小型混合动力车中电力驱动装置的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车工业可以说是一个国家的重要支柱产业,但是由汽车带来的环境污染日益恶化,同时地球上化石燃料的储存量与消耗量的矛盾越来越突出。目前的迫切需要是找到快捷、有效、可行的途径来解决或者缓解汽车对化石燃料的依赖和对环境的严重污染。新能源汽车,尤其是混合动力车被证明是一种非常行之有效的途径。混合动力技术已成为能够使用于所有燃料的关键技术,同时它也是目前能满足排放要求和节能目标且有利于市场化的实用技术。本文正是基于电力电子功率变换技术在混合动力车中所占有的重要技术地位而进行研究和探讨,以小型混合动力试验样车为载体,开展对混合动力电力驱动装置的关键技术研究。主要所做的研究工作包括:
     (1)通过对混合动力车的各种动力结构进行总结和对比,结合作者所研究课题的目标重点,提出了小型HEV试验样车中的动力组成结构方案。选用了铅酸蓄电池+超级电容的混合电力储能源组合方案,可以使得小型HEV对电力储能单元的比能量和比功率要求分离开。并且把两种混合电力储能源在小型HEV电力驱动装置内的不同电气连接方式及特点做了分析,指出了铅酸蓄电池、超级电容模组和无刷直流电机逆变器三者通过两个双向DC/DC变换器实现的级联结构,具有的灵活性、合理性和整体高效性。然后对比了各种不同的实用型双向DC/DC变换器在所用功率器件的数量、对器件的电气应力要求、损耗等方面的性能参数指标,并且结合小型HEV的实际运行工况,对比了不同拓扑在完成此方面功能的局限性,最终给出了适应小型混合动力车实际运行工况的拥有多模态工作方式的高效率双向DC/DC变换器的拓扑结构选定依据。
     (2)结合所采用的小型HEV的混合电力储能源组成结构,研究了新型的双向DC/DC变换器的拓扑和相应的控制技术。首先是针对小型混合动力车的具体运行工况,进一步提高级联型Buck-boost双向DC/DC变换器在特殊情况下的电能转换效率,提出了利用单一电流采样电阻实现双向平均电流控制,以及较好地实现同步整流断续工作模式等关键技术方法。再是在该车电力驱动装置中采用了一种基于“3-L”结构的新型双向软开关DC/DC变换器,而且通过理论推导、分工作阶段说明了其电路的有益效果在于:保证器件承受的电压和电流应力并没有增加的情况下,通过“3-L”换流电路实现开关的零电压或者零电流开通、零电压关断和续流二极管的零电流关断,降低变换器的开关损耗,尤其解决了续流二极管反向恢复这一主要损耗来源,可以显著提高变换器的效率,更加适合较大功率变换器的效率提升。
     (3)以提高整车的电力驱动性能和驾驶舒适度为研究目的。首先通过对无刷直流电机和相匹配的DC/AC三相逆变器结构为分析对象,详细分析了BLDCM实际的等效数学模型,提出了在HEV中选用BLDCM的原则。再是全面分析了无刷直流电机的两类转矩脉动的本质,其中对无刷直流电机的传导区电磁转矩脉动,利用能量单元分析法对其进行定量的理论推导,并在此基础上结合小型混合动力车电力驱动系统,提出了一种新的控制策略,理论上可以消除BLDCM在传导区内的电磁转矩脉动;同时针对换流区转矩脉动提出了一系列解决问题的新方法和新思路;此外由于所设计的小型HEV电力驱动装置样机系统中,采用了多级电路结构,可以方便的实现BLDCM高速区域内的恒功率控制。
     本课题研究的意义在于:当前混合动力汽车的核心技术多数掌握在几个汽车制造大国,如美国、日本和德国等,而我国要实现新能源汽车产业走在世界的最前端,必须尽早的掌握其中的核心和关键技术。本文正是基于这个目的,结合所学专长而展开研究,虽然以小型混合动力车为具体研究和方案实施对象。但是所设计的动力组成结构、电力驱动装置以及控制方法,完全适合转化到混合动力电动轿车或者混合动力电动客车的电力驱动系统中,可为广大的工程技术人员提供设计参考和研究思路,具有一定价值的借鉴意义。
Automotive industry has been the mainstay industry for a country, but the problem between need of fossil fuel and environmental pollution is becoming more and more serious, because of motor vehicle in life using. The one effective mean to resolve this contradiction must be found now. Fortunately, new energy vehicle, specially hybird electric vehicle(HEV) has been proven a kind of practical and fast-developing vehicle in the latest years. Based on the power electronics being the core part for HEV technology development, this dissertation focuses on the key technologies of electric drive equipment in the minitype HEV system.These are three aspects to research as follows.
