亲油缓释肥料的制备及在溢油污染潮间带生物修复中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物修复具有二次污染少、费用低廉等优点,已成为现场去除溢油岸滩石油烃污染的重要选择途径。在溢油污染海岸线环境中,营养盐如氮、磷常常是限制石油烃生物降解的主要因素。为了彻底降解并达到更快的净化程度,常常通过添加营养盐即生物刺激的方式来强化污染物的生物降解。
     本论文选择环渤海天津海岸线这一溢油高生态风险区,综合采用现场调查、实验室处理和现场模拟修复的综合研究方法,在通过现场调查确定环渤海典型海岸线生态环境特征的基础上,依据石油烃降解菌对不同营养元素吸收利用的特点,开发兼具亲油性和缓释性肥料配方和制备工艺;在室内评价其亲油性、缓释性及对石油烃降解作用影响的基础上,进一步通过现场中试试验,确定所制备的亲油缓释肥料的在不同类型溢油污染海岸线生物修复中的作用过程和作用机理,以期为亲油缓释肥料的开发及其在溢油污染海岸线生物修复中的应用提供理论依据和科学基础。论文主要研究结果如下:
     (1)2008年夏季环渤海典型海岸线23个站位的生态环境要素调查结果表明,夏季环渤海的岸线的温度、pH和DO等环境因子基本在石油烃降解菌生长的适宜范围内。环渤海海岸线有机污染较为严重,石油烃和总有机碳含量分别在57.90 mg/Kg-2788.60 mg/Kg和0.15%-6.16%,超过国家沉积物质量Ⅰ类标准的分别占总调查站位的70%和61%。高值区主要位于天津港六号码头、天津汉沽蔡家堡码头、唐山曹妃甸和辽宁营口辽河口;环渤海海岸线富营养化污染较为严重,基质中间隙水总溶解氮和和总溶解磷含量分别在15.75μmol/L-55.70μmol/L范围内和1.10μmol/L-2.17μmol/L,但在溢油发生时,氮、磷营养盐仍可能是限制石油烃生物降解的主要因素。岸线基质中异养菌总数、石油烃降解菌总数、烷烃降解菌总数和芳烃降解菌总数分别在4×104-7.40×106CFU/g、0-8×105CFU/g、170-3.50×106CFU/g和0-1.58×103CFU/g范围内,其中,烷烃降解菌含量较为丰富,而芳烃降解降解菌则普遍缺乏。
     (2)通过室内单因子试验,确定了以颗粒状氮肥和磷肥为核心层,以硫磺为包衣层,以聚合蜡为最外密封和涂覆层的亲油缓释肥料的制备工艺,其中,硫包衣层为20%、聚合蜡密封层为4%、表面调理剂为1%、喷涂温度为170℃时肥料的缓释性能最好。该肥料不仅在不同盐度和pH的海水介质中都具有良好的缓释性能,而且能够持续释放养分而维持石油烃降解菌的生长,并促进原油中各组分包括烷烃和芳烃明显降解,其中,各正构烷烃的降解率提高13.9%-59.0%,、平均提高41.2%;芳烃类化合物的降解率提高9.6%-32.3%,平均提高19.9%。
     (3)将所制备的亲油缓释肥料单独或与石油降解菌剂同时应用于中质原油和重质原油溢油的现场生物修复中,并与水溶性肥料的作用结果相比较。结果表明,亲油缓释肥料能和水溶性肥料在加入初期都可以大大提高基质间隙水中营养盐的水平,但水溶性肥料在海水冲刷作用下极易流失而导致肥效很短(≤7天),亲油缓释肥料中营养物质释放周期可达25-30天;在释放周期内,亲油缓释肥料能稳定的释放出足够的营养盐为微生物的生长繁殖提供养料,添加亲油缓释肥料的体系各功能菌包括异养菌、石油烃降解菌、烷烃降解菌和芳烃降解菌的数量都明显高于添加水溶性肥料的体系,而各修复体系微生物群落结构的PCR-DGGE分析结果表明,同时添加亲油缓释肥料和接种菌剂的体系的菌群结构明显不同于同时添加水溶性肥料和接种菌剂的体系以及油对照体系,表明所添加缓释肥料不仅可显著刺激土著石油烃降解菌的生长,而且明显促进了所添加的外源石油烃降解菌的生长;无论对BXBT中质原油还是SZ36-1重质原油,同时添加亲油缓释肥料和接种石油烃降解菌剂对提高生物修复效率措施最为有效,不仅提高了烷烃组分的降解率,而且提高了多环芳烃组分的降解率。其中BXBT中质原油在60天时总石油烃的生物降解率提高1.4倍,SZ36-1重质原油120天时的总石油烃的生物降解率提高1.5-2.7倍。
     论文研究结果不仅可以为亲油缓释肥料的开发及其在溢油污染海岸线生物修复中的适用性评价提供相关方法和理论基础,而且可为促进石油污染海岸线生物修复技术的完善和大范围推广使用提供支持。
Boremediation, which has many advantages such as less secondary pollution and low-cost, has become the important method to remove petroleum hydrocarbon pollution in oil-spilled shoreline. In the oil-spilled shoreline, nutrients such as nitrogen, phosphorus usually are the main limiting factors to biodegradation. In order to thoroughly degraded petroleum and purified the environment, we often strengthen the biodegradation of pollutants by adding nutrients.
