氯盐侵蚀钢筋混凝土框架结构失效机理和退化模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯盐侵蚀环境下钢筋混凝土结构性能退化是耐久性研究中最为突出和重要的一个组成部分。氯离子通过对材料的侵蚀,使得钢筋混凝土基本构件的静力以及动力性能发生改变,进而影响整个结构的力学性能。本文结合人工气候环境下的加速试验研究,全面揭示氯盐侵蚀造成的钢筋混凝土结构耐久性退化的规律,并结合理论分析建立了相应的耐久性退化模型。
     通过对人工气候环境加速氯离子侵蚀构件内的锈蚀钢筋表面锈蚀形态的详细调查和研究,对钢筋表面的坑蚀情况进行了基于概率的分析和统计,得到了蚀坑的形状以及三维尺寸的演变规律以及与锈蚀率相关的分布模型;基于试验研究,建立了锈蚀钢筋屈服强度的判别方法(YPPCR法),基于此开展了蚀坑对钢筋名义屈服强度退化的有限元分析和概率分析,得到了蚀坑三维尺寸对强度退化的影响规律和相应的计算模型,建立了与三维尺寸相关的单坑名义屈服强度退化模型,结合蚀坑测量结果,对名义屈服强度的概率分布进行了分析,建立了与锈蚀率相关的名义屈服强度退化模型以及标准强度退化模型。
     基于全梁粘结试验以及理论分析,建立了锈蚀梁锚固区与位置相关的局部粘结滑移本构模型,以及相应的特征值退化模型,建立了梁端锚固区的粘结分布预计方法和极限锚固力预计方法;基于试验和理论分析,建立了考虑压区钢筋锈蚀以及粘结性能退化的梁抗弯承载力模型,以及抗弯梁从正截面破坏向锚固破坏转变的界限模型,以及锚固破坏时的承载力计算模型。
     基于锈蚀梁的抗剪性能试验以及临界斜裂缝开展规律试验,得到了梁抗剪承载力退化的规律,结合理论研究,建立了基于极限平衡理论的锈蚀钢筋混凝土梁的抗剪性能退化模型,基于斜压场理论和粘结理论,建立了临界斜裂缝倾角退化模型,进而对梁端锚固性能的退化进行预计,建立了从抗剪破坏到锚固破坏的破坏形态转变模型。
     对不同锈蚀程度的锈蚀压弯构件进行了低周反复加载试验,得到了锈蚀压弯构件耗能能力退化和恢复力退化的规律;结合理论分析以及试验研究,选择合理的恢复力模型以及相应的滞回规则,建立了综合考虑锈蚀钢筋力学性能退化,混凝土锈胀开裂造成的截面损失,轴压比,以及粘结性能退化影响的压弯构件恢复力退化模型,为框架结构的力学性能退化预计奠定了基础。
     对不同锈蚀程度的框架边节点构件进行了低周反复加载试验,并考虑了轴压比的影响。得到了节点梁端力学性能退化的规律;结合理论分析以及试验研究,建立了综合考虑钢筋锈蚀后的力学性能退化,混凝土锈胀开裂后的损伤,以及粘结性能退化影响的压弯构件恢复力退化模型以及节点梁端恢复力退化模型。与压弯构件一起为框架结构基于构件的非线性分析奠定基础。
     对锈蚀前后的单层单跨框架进行低周反复加载试验,对锈蚀后框架结构的抗力以及破坏过程进行了研究和分析,结合基本构件静力和动力力学性能退化的研究,结合非线性分析方法,对锈蚀框架结构进行拟低周反复加载的仿真分析和验证,对锈蚀框架结构的耐久性退化的规律和机理进行了初步的研究。
Research on the mechanical performance degradation of RC structures corroded by chlorideis one of the most important parts in the durability studies. The cloride ions erode rebars andconcrete, debase the statical and dynamical mechanical properties of RC members, and finallyreduce the mechanical performance of RC structures. Accelerated corrosion experiments inartificial climate environment of RC members and joints were finished to reveal the objectivemechanical capability degradation laws of RC structures corroded by chloride, and the relateddurability retrogression model were established.
