洋浦大桥受力特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海南洋浦大桥主桥为(58.5+63+58.5+460+58.5+63+58.5)m七跨双塔双索面的混合式结合梁斜拉桥,通行双向六车道。该桥边跨采用预应力边主梁结构而中跨采用工字结合梁结构,边跨和中跨通过-混凝土结合段过渡,受力复杂。此种主梁截面形式的混合梁斜拉桥在国内外公路桥梁中的应用较少,本文对该桥及其-混凝土结合段受力性能进行了研究,主要完成了以下工作:
     1、本文采用空间板梁法建立了洋浦大桥的全桥空间有限元模型,对其在恒载、最不利活载、温度荷载、风荷载及荷载组合作用下的受力性能进行分析。计算结果表明:该桥各构件受力合理,强度和刚度均满足要求。
     2、对主梁、桥面系在考虑和不考虑混凝土徐变效应两种情况下的受力性能进行了对比分析。结果表明:考虑徐变效应后,桥面板的相对刚度降低,内力重分配时,主梁承受更大比例内力,其内力增大,而桥面板内力减少。
     3、建立了-混凝土结合段精细的空间有限元模型,对其受力性能作了分析研究,结果表明:各种工况作用下,全部构件和混凝土顺桥向均受压;构件和混凝土应力均小于设计值,且有较大的余量;与混凝土的应力在-混结合段都较小;-混结合段与右边的纯段传力较顺畅,在结合段与纯段的连接处以及结合段与纯混凝土段的连接处应力集中现象不严重。
     4、研究了-混凝土结合段在超载工况下(恒载+1.6倍轴压最大活载)受力性能,结果表明:梁在-混结合段及结合面以右1.6m范围内大部分区域的应力均小于-170Mpa;混凝土在-混结合段及结合段以左3m范围内大部分区域的应力均小于设计值-22Mpa,表明-混凝土结合段有足够的承载力。
     本文的研究成果为海南洋浦大桥设计提供了依据,对其他混合梁斜拉桥也有参考价值。
The main bridge of Hainan Yangpu Bridge is designed as a hybrid girder cable-stayed bridge with span arrangement (58.5+63+58.5+460+58.5+63+58.5) m, double pylons and two cable planes,which allows two-way six lanes. The side spans are prestressed girders while midspan's joist steel composite-beam structure, which are transited by Steel-concrete combining section. The special structure lead the bridge to complex machenical behavior. The application of the hybrid girder cable-stayed bridge with such main girder cross section form in high way bridges is not common,mechanical characteristics of the bridge and its steel-concrete joint section were researched in this paper, conquered results as follows:
     1. The spatial finite element model of Yangpu Bridge's full bridge was established by adopting Space Plate-Beam method, analysed the mechanical characteristics under dead load, worst-case of living load, temperature load, wind load, and loads combination. The computation showed that every constructional element of the bridge characterized by reasonable stressing and satisfied the demands of strength and rigidity.
     2. The mechanical characteristicss of main girder and floor system with or without consideration of confuses soil creep effect were comparatively analysed respectively. The comparation demonstrated that the relative stiffness of floor system reduced with consideration of confuses soil creep effect, the steel main girder beared greater percentage inner force and its innerstress increased while the inner force of floor system decreased.
     3. Established refined spatial finite element model of the steel-concrete joint section, analysed and studied the mechanical characteristics, which indicated that under every kind of operate condition, all the steel elements and concrete structure were compressed in axial direction of the bridge; The stresses of steel members and concrete were less than design value with large capacity; The stresses in steel and concrete of the steel-concrete joint section were relatively small; The force transmission between Steel-concrete joint section and pure steel segment in the right was relatively smooth, the stress concentrate phenomenon was not fierce in the joint of Steel-concrete combination and pure steel segment or that of steel-concrete combination and concrete segment.
     4. Researched the mechanical characteristics of the steel-concrete composite section under Overload condition (dead load+1.6 times axial compression under worst-case of living load), which told that the stresses of steel gider were all less than-170MPa in the steel-concrete composite section or the most 1.6m right of the composite section region; The stress of concrete was less than design value-22MPa in the steel-concrete composite section or the most 3m left of the composite section region, which showed that the steel-concrete composite segment had enough bearing capacity.