     (1) The power structure of minitype HEV's prototype is proposed by the comparion between different power structures, likely series HEV, parallel HEV and combined HEV. Based on the selected structrue, the lead-acid battery mixed with super capacitor is adopted as hybrid electric engergy storage mode. Because this mixture can exert the advantages of lead-acid battery and super capacitor. In the proposed minitype HEV's electrical structrue, the lead-acid battery, super capacitor and BLDCM's inverter are cascaded by two bi-directional DC/DC converters. This electrical structure has some characteristics:flexibility, rationality and overall efficiency. Aimed to realize proposed electrical structure efficiently under different minitype HEV's operating modes, this dissertation have compared the seven topologies with bi-directional DC/DC converter fuction, mainly through number of the devices, electrical stress of active and passive devices, volume and dissipation of devices.Then as requirement of different minitype HEV's operating modes, it gives the selection basis and characteristic of bi-directional DC/DC converter used in minitype HEV.
     (2) This dissertation focuses on the most important aspects of the bi-directional DC/DC converter in the minitype hybrid electric vehicle for the project applications.The different operating modes of converter are introduced under all HEV's work conditions. Based on summarization, the demerits including low efficiency at light load and the uncontrolled discontinuous current are derivated. Through theoretical and mathematical analysis, a new algorithm of average current controlling and digital control method in discontinuous synchronous rectifier mode with a single current sensor resistance are proposed to realize the multi-mode bi-directional cascade Buck-boost DC/DC converter. At the same time, the prototype using proposed technology is implemented to verify the operational principles and advantages that improved synchronous rectifier inverse-boost converter light load efficiency. And then, a new kind bi-directional DC/DC converter with the characteristics of soft-switching based on "3-L" structure is proposed to use in minitype HEV. This bi-directional DC/DC converter has many advantages:low electrical stress of active devices, high efficiency, simple structure and so on.
     (3) Aimed to improve the drive performance and comfort. Firstly, the actual BLDCM's mathematical model and mechanical characteristic are analyed based on pratical DC/AC inverter with power MOSFET and anti-parallel diode. This dissertation presents a comprehensive research on torque ripples of brushless dc motor drive in conduction region and commutation region.The phenomenon of torque ripples of conduction exists because of diode freewheeling happened under the conventional PWM schemes.Through new proposed energy unit theoretical analysis, a new method for reducing the torque ripple in brushless dc motor with a single current sensor has been proposed under the minitype HEV's electrical sturcture. So in such drives, torque ripples are theoretically eliminated in conduction region. For torque ripple in the commutation region, a series of new methods are proposed and analyed to reduce this kind torque ripple, including of single-stage and two-stage modulation strategy. Effectiveness and feasibility of the proposed control method are verified through experiments.
     Nowadays, the key technologies of HEV have been mastered by several great automobile manufacturers, likely Toyota, Ford, GM, Honda and so on. But if our motherland wants to belong to first group in new energy vehicle, the key technologies of HEV must be researched and mastered as soon as possible. So this dissertation has been finished with this background and prospect. Although the all kinds of new methods are realized on minitype HEV's prototype, the proposed system analysis and method implementation are valuable for project application and design.
引文
[1]刘明辉.混合动力客车整车控制策略及总成参数匹配研究.吉林长春:吉林大学,2005.
    [2]赵世科.串联式混合动力电动汽车经济性研究研究.湖北武汉:武汉理工大学,2005.
    [3]Toyota.2008年丰田中国可持续发展报告.北京:丰田汽车(中国)投资有限公司,2008.