     Based on the accelerated corrosion experiments in artificial climate environment anddetailed investigations on the corriosion states and corriosion pits on the surface of rebars incorroded RC members, probabilistical analysis and statistics of pit shapes and sizes wereproceeded, the occurrence probability models of each kind shape were established, as well as themechanism of growth and evolvement of corrosion pits. Tensile tests of corroded rebars wereconducted with statical loads. The judgement method of nominal corroded steel bar yeild pointwas built according to the above test results.Which was simplified as “YPPCR”menthod. Thenfinite element analysis were carried out to analyze and establish the pitting effect on nominalyeilding strength. With the help of the above effort, Probabilistical nominal yeilding strengthdegradation model was bulit.
     Retrogression of bond behaviour inside of beams were studied through experiments andtheorical analyze. The local bond-slip relation were bulit based on the comparison research ofpullout test and beam test. The corresponding local bond-slip retrogression were built.
     According to the experimental studies on statical loading of corroded RC beam, the effectsof steel corrosion, concrete cover cracking and bond retrogression on degradation of corrodedRC beam were investigated seperately. Then taking these effects into the strain coordinationrelation along the height of beam section at the critical transverse crack, where force andmoment equilibrium could be united to decide the concealed and real strain relation of concreteand rebars. With the help of accurater bond-slip retrogression model in the beam established inthe previous chapter of this dissertation, the accurater bending capacity degradation model wasbuilt. According to the phenomenon of bond failure at the bending-shear area with severercorrosion crack and corrosion degree than other area, the judgement method of failure modetransformation of bending beams were buit. It was found that, the balance between ultimateanchoring force of anchorage area and yeilding force of reinforcement in tension was not theonly critical state.
     Shear capacity degradation experiments of corroded RC beams were conducted to investigate the shear capacity retrogression laws with enhanced corrosion degree gradually.Influence of different stirrup space,shear span rate and corrosion degree were taken into account.It was found that, as the corrosion degree increased, the shear capacity degraded. Beam withsmaller shear span rate or smallerstirrup space had higher shear capacity, but with the samecorrosion rate, beam with larger stirrup span rate had severer shear capacity degradation. effectof stirrup corrosion had unvisible influence on shear capacity of beams with small shear span. Atthe same time, the effect of corrosion on critical inclined crack was investigated, the angle ofcritical inclined crack was tend to reduce as the corrosion degree increase, with significantdiscreteness. When the final failure mode was bond failue, the critical inclined crack was veryclosed to supports.
     Based on the experimental results and theorical analysis, the shear capacity dagradationmodel was built. The critical inclined crack angle degeneration model was built. Taking theinduced critical inclined crack angle into the equilibrium, the anchorage lenghth predictionmodel was built.Based on the anaylsis of critical failure state and the limit equilibriumtheory,The failue mode transformation model was built.
     Cyclic loading tests of corroded RC columns with constant axial force and RC joints wasperformed. They had similar degradation laws. The yeild capacity and ulitmate capacity debasedas the corrosion induced. The yeild diplacement had slight change, but the ultimate debasedclearly. Because of the corroded element had no significant yeild point in the load-displacementcurve, the yeild strengh was calculated by equal energe method, the test result of yeild strengthhad difference the actual one. The resilience curve showed that, as corrosion induced, the energydissipation capacity of columns and joints decreased gradually.
     Based on the strain equilibrium,force and moment equilibrium on the cross section, withconsideration of steel corrosion, concrete damage,bond degradation, the resilience capacitydegradation model was built separetely, with corresponding characteristic parametersdegradation model.
     Experimental study on seismic resistance performance degradation of RC Frame Corrodedby Cloride were carrided out. The numerical simulated cycle loaded analysis were proceededwith IDAC-2D and the mechanical degradation model of basic elements. The numerical analysismethod was proved by the test result.
引文
[1]建筑结构可靠度设计统一标准(GB50068—2001).中国建筑工业出版社,2001.
    [2]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海科学技术出版社,2003.
    [3]贡金鑫,赵国藩.钢筋混凝土结构耐久性研究的进展[J].工业建筑,2000.30(5):1-5.
    [4] Campus F. Essays de resistance des mortises et betons alamere[J]. Silicates industrials,1965, No.2.
    [5] Gjorv O.Durability of Reinforced Concrete Wharves In Norwegian Harbors[J]. Ingeniorforlagen,Oslo,1996.