     This research chose Tianjin shoreline, which was the area of high incidence of oil spilling, as experimental site to comprehensive study of field investigation, laboratory handling and on-site simulated bioremediation. Based on the field investigation of the typical characteristics of the ecological environment of Bohai Sea coastline, we developed fertilizer which is both lipophilic and slow-released according to the characteristics of petroleum hydrocarbon degrading bacteria on nutrient absorption and utilization of different sustained-release fertilizer. Based on the evaluation of lipophilic efficiency, slow-released efficiency and the impact to bioremediation in laboratory, through the further in-suit test to study the role in the process and mechanism of the slow-released fertilizer in bioremediation of oil-spilled shoreline, in order to seek a theoretical foundation and scientific basis of the development of slow-released fertilizer and its application in the bioremediation of oil-spilled shoreline. The main results of this research are shown as follows:
     (1) The investigation result of ecological environment of 23 stations Round Bohai Area in Summer,2008 shows that the environmental factors such as temperature, pH, DO et al Round Bohai Sea are appropriate for the growth of hydrocarbon degrading bacteria. The organic pollution of Round Bohai Sea Area are serious, petroleum hydrocarbons and TOC are between 57.90 mg/Kg-2788.60 mg/Kg and 0.15%-6.16% respectively, there are 70% and 61% of total stations higher the National Sediment Quality Criteria class 1. High value areas are mainly located in Pier 6 of Tianjin Port, Tianjin Hangu Caijiabao Pier, Caofeidian and Liaoning Yingkou Liaohe River Estuary. The eutrophication of Round Bohai Sea Area is also serious, the total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP) in matrix pore water are between 15.75μmol/L-55.70μmol/Land 1.10μmol/L-2.17μmol/L respectively. However, the lack of nitrogen and phosphorus are still the main limiting factors to bioremediation. The number of heterotrophic bacteria, petroleum hydrocarbon degrading bacteria, alkane degrading bacteria and aromatic degrading bacteria are between 4×104-7.40×106CFU/g,0-8×105CFU/g,170-3.50×106CFU/g and 0-1.58×103CFU/g respectively. The alkane degrading bacteria are more abundant, while the number of aromatic degrading bacteria is small.
     (2) Through laboratory single factor experiments, we found the optimum conditions and technology of preparing lipophilic and slow-release fertilizer, which make particulate nitrogen and phosphorus as the core layer, sulfur as the coating layer, polymer wax as the outer layer. The fertilizer has the highest slow-released efficiency when the sulfur core layer is 20%, the polymer wax layer is 4%, the surface conditioner is 1%, spraying temperature is 170℃. The fertilizer has good sustained release efficiency not only in different salinity and pH of the seawater, but also can maintain the growth of hydrocarbon degrading bacteria with sustained released nutrients, and promote hydrocarbon degrading bacteria degrading the crude oil components, including alkanes and aromatic hydrocarbons, the degradation rate of n-alkanes increased by 13.9%-59.0%, with an average of 41.2%; the degradation rate of aromatic compounds increased by 9.6%-32.3%, with an average of 19.9%.