     The research has provided analysis for the design of Hainan Yangpu Bridge and has reference value for studying hybrid girder cable-stayed bridges.
引文
[1]姚玲森.桥梁工程.北京:人民交通出版社,2008
    [2]陈开利,余天庆,习刚.混合梁斜拉桥的发展和展望.桥梁建设,2005,(2):1-7
    [3]若下腾纪.混合斜拉桥[J].日本:桥梁与基础,1985,19(8):75-80
    [4]Michel Virlogeux. Recent evolution of cable-stayed bridges. Engineering Structures,1999,21(8):737-755
    [5]M. Ito, Y.Fujino, T.Miyata, N.Narita. Cable-Stayed Bridges: Recent Developments and their Future. Amsterdam:B. V.,1991.56-63
    [6]陈开利.结合梁的发展概况.铁道部建设司科技动态报告文集,北京:铁道部建设司,1996
    [7]严国敏.现代斜拉桥.成都:西南交通大学出版社,1996.1-6
    [8]成井信,松下贞义,山根哲雄,八田政仁,戴振藩.柜石岛·岩黑岛公铁两用斜拉桥的设计.国外桥梁,1982,(01):25-55
    [9]李静.混合梁斜拉桥静力分析和局部应力分析:[硕士学位论文].成都:西南交通大学,2010
    [10]丁幼亮.大跨斜拉桥结构损伤预警理论、方法与应用:[硕士学位论文].南京:东南大学,2006
    [11]陈宇.独塔混合梁斜拉桥受力分析研究:[硕士学位论文].成都:西南交通大学,2008
    [12]王伯惠.斜拉桥结构发展和中国经验(上册)[M].北京:人民交通出版社,2003
    [13]刘士林.斜拉桥.北京:人民交通出版社,2002.1-4
    [14]马筱欢.异形斜塔混合梁斜拉桥极限承载力研究:[硕士学位论文].西安:长安大学,2008
    [15]王治均,李三珍.混凝土梁斜拉桥主梁混结合段设计.公路交通技术,2010,(4):1-5
    [16]卢桂臣,邹鸿华.混合式斜拉桥混结合段的优化研究[J].中外公路,2006(3)
    [17]文武松,汪双炎,王邦楣.混合式斜拉桥连接部位的研究[J].桥梁建设,1997(3)
    [18]金增洪.法国诺曼底大桥简介[J].中外公路,1996(4)
    [19]Jacques Brozzetti. Design development of steel-concrete composite bridges in France. Journal of Constructional Steel Research, 2000,55(1-3):229-243
    [20]Hyeong-Yeol Kim, Youn-Ju Jeong. Experimental investigation on behaviour of steel-concrete composite bridge decks with perfobond ribs. Journal of Constructional Steel Research,2006,62(5):463-471
    [21]中须城,伊藤正人,谷中慎等.木曾川桥.楫斐川桥复核构造结合部设计与施工[J].国外桥梁,2000,42(1)
    [22]周胜利,林亚超.日本北陆新干线犀川桥.国外桥梁.1996,(3):1-1l
    [23]史家钧,邵志常.上海徐浦大桥结构状态监测系统[J].第十三届全国桥梁学术会议论文集,1998,11:16-19
    [24]刘正光.香港大型悬吊体系桥梁发展.土木工程学报,2005,1:35-36
    [25]叶春明,郭德顺,吴华灯.汕头礐石大桥地震反应台阵建设简介.华南地震,2008,28(3):71-72
    [26]强士中,周璞.桥梁工程[M].西南交通大学出版社,2000
    [27]李翠霞.武汉白沙洲长江大桥主塔设计.人民长江,2003,34(5):49-51
    [28]金增洪.台湾高屏溪桥的架设安装施工.中外公路,2004,24(5):54-56
    [29]龚志刚.香港昂船洲大桥主桥工程简况.世界桥梁.2004(4):21-23
    [30]刘荣,余俊林,刘玉擎等.鄂东长江大桥混合梁结合段受力分析.桥梁建设.2010(3):59-62