    [4]倪光正,倪培宏,熊素铭,译.现代电动汽车、混合动力电动汽车和燃料电池车—基本原理、理论和设计.北京:机械工业出版社,2008.
    [5]陈清泉,孙逢春,祝嘉光.现代电动汽车技术.北京:北京理工大学出版社,2004.
    [6]李兴虎.电动汽车概论.北京:北京理工大学出版社,2005.
    [7]陈清泉,孙逢春.混合电动车辆基础.北京:北京理工大学出版社,2001.
    [8]陈全世,朱家琏,田光宇.先进电动汽车技术.北京:化学工业出版社,2007.
    [9]田锐.混合动力汽车用铅酸蓄电池均衡控制策略研究.重庆:重庆大学,2005.
    [10]陈永真,李锦.电容器手册.北京:科学出版社,2008.
    [11]唐西胜.超级电容器储能应用于分布式发电系统的能量管理及稳定性研究.北京:中国科学院电工研究所,2006.
    [12]Phatiphat Thounthong, Stephane Rael, Bernard Davat. Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Transactions on Industrial electronics,2007,54(6):3225-3233.
    [13]Hanmin Liu, Zhixin Wang, Jie Cheng and Douglas Maly. Improvement on the cold cranking capacity of commercial vehicle by using supercapacitor and lead-acid battery hybrid. IEEE Transactions on Vehicular Technology,2009,58(3):1097-1105.
    [14]李海东.超级电容器模块化技术的研究.北京:中国科学院电工研究所,2006.
    [15]孔治国.电动客车用超级电容器组动态均衡技术研究.黑龙江哈尔滨:哈尔滨工业大学,2007.
    [16]李国.混合动力电动汽车用超级电容器能量管理系统.辽宁沈阳:辽宁工学院,2007.
    [17]张靖.超级电容蓄电池复合电源的研究与仿真.湖北武汉:武汉理工大学,2005.
    [18]Stefano Barsali, Carmine Miulli and Andrea Possenti. A control strategy to minimize fuel consumption of series hybrid electric vehicles. IEEE Transactions on Energy Conversion, 2004,19(1):187-195.
    [19]Massimo Ceraolo, Antonio di Donato and Giulia Franceschi. A general approach to energy optimization of hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 2008,57(3):1433-1441.
    [20]Tomaz Katrasnik, Ferdinand Trenc and Samuel Rodman Opresnik. Analysis of energy conversion efficiency in parallel and series hybrid powertrains. IEEE Transactions on Vehicular Technology,2007,56(6):3649-3659.
    [21]Antonio Sciarretta, Michael Back and Lino Guzzella. Optimal control of parallel hybrid electric vehicles. IEEE Transactions on System Technology,2004,12(3):352-363.
    [22]Jennifer Bauman, Mehrdad Kazerani. A comparative study of fuel-cell-battery, fuel-cell-ultracapacitor,and fuel-cell-battery-ultracapacitor vehicles.2008,57(2):760-769.
    [23]Sheldon S.Williamson, Ali Emadi. Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis. IEEE Transactions on Vehicalur Technology,2005,54(3):856-862.
    [24]严岚.永磁无刷直流电机弱磁技术研究.浙江杭州:浙江大学,2004.
    [25]诸自强,编写.陈清泉院士论文选集——现代电动车、电机驱动及电力电子技术.英国Sheffield,2005.
    [26]Mounir Zeraoulia, Mohamed El Hachemi Benbouzid and Demba Diallo. Electric motor drive selection issues for HEV propulsion systems:a comparative study. IEEE Transactions on Vehicular Technology,2006,55(6):1756-1764.
    [27]K.T.Chau, C.C.Chan and Chunhua Liu. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Transactions on Industrial Electronics,2008, 55(6):2246-2256.
    [28]张琛.直流无刷电动机原理及应用.北京:机械工业出版社,2004.
    [29]谭徽.应用于两轮电动车辆的永磁无刷直流电机的研究.上海:上海大学,2004.
    [30]Khwaja M.Rahman, Babak Fahimi and G.Suresh. Advantages of switched reluctance motor applications to EV and HEV:design and control issues. IEEE Transactions on Industry Application.2000,36(1):111-121.