     (3) Apply the lipophilic slow-released fertilizer in the in-suit oil-spilled bioremediation field of medium crude oil and heavy crude oil, and compare the efficiency with water-soluble fertilizer. The result shows that both slow-released fertilizer and water-soluble fertilizer can greatly improve the level of the nutrients in Matrix pore water. But water-soluble fertilizer are easily washed away because of water erosion and make it has a extremely weak Fertilizer effect (≤7 days), however the slow-released fertilizers has a release cycle of up to 25-30 days. In the release cycle, the fertilizer can release enough nutrients stably to maintain the growth of microbes, The number of heterotrophic bacteria, petroleum hydrocarbon degrading bacteria, alkane degrading bacteria and aromatic degrading bacteria in the system adding slow-release fertilizer are much high than that in the system adding water-soluble, the PCR-DGGE result shows that the microbial community heterotrophic bacteria, petroleum hydrocarbon degrading bacteria, alkane degrading bacteria and aromatic degrading bacteria in the system adding slow-release fertilizer are much high than that in the system adding water-soluble, the PCR-DGGE result shows that the microbial community structure of the system adding slow-released fertilizer and microorganism preparations are significantly different from that adding water-soluble and microorganism preparations and Oil control system, which means that the slow-released fertilizer can not only promote the growth of the indigenous microorganisms but also the growth of exogenous microorganisms. For both medium crude oil and heavy crude oil, the most effective way to Improve the efficiency of bioremediation is adding slow-released fertilizer and microorganism preparations, it can not only improve the biodegradation rate of the alkanes but also aromatic hydrocarbons components. For medium crude oil, the degradation rate in the system adding slow-released fertilizer and microorganism preparations are 1.4 times higher than that in oil controlled system; for heavy crude oil, the degradation rate in the system adding slow-released fertilizer and microorganism preparations are 1.5-2.7 times higher than that in oil controlled system. This paper can provide a theoretical foundation and scientific basis both for the development of slow-released fertilizer and its application in the oil-spilled shoreline; it also can improve the bioremediation technology for oil-spilled shoreline and support the wide range usage of bioremediation.
引文
[1]Al-Daher R. Bioremediation of damaged desert environment using the windrow soil pile system in Kuwait [J].Environ. INT.1998,24(2):175-180
    [2]Atlas R M. Microbial hydrocarbon degradation-bioremediation of oil spill [J]. Journal of Chemical Technology and Biotechnology,1991,52:149-156
    [3]Atlas, R.M., Bartha, R.Degradation and mineralization of Petroleum in seawater:limitation by nitrogen and Phosphorus. Biotechnology and Bioengineering,1972,14:309-317
    [4]Atlas R M. Microbial degradation of petroleum hydrocarbons:an environmental perspective. Microbiol. Rev.,1981,45:180-209
    [5]Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons [J]. Colloids and Surfaces. 1999,152:41-52.
    [6]Bragg JR. Effectiveness of biodegradation for the Exxon valdez oil spill [J]. Nature,1994, 368:413-418
    [7]Brock T D. The study of microorganisms in situ:progress and problems. Symp. Soc. Gene Microbiol,1987,41(1):1-17
    [8]Bragg et al. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature,1994, 368(4):413-418
    [9]Christofi N, Ivshina IB. Microbial surfactants and their use in field studies of soil remediation [J]. Journal of Applied Microbiology,2002,93(6):915-929
    [10]Cortf, B.C. Effect of bioremediation agents on oil biodegradation in medium-fine sand [J]. Applied Bioremediation of petroleum Hydrocarbons, Battelle Press,1995,6(3):423-434
    [11]Chun Chin Wang, Chi Mei Lee, Chin Jen Lu, et al. Biodegradation of 2,4,6-triehlorophenol in the presence of primary substrate by immobilized pure culture bacteria[J].Chemosphere, 2000,41(11):1873-1879
    [12]Dunena, K., Jenriings, E., Hettenbachs. Niotrogen cycling and nitic oxide emissions in oil impacted prairie soils [J]. Bioremediation Journal,1998, 11(3):195-208
    [13]Gerard M uzer, Ellen C, DeW all, etal. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16SrRNA[J].Appl. Environ. Microbiol.,1993,59 (3),695-700
    [14]HEAD I M, SWANNELL R P J. Bioremediation of petroleum hydrocarbon contaminants in marine habitats [J].Current Opinion in Biotechnology,1999,10:234-239
    [15]Hurt K, Borazani H, Diehl SV. Biopiling creosone contaminated oil [J]. Stud Environ Sci. 1997,66:617-687
    [16]Haney S, Elashvili I and Valdes JJ. Enhanced recovery of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant [J]. Bio. Technology,1990,8:228-230
    [17]H. Al-Awadhi, Rasha H. D. Sulaiman, Huda M. Mahmoud and S. S. Radwan. Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf[J]. Applied Microbiology and Biotechnology,2007,77(1):183-186
    [18]HOZUMI T, TSUTSUMI H, KONO M. Bioremediation on the shore after an oil spill from the
    [19]Ivshina IB, Kuyukina MS, Philp JC and Christofi N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species [J]. World Journal of Microbiology and Biotechnology.1998,14:711-717.