    [6] Kunishlma M, Dkamuka H. Durability Design for Concrete Structures[C]. IABSE Symposium,Lisbo, Sept.1989,6-8.
    [7] ACI Committee437. Strength Evaluation of Existing Concrete Buildings.1991.
    [8]段树金.日本《混凝土结构物耐久性设计准则(试行)》简介[J].华北水利水电学报,1991.
    [9]周燕等译.CEB耐久混凝土结构设计指南(第二版,1989.中国建筑科学研究院结构所,1991.
    [10]李田,刘西拉.混凝土结构耐久性分析与设计[M].科学出版社,1999.
    [11] Mehta, P. K.Concrete durability-fifty year’s progress.Croc. of the2nd Inter. Conf. on ConcreteDurability, ACI SP126-1,1991:1-31.
    [12] Ton Siemes. Service Life Design of Concrete Structures-From Theory to Standardisation[C].3rd DuraNetWorkshop Tromse Norway,2001, pp:8-11.
    [13] Geoffrey F, James R C. Virtual Cement and Concrete[C]. PCA Emerging Technologies Symposium onCement in21st Century.1995.
    [14] G.J. Frohnsdorff, J.W.Martin. Towards Prediction of Building Service lifeahe Standards Irnperative[C].7th International Conference on the Durability of Building Materials and Components, Stockholm,1996.
    [15] G.J. Frohnsdorff. Predicting the Service lives of Materials of Construction Materials for the NewMillennium[C]. Proceedings of the4th Materials Engineering Conference.1996, pp38-53.
    [16] M.Masi, D.ColelIa, G.Radaelli. Simulation of Chloride Penetration in Cement-Based Materials[J]. Cementand Concrete Research, Vol.27,1997(10), pp.1591-1601.
    [17] E.J.Garboczi, D.P. Bentz, and G.J. Frohnsdorff. The Past, Present, and Future of the ComputationalMaterials Science of Concrete[C]. Materials Science of Concrete Workshop Proceedings,2000.
    [18] Koichi MAEKAWA, Eetsuya ISHIDA. Service-life Evaluation of Reinforced Concrete under CoupledForces and Environmental Actions. Concrete Technology for a Sustainable Development in the21stCentury[C]. E&FN Spon, London,2000.
    [19] LE. C. Bentz, M. D. A. Thomas. Life-365Manual.2001.
    [20]“土木工程的安全性与耐久性”.中国土木工程学会第九届年会论文集,杭州,2000.
    [21]混凝土结构耐久性及耐久性设计会议文集.北京:清华大学,2002.
    [22]郝晓丽,氯腐蚀环境混凝土结构耐久性与寿命预测[D].西安建筑科技大学硕士学位论文,2004.
    [23]樊云昌,曹兴,陈怀荣.混凝土中钢筋腐蚀的防护与修复[M].中国铁道出版社,2001,北京.
    [24]惠云玲.惠云玲等.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13.
    [25]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995,25(9):41-44
    [26]王军强.大气环境下锈蚀钢筋力学性能试验研究分析[J].徐州建筑职业技术学院学报,2003,3(3).
    [27]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000,30(1).
    [28]马良哲,白常举.钢筋锈蚀后力学性能的试验研究[C].第五届全国混凝土耐久性学术交流会.杭州:2000.
    [29]范颖芳,周晶.考虑蚀坑影响的锈蚀钢筋力学性能研究[J].建筑材料学报,2003,6(3):248-252.
    [30] Lee H.S, Noguchi T, Tomosowa F. FEM Analysis for Structural performance of Deteriorated RCStructures due to Rebar Corrosion[C]. Proceeding of the Second International Conference on Concreteunder Severe Conditions, Tromso:199811010~1019.
    [31] AL-SULAIMANI G J, KALEEMULLAH M, BASUNBUL L A, etal. Influence of corrosion and crackingon bond behavior and strength of reinforced concrete members[J]. ACI Structural Journal,1990,87(2):220-231.
    [32]张国学,宋建夏,刘晓航.钢筋锈蚀对钢筋混凝土构件粘结力的影响[J].工业建筑,2000,30(2):37-39.
    [33] LUNDGREN K. Modeling the effect of corrosion on bond in reinforced concrete [J]. Magazine ofConcrete Research,2002.