    [31]Zhong Du, Burak Ozpineci and Leon M.Tolbert. DC-AC cascaded H-bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications. IEEE Transactions on Industry Application.2009,45(3):963-970.
    [32]Leon M.Tolbert, Fang Zheng Peng and Thomas G.Habetler. Multilevel converters for large electric drives. IEEE Transactions on Industry Application.1999,35(1):36-44.
    [33]Jih-Sheng Lai, Junhong Zhang and Huijie Yu. Source and load adaptive design for a high-power soft-switching inverter. IEEE Transactions on Power Electronics.2006,21(6): 1667-1675.
    [34]Jose Rodriguez, Jih-Sheng Lai and Fang Zheng Peng. Multilevel inverters:a survey of topologies controls,and applications. IEEE Transactions on Industrial Electronics.2002, 49(4):724-738.
    [35]Byoung-Kuk Lee, Tae-Hyung Kim, Mehrdad Ehsani. On the feasibility of four-switch three-phase BLDC motor drives for low cost commercial applications:topology and control. IEEE Transactions on Power Electronics.2003,18(1):164-172.
    [36]Tilak Gopalarathnam, Hamid A.Toliyat. A new topology for unipolar brushless DC motor drive with high power factor. IEEE Transactions on Power Electronics.2003,18(6): 1397-1404.
    [37]周波,傅颖,穆新华,严仰光.无刷直流电机电容储能型变换器的参数设计.中国电
    机工程学报,2000,20(4):72-76.
    [38]Hamid A.Toliyat, Nadira Sultana, Deepak S.Shet and Julio C. Moreira. Brushless permanent magnet(BPM) motor drive system using load-commutated inverter. IEEE Transactions on Power Electronics.1999,14(5):831-837.
    [39]Toyota. Hybrid synergy drive information terminal. Japan,Tokyo,2006.
    [40]林渭勋.现代电力电子电路.浙江杭州:浙江大学出版社,2002.
    [41]徐德鸿,马皓,汪槱生.电力电子技术.北京:科学出版社,2006.
    [42]胡庆波.混合动力汽车驱动的电功率管理研究.浙江杭州:浙江大学,2007.
    [43]Ali Emadi, Young Joo Lee and Kaushik Rajashekara. Power electronics and motor drives in electric,hybrid electric,and plug-in hybrid electric vehicles. IEEE Transactions on Industrial electronics,2008,55(6):2237-2245.
    [44]Jih-Sheng Lai, Douglas J.Nelson. Energy management power converters in hybrid electric and fuel cell vehicles. Proceeding of the IEEE,2007,95(4):776-777.
    [45]阮新波,严仰光.直流开关电源的软开关技术.北京:科学出版社,2003.
    [46]金科.燃料电池供电系统的研究.江苏南京:南京航空航天大学,2006.
    [47]牛金红.数字控制双向全桥DC/DC变换器的研究.湖北武汉:华中科技大学,2006.
    [48]马学军.数字移相控制隔离型半桥双向DC/DC变换器的研究.湖北武汉:华中科技大学,2005.
    [49]严仰光.双向直流变换器.江苏南京:江苏科学技术出版社,2004.
    [50]张方华.双向DC-DC变换器的研究.江苏南京:南京航空航天大学,2004.
    [51]Huang-Jen Chiu, Li-Wei Lin. A bidirectional DC-DC converter for fuel cell electric vehicle driving system. IEEE Transactions on Power Electronics,2006,21(4):950-958.
    [52]许海平.大功率双向DC-DC变换器拓扑结构及其分析理论研究.北京:中国科学院电工研究所,2005.
    [53]姜雪松.隔离升压全桥DC-DC变换器拓扑理论和控制技术研究.北京:中国科学院电工研究所,2006.
    [54]Junhong Zhang, Jih-Sheng Lai and Rae-Young Kim. High-power density design of a soft-switching high-power bidirectional dc-dc converter. IEEE Transactions on Power Electronics,2007,22(4):1145-1153.
    [55]Changrong Liu, Amy Johson and Jih-Sheng Lai. A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications. IEEE Transactions on Industry Applications,2005,41(6):1691-1697.