    [20]K Miehaela, J Irena, K Lucie, et al. Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp2[J]. Chemosphere,2003,50(1):537-543
    [21]Komukai-Nakamura,S., Sugiura,K., Yamauchi-Inomata,Y., et al. Construction of bacterial consortia that degrade Arabian light crude oil[J].J.Ferment.Bioeng.1996,82:570-574
    [22]Koroleff F. Total and organic nitrogen.In:K Grasshoff(editor),Methods of Seawater Analysis. Weinheim:Verlag Chemie,1976,167-173.
    [23]Kosaric N. Biosurfactants and their application for soil Bioremediation [J]. Food Technol Biotechnol.,2001,39(4):295-304
    [24]Lepo J E, Cripe C R, Kavanaugh J L. The Effect of Amount of Crude Oil on Extent of its Biodegradation in Open Water and Sandy Beach Laboratory Simulations[J]. Environmental Technology,2003,24(10):1291-1302
    [25]L.L.DAANE, I.HARJPNO, G.J.ZYLSTRA, et al. Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Associated with the Rhizosphere of Salt Marsh Plants[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,2001, 67(6);2683-2691
    [26]Neralla, S., Write, A., and Weaver, R.W. Microbial inoculants and fertilization for bioremediation of oil in wetlands. In Hinchee, R.E. et al. (eds) Bioaugmentation for Site Remediation. Battelle Press, Columbus, OH,1995,33-38
    [27]Nakhodka in the Sea of Japan. Ⅰ.Chemistry and characteristics of heavy oil loaded on the Nakhodka and biodegradation tests by a bioremediation agent with microbiological cultures in the laboratory[J].Marine Pollution Bulletin,2000,40(4):308-314
    [28]Oh YS. Effects of nutrients on crude oil biodegradation in the upper intertidal zone[J]. Marine Pollution Bulletin,2001,42(12):1367-1372
    [29]Okami Y. Marine microorganisms as a source of bioactive agents[J]. Microbiol Ecol 1986,12: 65-78
    [30]OUDOT J, MERLIN F X, PINVIDIC P. Weathering rates of oil components in a bioremediation experiment in estuarine sediments[J]. Marine Environmental Research,1998, 45(2):113-125
    [31]Pezeshki SR, Hester MW, Lin Q, Nyman JA. The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes:a review. Environmental Pollution,2000,108: 129-139
    [32]Pettigrew, C. A., Breen,A., Corcoran,C. et al.Chlorinated biphenyl mineralization by individual populations and consortia of freshwater Bacteria[J]. Appl Environ Microbiol,1990, 56(7):2036-2045
    [33]Prichard PH, Costa CF. EPA's Alaska oil spill bioremediation project [J]. Environ. Sci. Technol.1991,25(3):372-379
    [34]Peijun Li, Xin Wang, Frank Stagnitti, et al. Degradation of Phenanthrene and Pyrene in soil Slurry Reactors with Immobilized Bacteria Zoogloea sp[J]. Environmental Engineering Science,2005,22(3):390-399
    [35]Prince R C et al., Bioremediation of marine oil spill in the Arctic. In Alleman B C et al Eds. In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds[J]. Columbus OH:Battelle Press,1999,227-232
    [36]REBECCA Z. HOFF. Bioremediation:an overview of its development and use for oil spill cleanup [J]. Marine Pollution Bulletin,1993,26(9):476-481
    [37]Ramsay Michelle A, Swannell Richard P. J, Shipton. Warren A, et al. Effect of bioremediation on the microbial community in oiled mangrove sediments [J]. Marine Pollution Bulletin, 2000,41:413-419
    [38]Rahman,K.S.M., Thahira-Rahman,J., Lakshmanaperumalsamy,P. et al.Towards efficient crude oil degradation by a mixed bacterial consortium[J].Bioresource Technology,2002,85:257-261
    [39]Richard J Y., Vogel T M. Characterization of a soil bacterial consortium capable of degrading diesel fuel [J]. International Biodeterioration & Biodegradation,1999,44:93-100