    [34] CORONELLI D. Corrosion cracking and bond strength modeling for corroded bars in reinforcedconcrete[J]. ACI Structural Journal,2002,99(3):267-276.
    [35]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报(工学版),2002,36(4):352-356.
    [36]陈留国,方从启,寇新建,等.受腐蚀钢筋混凝土的粘结性能[J].工业建筑,2004,34(5):15-17.
    [37] BERRAM, CASTELLANIA, CORONELLID. Bond in reinforced concrete and corrosion of bars[C].Engineering Technics Press,1997,349-356.
    [38]徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-36.
    [39]张伟平,张誉.胀裂后锈蚀钢筋与混凝土粘结性能退化规律的试验研究[J].建筑结构,2002,32(1):31-33.
    [40]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报,2002,23(1):32-37.
    [41]吴庆.基于钢筋锈蚀的混凝土构件性能退化预计模型[D].中国矿业大学博士论文,2009.
    [42]马欢.锈蚀钢筋混凝土粘结性能研究及相关性分析[D].中国矿业大学硕士论文,2009.
    [43]向伟.钢筋混凝土梁锈蚀主筋与混凝土粘结性能退化规律与预计模型研究[D].中国矿业大学硕士论文,2007.
    [44]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海科学技术出版社,2003.
    [45]李果,戴靠山,袁迎曙.钢筋混凝土耐久性实验方法研究[J].淮海工学院学报,2002,11(3):56-59.
    [46]范颖芳,周晶,黄振国.受氯化物腐蚀钢筋混凝土构件承载力研究[J].工业建筑,2001,31(5):3-5.
    [47]史庆轩,牛狄涛.反复荷载作用下锈蚀钢筋混凝土受弯构件恢复力性能的试验研究[J].地震工程与工程震动,2000,20(4):44-50.
    [48]耿欧,袁迎曙,李果.钢筋混凝土耐久性人工气候加速退化试验的相关性研究[J].混凝土,2004,1:29-31.
    [49]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(3):47-52.
    [50]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构,2002.32(10):14-17.
    [51]范颖芳,周晶,黄振国.受氯化物腐蚀钢筋混凝土构件承载力研究[J].工业建筑,2001,31(5):3-5.
    [52]袁迎曙,李果.锈蚀钢筋混凝土柱的结构性能退化特征[J].建筑结构,2002,1018~2003.
    [53]孙彬,牛荻涛,王庆霖.锈蚀钢筋混凝土压弯构件非线性有限元分析[J].西安建筑科技大学学报,2005,9,37(3):234-243.
    [54]徐善华.混凝土结构退化模型与耐久性评估[D].西安建筑科技大学博士学位论文,2003.
    [55]李学田.锈蚀钢筋混凝土梁抗剪能力退化机理和预计模型研究[D].中国矿业大学硕士论文,2008.
    [56]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995,25(9);41-44
    [57]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,199727(6):6-13.
    [58] Automatic Dynamic Incremental Nonlinear Analysis, ADINA Inc.2003.
    [59] ANSYS Theory Reference, Electronic Release, SAS IP, Inc.,1998.
    [60] A·H·Nilson. Internal measurement of bond-slip[J]. ACI Journal. July,1972.
    [61] S M Mirza, J Houde. Study of bond-slip relationship in reinforced concrete[J]. ACI Journal. Jan,1979.
    [62]蒋连接.钢筋混凝土压弯构件抗震性能研究[D].中国矿业大学硕士论文,2008.
    [63]戴靠山,袁迎曙.锈蚀框架边节点抗震性能试验研究[J].中国矿业大学学报,2005,1,4(1):145-152.
    [64] Broomfield J P. Corrosion of steel in concrete [[J]]. London: E&FN SPON,1997.
    [65] Prezzi M, Geyskens P. Reliability approach to service life Prediction of concrete exposed to marineenvironment [J]. ACI Materials Journal,1996,93(6):544-552.
    [66] Maage M, Helland D S, et al. servieelife Prediction of existing concrete structures exposed to marineenvironment [J]. AClMaterialsJournal.l996,93(6):602-608
    [67] W Morris A, Vico M Vszquez. Chloride induece corrosion of reinforcing steel evaiuated by concreteresistivity measurements [J]. Electrochimica acta.2004,(49)25:4253-4532.