    [56]Hui Li, Fangzheng Peng and J.S.Lawler. A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices. IEEE Transactions on Industry Application,2003,39(2):525-535.
    [57]梁锋.DC/DC变换器并联均流与交错控制研究.北京:清华大学,2004.
    [58]张杰.基于双向开关型的电力电子变换器研究.湖北武汉:华中科技大学,2008.
    [59]肖华锋.基于电流源型半桥拓扑的双向直流变换技术研究.江苏南京:南京航空航天大学,2007.
    [60]周林泉.软开关PWM Boost型全桥变换器的研究.江苏南京:南京航空航天大学,2005.
    [61]欧阳长莲.DC-DC开关变换器的建模分析与研究.江苏南京:南京航空航天大学,2004.
    [62]陈刚.软开关双向DC-DC变换器的研究.浙江杭州:浙江大学,2001.
    [63]黄杰辉.车用双向半桥零电压开关变换器的研究.重庆:重庆大学,2006.
    [64]郭熠.电动汽车双向DC/DC变换器的研究.天津:天津大学,2004.
    [65]陈中.一种新颖的软开关双向DC/DC变换器.安徽合肥:合肥工业大学,2007.
    [66]Mehrdad Ehsani, Khwaja M.Rahman, Maria D.Bellar and Alex J.Severinsky. Evaluation of soft switching for EV and HEV motor drives. IEEE Transactions on Industrial Electronics, 2001,48(1):82-90.
    [67]阮新波.三电平直流变换器及其软开关技术.北京:科学出版社,2006.
    [68]Tanmoy Bhattacharya, V.Shriganesh Giri, K.Mathew and L.Umanand. Multiphase bidirectional flyback converter topology for hybrid electric vehicles. IEEE Transactions on Industrial electronics,2009,56(1):78-84.
    [69]Fabrice Frebel, Andre M.Genon. Quasi-continuous current transformer converter and new associated ZVS sturcture. IEEE Transactions on Power Electronics,2004,19(6): 1533-1540.
    [70]Luca Solero, Alessandro Lidozzi, Jose Antenor Pomilio. Design of mulitiple-input power converter for hybrid vehicles. IEEE Transactions on Power Electronics,2005,20(5): 1007-1016.
    [71]肖华锋,谢少军.一端稳压一端稳流型软开关双向DC/DC变换器(Ⅰ)——电路原理和控制策略.电工技术学报,2006,21(10):31-37.
    [72]肖华锋,谢少军.一端稳压一端稳流型软开关双向DC/DC变换器(Ⅱ)——设计原则和实验研究.电工技术学报,2006,21(11):34-39.
    [73]徐德鸿.电力电子系统建模及控制.北京:机械工业出版社,2006.
    [74]Ali Emadi, Sheldon S.Williamson and Alireza Khaligh. Power electronics intensive solutions for advanced electric,hybrid electric,and fuel cell vehicular power systems.2006, 21(3):567-577.
    [75]Seung-Yo Lee, Arthur G.Pfaelzer, Jacobus Daniel van Wyk. Comparison of different disigns of a 42-V/14-V DC/DC converter regarding losses and thermal aspects. IEEE Transactions on Insutry Applications,2007,43(2):520-530.
    [76]黄军.混合储能电动车双向变换器系统的研究.黑龙江哈尔滨:哈尔滨工业大学,2006.
    [77]Hyunjae Yoo, Seung-Ki Sul and Yongho Park. System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries. IEEE Transactions on Industry applications,2008,44(1):108-114.
    [78]Ali Emadi, Kaushik Raiashekara, Sheldon S.Williamson and Srdjan M. Lukic. Topological
    overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE Transactions on Vehicalur Technology,2005,54(3):763-770.
    [79]胡庆波,阳岳丰,周利强.全数字双向DC/DC变换器中电流断续控制的研究.电力电子技术,2006,40(2):54-55.
    [80]夏超英,刘奎,郭熠.电动汽车用全数字双向DC/DC变换器的实现.电力电子技术,2006,40(2):70-72.