    [40]Rosenberg., E., Lagmann, R., Kushmaro, A., Taube., R. et al.Petroleum bioremediation—a multiphase problem. Biodegradation,1991,3:337-350
    [41]SEABRA P N, LINHARES M M, SANTA ANNA L M. Laboratory study of crude oil remediation by bioaugmentation[A]. Alleman B C, LEESON A. In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds[C]. Columbus, OH:Battelle Press, 1999.421-426
    [42]S.S.Zinjarde, A.A.Pant. Hydrocarbon degraders from tropical marine enviroments[J]. Marine Pollution Bulletin,2002,44:118-121
    [43]Sugai SF. Environmental influences on the microbial degradation of Exxon Valdez oil on the shorelines of Prince William Sound, Alaska. Environmental and Science Technology,1997, 31:1564-1572
    [44]Saitou, Nei M. The neighbour-joining method:a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol,1987,44(3):406-425
    [45]Tsutsumi, H., Kono, M L, Takai, K., et al. Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. Ⅲ. Field test of a bioremediation agent with microbiological cultures for the treatment of an oil spill [J]. Marine Pollution Bulletin,2000, 40,320-324
    [46]Tagger, S., Bianchi, A., Julliard, M., et al. Effect of microbial seeding of crude oil in seawater[J], Marine Biology,1983,78(1):13-21
    [47]Thompson D G, Higgins, Gibson T J, et al. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice [J]. Nucleic Acids Reserch,1994,22(26):4673-4680
    [48]TSUTSUMI H, KONO M, TAKAI K et al.Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. Ⅲ.Field tests of a bioremediation agent with microbiological cultures for the treatment of an oil spill[J]. Marine Pollution Bulletin,2000, 40(4):320-324
    [49]Venkateswaran,K. and Harayama,S. Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil[J].Can.J.Microbiol.1995,41:767-775
    [50]Venosa, A.D., Haines, J.R., Nisamaneepong, W., et al. Protocol for testing bioremediation products against weathered Alaskan crude oil. Proceedings of 1991 International Oil Spill Conference. American Petroleum Institute, Washington DC,1991,563-570
    [51]Wrenn, B A, A D Venosa. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most probable number procedure[J]. Can J Microbiol,1996,42: 252-258
    [52]Wan-li Liao, Dyi—HwaTseng, Ying—ChiehTsai, et al. Microbial removal of polycyclic aromatic hydrocarbons by Phanerochaete chrysospoHum[J]. Wat. Sci. Tech.,1997,35(8): 255-264
    [53]Wang Jianlong, Quan Xingchun, Han Liping, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii [J]. Water Research,2002,36(5):2288-2296
    [54]Wdar, D.M., Atlas, R.M., Boehn, P.D.,Calder, J.A., Mirobial biodegradation and the chemical evolution of Amoco Cadiz oil Pollutants.Ambio,1980,9:277-283
    [55]Zhnag, Y, Maier, W.J. and Miller, R.. Eeffet of rhamnolipids on the dissolution, bioavailability and biodegradation of Phenanthrene[J]. Envrionmenta Science and Technology,1997,31:2211-2217
    [56]李永琪,丁美丽.海洋污染生态学[M].海洋出版社,北京.
    [57]李延,朱校斌,胡兆彬.渤海湾底质间隙水的地球化学特征及其污染状况.海洋与湖沼,1982,5:84-87
    [58]宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复[J].生态学杂志,2004,23(3):99102
    [59]夏文香,林海涛,张英等.海上溢油的污染控制技术[J].2004,25(1):54-57
    [60]孙玮,夏文香.微生物在海洋石油污染中的生物修复作用[J].能源与环境,2007,1:42-43
    [61]夏文香,李金成,宋志文等.生物修复剂在清除海滩石油污染中的应用.环境工程学报,2007,1(8):9-14
    [62]李金成,郑西来,夏文香等.石油污染海滩的生物修复实践及营养施加策略.海洋湖沼通报,2008,4:109-115
    [63]翁学传,张以恳,王从敏等.黄海冷水团的变化与特征.海洋与湖沼,1988,19(4):368-379
    [64]王海,张甲耀,魏明宝.生物强化技术在生物修复中的应用.环境科学与技术,2003,26(增刊):81-83
    [65]李进道,丁美丽,陈德辉等.用长效肥料提高微生物分解海面油膜试验.青岛海洋大学学报,1990,20(3):84-90
    [66]曲格平.渤黄海海域污染防治研究[M].北京:科学出版社,1990
    [67]马德毅.第二次全国海洋污染基线调查报告[M].大连:国家海洋环境监测中心,2004.
