李守义.寒冷地区某碾压混凝土重力坝温控计算分析[J].西北农林科技大学学报(自然科学版),2005,33(8):153—156
    [64]朱伯芳.论微膨胀混凝土筑坝技术[J].水力发电学报,70(3),2000:1-13
    [65]陈莉静,陈尧隆等.碾压混凝土坝温度场和温度应力仿真计算可视化系统研究.红水河,2001(02):57-61
    [66]赵基花.碾压混凝土溢流坝温度徐变应力三维有限元分析[D].西安:西安理工大学,2004
    [67]张超然,郑守仁,彭启友等.三峡水利枢纽混凝土工程温度控制研究[M].中国水利水电出版社,2001.01
    [68]李伟.ANSYS土木工程应用实例[M].中国水利水电出版社,2006
    [69]祝效华.ANSYS高级工程有限元分析范例精选[M].电子工业出版社,2004
    [70]邓凡平等.ANSYS10.0有限元分析自学手册.人民邮电出版社[M].2007.01.
    [71]四川大学水电学院.大型有限元软件ANSYS及在水工中的高级应用[M].2006.08.
    [72]ANSYS公司北京办事处.ANSYS热分析培训手册[M].2005.05.
    [73]ANSYS公司北京办事处.ANSYS热分析指南[M].2005.01.
    [74]李皓月,周田朋,刘相心.ANSYS工程计算应用教程.北京:中国铁道出版社[M].2003,12-36
    [75]李九红,何劲,简政,陈尧隆.水电站表孔闸墩施工期温度应力仿真分析[J].水利学报,2002(9):117-122
    [76]王树和,朱伯芳,许平.龙滩碾压混凝土坝劈头裂缝的研究[J].水利水电技术,2000(8),30-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700