    [68] Almusallam A A. Effect of degree of corrosion on the properties of reinforcing steel bars[J]. Constr BuildMater2001;15:361.
    [69] Maslehuddin M, Allam I M, Al-Sulaimani G J, Al-Mana A. I and Abduijauwad S N. Effect of Rusting ofReinforcing Steel on ItsMechanical Properties and Bond with Concrete [J]. ACI Materials Journal, V.87,No.5, Sept.-Oct.1990, pp.496-502.
    [70]惠云玲等.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13.
    [71] Zhang Pingsheng, Lu Mei, Li Xiaoyan. Mechanical property of rustiness reinforcement steel [J]. IndustrialConstruction,1995.25(9):41-44.
    [72]张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报(自然科学版),2006,34(5):586-592.
    [73] John Cairns, Giovanni A. Plizzari;Mechanical Properties of Corrosion-Damaged Reinforcement [J]. ACIMaterials Journal,2005,102(4):256-264.
    [74]范颖芳,周晶.考虑蚀坑影响的锈蚀钢筋力学性能研究[J].建筑材料学报,2003,6(7):248-252.
    [75]王巧平,吴胜兴.锈蚀钢筋力学性能数字试验研究[J].浙江大学学报(工学版),2007,41(1):83-87.
    [76]陈瑞.钢筋坑蚀效应对混凝土梁性能退化的影响[D].中国矿业大学硕士论文,2007.
    [77] Szklarska-Smialowska Z. Pitting corrosion of metals[M]. Houston, TX: NACE International,1986.
    [78]魏宝明.金属腐蚀理论及应用[M].化学工业出版社,1984.
    [79] Anna Ouglova. The infuence of corrosion on bond properties between concrete and reinforcement inconcrete structures[J]. Materials and Structures,2008,41:969-980.
    [80]周志祥.高等钢筋混凝土结构[M].北京:人民交通出版社,2002.
    [81]吴瑾,吴胜兴.锈蚀钢筋混凝土受弯构件承载力计算模型[J].建筑技术开发,2002,29(5):243-250.
    [82] Shuenn-Chern Ting, Andrzej S. Nowak. Effect of Reinforcing Steel Area Loss on Flexural ConcreteBeams [J]. ACI Structure Journal,1991,88(3):309-314.
    [83]范颖芳,周晶.受腐蚀钢筋混凝土梁极限承载力神经网络预测[J].大连理工大学学报,2003,43(3):350-353.
    [84]何世钦.氯离子环境下钢筋混凝土构件耐久性试验研究[D].大连理工大学博士学位论文,2004,5.
    [85]徐善华.混凝土结构退化模型与耐久性评估.西安建筑科技大学[D],2003,6.
    [86]张伟红.钢筋及混凝土受弯构件延性的研究[D].郑州大学硕士学位论文,2002,5.
    [87]李荣.钢筋混凝土构件钢筋锈蚀后正截面承载力的试验研究[D].冶金部建筑研究总院硕士学位论文1996,3.
    [88]张喜德.钢筋锈蚀对混凝土抗压强度影响的试验研究[J].工业建筑,2003,3(33):5-7.
    [89]杨福林.钢筋混凝土梁钢筋和混凝土之间粘结强度与承载力关系研究[D].重庆交通大学硕士论文,2011.6.
    [90]东南大学,天津大学,同济大学.混凝土结构设计原理[M].北京:中国建筑工业出版社,2001.
    [91]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [92]王小惠,刘西拉.锈蚀钢筋混凝土梁的斜截面抗剪承载能力[J].上海交通大学学报,2007,6(41):125-134.
    [93]霍艳华.锈蚀钢筋混凝土简支梁受剪承载力研究[J].工业建筑,2006,36(S1):910-912.
    [94]徐善华,牛荻涛.锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J].建筑结构学报,2004(5):98-104.
    [95]赵羽习,金伟良.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版),2008,42(1):19-24.
    [96] HIGGINS C, FARROW III W C. Tests of reinforced concrete beams with corrosion-damaged stirrups [J].ACI Structural Journal,2006,103(1):133-141.
    [97]刘彬,张建仁.钢筋混凝土梁抗剪承载力计算理论综述.中外公路,2011,31(2):150-158.
    [98] ZARARIS P D. Shear compression failure in reinforced concrete deep beams[J]. Journal of structuralEngineering,2003(4):544-55.