    [68]李任伟,李原.渤海沿岸环境沉积调查:As、重金属、氮和磷污染.沉积学报,2008,26(1):128-138.
    [69]王修林,李克强.渤海主要化学污染物海洋环境容量[M].北京:科学出版社,2006
    [70]袁有宪.黄渤海环境质量与生态变化研究[M].青岛:中国水产科学研究院黄海水产研究所,1996.
    [71]张龙军,夏斌,桂祖胜等.2005年夏季环渤海16条主要河流的污染状况.环境科学,2007,28(11):2409-2415
    [72]刘国华,傅伯杰,杨平.海河水环境质量及污染物入海通量[J].环境科学,2001,22(4):46-50.
    [73]蒋岳文,陈淑梅,关道明,等.辽河口营养要素的化学特征及其入海通量估算[J].海洋环境科学,1995,14(4):39-45.
    [74]梁生康,王修林,陆金仁,张前前.假单胞菌0-2-2产鼠李糖脂的结构表征及理化性质[J].精细化工,2005,22(7):499-502.
    [75]涂书新,韦朝阳.我国生物修复技术的现状与发展[J].地理科学进展,2004,23(6):20-32
    [76]邵宗泽,许晔,马迎飞等.2株海洋石油降解细菌的降解能力[J].环境科学,2004,25(5):133-137
    [77]陈碧娥,刘祖同.海洋烃细菌的分离及其特征[J].石油学报:石油加工,2002,18(5):9-13
    [78]谭田丰,邵宗泽.海洋石油烃降解菌群构建及其在降解过程中的动态分析[J].2006,45(B05):262-266
    [79]李慧,陈冠雄,张颖等.高效石油烃降解菌的分离鉴定及降解特性[J].2007,39(10):1664-1669
    [80]郑天凌,庄铁城,蔡立哲,田蕴,郭楚玲,徐美珠,李少菁.微生物在海洋污染环境中的生物修复作用[J].厦门大学学报,2001,40(2):524-534
    [81]田胜艳,刘宪斌,高绣花.石油污染海洋环境中的细菌群落[J].环境与可持续发展, 2001,4:32-35
    [82]李法云,曲向荣,吴龙华,等编.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2006.107-108
    [83]丁克强,骆永明.生物修复石油污染土壤[J].土壤,2001,33(4):179-184
    [84]张景来,王剑波,常冠钦等.环境生物技术及应用[M].北京:化学工业出版社,2002.232-483
    [85]丁明宇,黄建等.海洋微生物降解石油的研究[J].环境科学学报,2001,21(1):84-88
    [86]马文漪,杨柳燕.环境微生物工程[M].南京:南京大学出版社,1998.258
    [87]李永琪,丁美丽.海洋污染生物学[M].北京:海洋出版社.1991
    [88]陈碧娥,郭厚宝,苏西荣等.湄洲湾天然菌群对石油烃的降解作用[J].华侨大学学报,2000,21(2):182-185
    [89]史君贤,陈忠圆,刘孜琳等.宁波近海水域石油降解菌的生态分布[J].东海海洋,1991,9(3):9-82
    [90]张士璀,范晓,马军英主编.海洋生物技术和应用[M].北京:海洋生物技术出版社.1997.