    [31]张建军,李松,高安荣,王佳.鄂东长江大桥-混结合段关键施工方案.桥梁建设.2009(z1):29-31
    [32]欧阳效勇,张建军,李松,高安荣,王佳,许鹏.鄂东长江大桥桥塔梁段箱梁吊装施工.桥梁建设.2009(zl):32-35
    [33][日]小西一郎.桥(第一分册).北京:人民铁道出版社,1981.4-20
    [34]习.混合梁斜拉桥结合段力传递特性研究:[硕士学位论文].武汉:湖北工业大学,2006
    [35]刘高,唐亮,谭皓,吴文明.混合梁斜拉桥混结合部的合理位置.公路交通科技.2010,27(6):54-56
    [36]陈开利,余天庆.混合梁斜拉桥结合段设计技术的新发展.铁道标准设计.2006(5):41—44
    [37]靳敏超.大跨径混合梁斜拉桥施工控制关键问题研究:[博士学位论文].武汉:武汉理工大学,2009
    [38]高宗余.跨长江黄河的高速铁路大跨度桥梁.中国工程科学,2009,11(1):17-21
    [39]黄冰释,唐守峰,赵灿晖.鄂东大桥施工期结构行为与施工监控关键技术.重庆交通大学学报(自然科学版).2010,29(5):691-693
    [40]邵长宇.武汉白沙洲长江大桥的技术特点.第十四届全国桥梁学术会议论文集.上海:同济大学出版社,2000,29(5):5-7
    [41]哈鸿,朱乐东,宋锦忠.上海徐浦大桥动力特性及颤振稳定性分析.结构工程师.1996(3):17-18
    [42]朱潇潇.混合梁斜拉桥的合理状态与性能研究:[硕士学位论文].长沙:长沙理工大学,2008
    [43]王凡.混合梁斜拉桥列车走行性研究:[硕士学位论文].长沙:中南大学,2010
    [44]周颖,徐资,段乃民.湛江海湾大桥-混凝土梁结合段受力分析.中外公路.2006,26(5):120-122
    [45]黄琼.—混凝土混合梁自锚式悬索桥受力性能与计算方法研究:[博士学位论文].长沙:中南大学,2007
    [46]叶梅新,江峰.芜湖桥板桁组合结构的研究.铁道学报,2001,23(5):65-69
    [47]高宗余.武汉天兴洲公铁两用长江大桥总体设计.桥梁建设,2007,(1):5-9
    [48]陈玉骥.高速铁路下承式桁结合梁桥的计算理论及其应用研究:[博士论文].长沙:中南大学,2004
    [49]张哗芝.高速铁路下承式桁结合桥研究.铁道学报.2004,26(6):71-74
    [50]陈玉骥,叶梅新.高速铁路下承式板桁结合梁的受力分析.中南大学学报(自然科学版),2004,35(5):849-855
    [51]陈玉骥、叶梅新.桁梁桥纵梁和横梁的受力分析.中国有色金属学报,1996,(6)2:151-155
    [52]韩衍群,叶梅新.连续桁结合梁桥桥面系受力状态及与桥面系刚度的关系,中南大学学报,2008,39(2):1-7
    [53]陈海兵,曾国良,陈明芳.混合梁斜拉桥结合段的局部应力分析.公路工程.2008,34(6):101-103
    [54]中铁大桥勘察设计院有限公司.海南洋浦大桥施工图(送审稿).武汉:中铁大桥勘察设计院有限公司,2010
    [55]侯文崎,叶梅新.南京大胜关长江大桥三主桁正交异性板整体桥面结构受力特性的试验研究.铁道科学与工程学报,2008,5(3):11-17
    [56]韩衍群,叶梅新.连续桁结合梁桥桥面系受力状态及与桥面系刚度的关系,中南大学学报,2008,39(2):1-7
    [57]黄琼,叶梅新,韩衍群.-混凝土叠合板组合桥面的徐变和应力重分布研究.铁道科学与工程学报,2006,3(3):15-20
    [58]中交公路规划设计院.公路桥涵设计通用规范(JTGD60-2004),北京:人民交通出版社,2004
    [59]李廉锟.结构力学(第四版).北京:高等教育出版社,2004.7
    [60]孙宝俊.混凝土徐变理论的有效模量法[J].土木工程学报,1993(3)
    [61]陈玉骥,叶梅新.-混凝土连续结合梁的温度效应[J].中南大学学报:自然科学版,2004,3(1):142-146
    [62]中交公路规划设计院.公路桥筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004),北京:人民交通出版社,2004
    [63]孔超群.圣维南原理发展简介[J].力学与实践,1980(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700