    [99] Evan C. Bentz. Simplified Modified Compression Field Theory for Calculating Shear Strength ofReinforced Concrete Elements. ACI Structural Journal,2006,103(4):614-624.
    [100]周英武.钢筋混凝土梁斜裂缝倾角理论与试验分析[J].大连理工大学学报.2008,48(2):236-239.
    [101]贡金鑫,仲伟秋,赵国藩.受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究[J].建筑结构学报,2004,25(5):92-97.
    [102]史庆轩,牛狄涛,颜桂云.反复荷载作用下锈蚀钢筋混凝土受弯构件恢复力性能的试验研究[J].地震工程与工程震动,2000,20(4):44-50.
    [103]牛荻涛,陈新孝,王学民.锈蚀钢筋混凝土压弯构件抗震性能试验研究[J].建筑结构,2004,34(10):36-38.
    [104]颜桂云,孙炳楠,王泽军,牛荻涛.锈蚀钢筋混凝土压弯构件抗震性能的试验研究[J].建筑结构,2003,33(2):16-18.
    [105]贡金鑫,李金波,赵国藩.受腐蚀钢筋混凝土构件的恢复力模型[J].土木工程学报,2005,11(11):38-44.
    [106] Salim R, Razvi, Murat Sactcioglu. Strength and Defornability of Confined High-Strength ConcreteColumns [J]. ACI Structral,1994,91(6):60-68.
    [107] Frederic Legeron, Patrick Paultre. Behavior of High-Strength Concrete Columns under Cyclic Flexureand Constant Axial Load[J]. ACI Structural Journal/July-August2000:591-601.
    [108] Daniel Cusson, Patrick Paultre. High-Strength Concrete Columns Confined by Rectangular Ties[J].Structural Engineering ASCE.1994,120(3):783-804.
    [109] Jing Liu, Stephen J. Foster, Mario M. Atard. Strength of Tied High-Strength Concrete Columns Loadedin Concentric Compression[J]. ACI Journal Structural,2000.97(1):149-156.
    [110] Daniel Cusson, Francois de Larrard, et al. Strain Localization in Confined High-Strength ConcreteColumns[J]. Structural Engineering ASCE,1997,123(9):1055-1061.
    [111] Mirza S A,Lacroix E A. Comparative strength analyses ofconcrete-encased steel compositecolumns[J].Journal ofStructural Engineering,2004,130(12):1941-1953.
    [112] Ricles J M. Seismic performance of steel-encased composite columns[J].Journal of StructuralEngineering[J].1994,120(8):2474-2494.
    [113] Chen C C, Li J M. Experimental behaviour and strength of concrete-encased composite beam-columnswith T-shaped steel section un-der cyclic loading[J]. Journal of Constructional Steel Research,2005,61(7):863-881.
    [114] Sherif El-Tawil, Gregory G Deierlein. Strength and Ductility of Concrete Encased CompositeColumns[J]. Journal of Structural Engineering, ASCE,1999,125(9):1009-1019.
    [115] Wang Y C. Tests on slender composite columns[J]. Journal of Constructional Steel Research,1999,49(1):25-41.
    [116] Ricles J M, Paboojian S D. Seismic performance of steel-encased composite columns[J].Journal ofStructural Engineering,1994,120(8):2474-2494.
    [117] Chen C C,Li J M,Weng C C. Experimental behaviour and strength of concrete-encased compositebeam-columns with T-shaped steel section un-der cyclic loading[J]. Journal of Constructional SteelResearch,2005,61(7):863-881.
    [118] Sherif El-Tawil, Gregory G Deierlein. Strength and Ductility of Concrete Encased CompositeColumns[J]. Journal of Structural Engineering, ASCE,1999,125(9):1009-1019.
    [119] Wang Y C. Tests on slender composite columns[J]. Journal of Constructional Steel Research,1999,49(1):25-41.
    [120] Mirza S A, Lacroix E A. Comparative strength analyses ofconcrete-encased steel composite columns[J].Journal ofStructural Engineering,2004,130(12):1941-1953.
    [121]郭震.新型钢结构小高层住宅抗震耐火性能研究[D].中国矿业大学博士论文,2011.
    [122]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨工业大学出版社,2007:212-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700