    [91]宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复[J].生态学杂志,2004,23(3):99102
    [92]冯树,张忠泽.混合菌—一类值得重视的微生物资源[J].世界科技研究与发展,2001,22(3):44-47
    [93]张蔚文,混合菌培养在生物降解中的意义[J].环境科学与技术,1993,1:16-20
    [94]蒋家新,黄光荣,吴海平等.红曲米豆的培养及其酶学研究.食品工业科技,2002,23(5):24-27
    [95]单金玉,贾莹,李玉萍等.两株假单胞菌对烃的作用及其协同作用.微生物学通报,2002,29(4):55-58
    [96]Kondo T, Kondo Mj. Ferment. Bioeng.1996,81(1):42
    [97]李素玉,李玉,李光辉等.多种微生物净化玉米淀粉工业废水的协同效应研究.环境保护,2003,1:22-23
    [98]陈翠雪,谢嘉华等.复合微生物菌剂在海水养殖废水中的修复作用[J].泉州师范学院学报,2007,25(6):99-102
    [99]谢丹平,尹华等.混合菌对石油的降解[J].应用与环境生物学报,2004,10(2):210-214
    [100]谭田丰.海洋石油降解菌的分离鉴定及其在海洋石油污染生物修复中的应用研 究:[硕士学位论文].厦门:厦门大学生物化学学院,2006
    [101]郑福寿,陈绍铭.水生微生物实验法(下)[M].北京:海洋出版社.1990.70-71
    [102]刘五星,骆永明,滕应等.石油污染土壤的生态风险评价和生物修复Ⅰ.一株具有乳化石油能力的细菌分离鉴定[J].土壤学报,2006,43(3):461-466
    [103]F·奥斯伯,R.E·金斯顿等著,颜子颖等译.精编分子生物学实验指南[M].北京:科学出版社.1998.13-50
    [104]刘新春,吴成强,张昱等PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析[J].生态学报,2005,25(4):842-847
    [105]徐虹,章军,刘陈立等PAHs降解菌的分离、鉴定及降解能力测定[J].海洋环境科学,2004,23(3):61-64
    [106]韦朝海,侯轶,任缘等.硝基苯好氧降解的共基质及生物协同作用[J].中国环境科学,2000,20(3):241-244
    [107]刘陈立,邵宗泽.海洋石油降解微生物的分离鉴定[J].海洋学报,2005,27(4):114-120
    [108]崔爱玲.石油降解菌对石油烃的降解作用及应用研究:[硕士学位论文].青岛:环境科学学院,2006
    [109]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311
    [110]苏丹,李培军等.混合菌固定化及其对土壤中芘和苯并芘的降解.辽宁工程技术大学学报,2007,26(3):461-463
    [111]金文标,李秀珍等.油污土壤生物生态研究[J].油气田环境保护,1998,8(3):2-4
    [112]顾传辉,陈桂珠.石油污染土壤生物降解生态条件研究.生态科学,2000,19(4):67-72
    [113]刘志培,李习武.石油烃的微生物降解[J].微生物学报,2000,42(6):764-767
    [114]任磊,黄延林.石油污染土壤的生物修复技术[J].安全与环境学报,2001,1(2):50-54
    [115]陈莉,苏莹,陈赢男等.石油烃降解菌对环己烷及环己酮的降解作用[J].2008,17(3):944-949
    [116]郑洲,刘芳明,张波涛等.南极石油烃降解嗜冷菌的筛选及其降解特性的研究[J].2007,25(3):311-316
    [117]王家玲主编.环境微生物学.北京:高等教育出版社,1988
    [118]杨雪莲,李凤梅,刘婉婷,等.高效石油烃降解菌的筛选及其降解特性[J].农业环境科学学报,2008,27(1):0230-0233
    [119]吴明颖,陈瑞祥,蔡竹固.酚和甲醛分解菌之筛选及其在树脂废水处理应用上之评估[J].环境保护,2005,28(1):53-69
    [120]辛玉峰,刘虹,王淑君等Ralstonia sp, strain U2菌株对萘的趋化作用[J].应用与环境生物学报,2005,11(4):490-492.
    [121]田雷.微生物降解菲的研究:[硕士论文].华东理工大学:生物化工学院,2000
    [122]梁英娟,罗湘南,付红霞PCR-DGGE技术在微生物生态学中的应用[J].生态学杂志,2007,24(6):58-60
    [123]夏文香,林海涛,张英等.海上溢油的污染控制技术[J].2004,25(1):54-57
    [124]王琳,罗启芳.硅藻土吸附固定化微生物对邻苯二甲酸二丁酯的降解特性研究[J].公共卫生,2006,25(1):23-25
    [125]赵伟,涂艳丽,王飞.土壤微生物活菌数与生物量的关系研究[J].安徽农业科学,2005,33(12):2285
    [126]熊航行.利用多管发酵法检测水中大肠菌群数[J].中国临床医药研究杂志,2005.144:15586-15588
    [127]杨仕美.高效石油烃降解菌剂的制备及其在溢油污染海岸线生物修复中的应用:[硕士论文].中国海洋大学:化学化工学院,2009
    [128]郭利果.原油中不同生物标志物的生物降解性及其在评价溢油污染海岸线生物修复效果中的应用研究:[硕士论文].中国海洋大学:化学化工学院,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700