混合动力汽车复合储能系统参数匹配与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的混合动力汽车(HEV,Hybrid Electric Vehicle)大多采用蓄电池作为其车载储能源,但蓄电池储能的HEV在加速、爬坡或再生制动时突发大功率的能力由于蓄电池较低的比功率而受到限制。鉴于此,结合高比能量储能源和高比功率储能源的复合储能技术引起了一定的重视,可以同时满足HEV运行过程中对能量和功率的双重要求。本身即为多能量源交通工具的HEV,引入复合储能之后,不但HEV的能量流变得更加错综复杂,也为其参数匹配与控制策略的设计带来新的挑战。而车载复合储能源的参数匹配和控制策略是改善HEV性能的核心技术,除与整车动力性能与经济性能息息相关外,还直接关系到整车成本与质量。因此,对其进行深入研究十分必要。本文针对混合动力汽车和复合储能系统的工作特性,就混合动力汽车及复合储能系统建模方法、复合储能系统的参数匹配以及控制策略等理论和应用问题进行了研究。
     配备复合储能技术的HEV,是涉及蓄电池、超级电容、燃油等多能量源的复杂系统。为了更清晰描述系统内部的能量流动关系,并为系统控制策略的制定提供参考,本文从能量流和功率链的角度,引入能量宏观表达法(EMR,Energetic Macroscopic Representation)对混合动力整车和复合储能系统进行了建模,并借助反转规则得到了系统的控制方案。重点研究了基于试验的电池建模方法。采用EMR所建模型的能量流动情况变得更加清晰、直观,更具条理性,有利于系统整体建模和控制的规范化,为研究复合储能系统的参数匹配与控制策略奠定了基础。
     对混合动力汽车复合储能系统中两种储能源功率和能量的合理分配问题进行研究。研究了整车设计指标、整车控制策略、目标行驶工况对动力系统功率和能量需求以及影响,分别从功率和能量角度对复合储能系统的参数匹配进行分析研究,并根据不同优化目标,对初步匹配结果进行优化。在此基础上,提出了HEV复合储能系统参数匹配的方法,在满足电动系统功率和能量要求的前提下,充分考虑了整车的燃油经济性、动力性以及整车使用成本问题。考虑到混合度对复合储能系统参数匹配的影响,考察了三种不同混合度混合动力汽车的复合储能系统参数优化匹配结果,并给出了复合储能源的混合比。
     复合储能HEV合理而有效的控制策略可以提高系统效率,改善蓄电池的使用寿命。本文在对复合储能HEV的能量流动模式分析的基础上,提出了复合储能系统的控制策略。对复合储能HEV的系统效率进行了较为详细的分析,在非线性比例因子分配控制策略的基础上,充分考虑系统各部件的效率,提出了基于动态规划全局最优的控制策略,在不降低原HEV燃油经济性的前提下,较非线性比例因子分配策略,电池循环次数进一步降低,其循环寿命得到有效改善,以上海工况为例,再生制动能量回收比例提高了3%。
     给出了基于EMR的复合储能系统控制方案,搭建了实验平台。最后对由镍氢电池组、超级电容组和DC/DC变换器构成的复合储能系统基本工作模式和特定工况进行了实验研究,验证了本文所建仿真模型以及所提出控制策略的正确性和有效性。
     本文通过对复合储能系统的仿真与实验研究,旨在探索适合于混合动力汽车的车载储能技术,并在车载复合储能源的合理优化匹配和控制方面提供一定的指导,为混合动力汽车突破电源技术瓶颈创造基础条件。
Batteries have been used as main energy storage devices in hybrid electric vehicles (HEVs) for many years. However due to their lower specific power, the ability to capture and provide bursts of high power during acceleration, hill-climbing and regenerative braking is limited. Hence the hybrid energy storage system (HESS) which combines both merits of batteries and ultracapacitors is becoming a promising option for short-term high-power applications. The use of ultracapacitors in combination with batteries allows the primary HEV energy storage unit to be optimized for both energy and power. As a new type of transportation with multi-energy sources for HEV itself, not only the energy flows become more complex, but also new challenge is brought to its parameters matching and control strategy after introducing ultracapacitors. While as an important means to improve HEV dynamic performance as well as economic performance, the design of parameters matching and control strategy for HESS is the core technology of HEV. Therefore thorough and further study is necessary. In this paper, the working features of HEV and HESS are investigated deeply, based on which the theories and application issues involving the modeling method, the parameters matching and control strategies for HEV system and HESS have been studied.