    [81]贺益康,严岚.永磁无刷直流电机稳态特性的状态空间分析.电工技术学报,2002,17(1):17-22.
    [82]李鲲鹏,胡虔生,黄允凯.记及绕组电感的永磁无刷直流电动机电路模型及其分析.中国电机工程学报,2004,24(1):76-80.
    [83]王兴华,励庆孚,王曙鸿.永磁无刷直流电机空载气隙磁场和绕组反电势的解析计算.中国电机工程学报,2003,23(3):126-130.
    [84]张存山,范瑜.考虑IGBT特性的无刷直流电机数学模型.电工技术学报,2005,20(7):21-27.
    [85]王晋,陶桂林,周理兵,丁永强.基于换相过程分析的无刷直流电动机机械特性的研究.中国电机工程学报,2005,25(14):141-145.
    [86]Sung Jun Park, Han Woong Park, Man Hyung Lee, Fumio Harashima. A new approach for minimum-torque-ripple maximum-efficiency control of BLDC Motor. IEEE Transactions on Industrial Electronics,2000,47(1):109-114.
    [87]Tae Heoung Kim, Jae Hak Choi, Kwang Cheol Ko, Ju Lee. Finite-element analysis of brushless DC motor considering freewheeling diodes and DC link voltage ripple. IEEE Transactions on Magnetics,2003,39(5):3274-3276.
    [88]韦鲲,胡长生,张仲超.一种新的消除无刷直流电机非导通相续流的PWM调制方式.中国电机工程学报,2005,25(7):104-108.
    [89]韦鲲.永磁无刷直流电机电磁转矩脉动抑制技术的研究.浙江杭州:浙江大学,2005.
    [90]邱建琪.永磁无刷直流电动机转矩脉动抑制的控制策略研究.浙江杭州:浙江大学,2002.
    [91]张相军.无刷直流电机无位置传感器控制技术的研究.中国上海:上海大学,2001.
    [92]张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩脉动的影响.电机与控制学报,2003,7(2):87-91.
    [93]姜卫东.混合动力电动汽车用无刷直流电机动态性能及控制策略的研究.安徽合肥:合肥工业大学,2004.
    [94]Renato C, Michel L M, Joao C.Analysis of torque ripple due to phase commutation in brushless DC machines. IEEE Transactions on Industry Applications,2006,42(4): 1307-1310.
    [95]Ki Yong Nam, Woo Taik Lee, Choon Man Lee, Jung Pyo Hong. Reducing torque ripple of brushless DC motor by varying input voltage. IEEE Transactions on Magnetics,2006,
    42(4):1307-1310.
    [96]Haifeng Lu, Lei Zhang, Wenlong Qu. A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF. IEEE Transactions on Power Electronics,2008,23(2):950-958.
    [97]Carlson R, Lajoie M M, Fagundes J C. Analysis of torque ripple due to phase commutation in brushless DC machines. IEEE Transactions on Industry Applications,1992,28(3): 632-638.
    [98]林平,韦鲲,张仲超.新型无刷直流电机换相转矩脉动的抑制控制方法.中国电机工程学报,2005,26(3):153-158.
    [99]Joong Ho Song, Ick Choy. Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor. IEEE Transactions on Power Electronics,2004, 19(2):312-319.
    [100]揭贵生,马伟明.考虑换相时无刷直流电机脉宽调制方法研究.电工技术学报,2005,20(9):66-71.
    [101]宋飞,周波,吴小婧.抑制无刷直流电机换相转矩脉动的新型补偿策略.电工技术学报,2008,23(11):28-33.
    [102]堵杰,孙承波,陈国呈.无刷直流电动机换相过程中续流对电压和电流的影响.电工技术杂志,2002,(3):5-8.
    [103]Yong Liu, Z Q Zhu, David Howe. Commutation torque ripple minimization in direct torque controlled PM brushless DC drives. IEEE Transactions on Industry Applications, 2007,43(4):1012-1021.
    [104]夏长亮,张茂华,王迎发,刘丹.永磁无刷直流电机直接转矩控制.中国电机工程学报,2008,28(6):104-109.
    [105]陈炜.永磁无刷直流电机换相转矩脉动技术研究.中国天津:天津大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700