     HEV equipped with HESS is a complex system which related to battery, ultracapacitor, fuel and other energy sources. In order to describe the energy flows in HEV more clearly and provide a reference to develop the control strategy of HESS, Energetic Macroscopic Representation (EMR) is introduced to analyze and build modeling for HEV in view of energy flows and power chains. Moreover a control strategy is obtained by specific inversion rules. The battery modeling method based on experiments is put more attention. The energy flows of the model with EMR become much clearer, intuitive, and it establishes a foundation for the study of parameters matching as well as the development of control strategies.
     The problems for the power and energy sharing in HESS are studied. First of all, the influences on power and energy requirements for the whole vehicle by the design goals, performances of HEV as well as specific driving cycles are analyzed. In view of the power and energy, the parameters matching for HESS are investigated. Moreover, according to different optimization objectives, the initial results of parameters matching are optimized. On this basis, a method of HESS parameters matching which takes vehicle fuel economy, accelerating performance and vehicle using costs into account is provided. The optimization results of parameters matching for three HEVs with different hybridization factors are presented. The hybridization ratios of HESS are also concluded.
     A reasonable and effective control strategy for HEV with HESS can improve the system efficiency and battery service life. On the basis of analyzing the energy flow modes of HEV, a control strategy namely nonlinear proportion factor dynamic coordination is proposed. Based on the analysis of the above control strategy, a dynamic programming-based global optimal control strategy which fully considered the efficiency of each component in HEV is presented. To compare with the nonlinear proportion factor dynamic coordination strategy, the fuel consumption is not increased. The cycle numbers of battery are further decreased which benefits its cycle life improvement. Take shanghai drive cycle as example, the regenerative energy callback ratio improves 3%.
     Based on EMR control algorithm, the experiment platform is also established. Finally, experiments for HESS consisting of Ni-MH battery pack, ultracapacitor stack and DC/DC converter are conducted under basic modes and specific city drive cycles to verify the correctness and effectiveness of established simulation model as well as the proposed control strategy.
     The paper aims to explore proper energy storage technology for HEV. The research results provide some guidance for the parameter matching and control of the hybrid energy storage sources. It creates basic conditions to break through the bottleneck of the HEV energy sources in future.
引文
1 A. F. Burke. Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles. Proceedings of the IEEE, 2007, 95(4):806~820
    2张靖.超级电容蓄电池复合电源的研究与仿真.武汉理工大学硕士学位论文. 2005:7~8
    3 P. H. Gow, A. R. Osgood, D. A. Corrigan, S. K. Dhar, S. R. Ovshinsky. Novel Water-Cooled Plastic Monoblock Ovonic Nickel Metal Hydride Batteries for Hybrid Electric Vehicles. Proceedings of the 18th EVS, Berlin, Germany, 2001
    4徐顺余,高海鸥,邱国茂等.混合动力汽车车用镍氢动力电池分析.上海汽车. 2006, (2):7~9
    5吴伯荣,屠海令,陈晖等.混合动力电动车用384V/80Ah MH-Ni动力电池系统.电源技术. 2006, 30(9):701~706
    6 S. S. Williamson, A. Khaligh, S. C. Oh, A. Emadi. Impact of Energy Storage Device Selection on the Overall Drive Train Efficiency and Performance of Heavy-Duty Hybrid Vehicles. Proceedings of IEEE VPPC 2005, Chicago, Illinois, USA, 2005:381~390
    7陈清泉,孙逢春,祝嘉光.现代电动汽车技术.北京理工大学出版社. 2002:1~22, 40~42
    8赵慧勇.混合动力城市客车实验及车载镍氢电池管理系统研究.武汉科技大学硕士学位论文. 2005:3
    9 M. E. Ortuzar. Design, Implementation and Evaluation of an Auxiliary Energy System for Electric Vehicles, Based on Ultracapacitors and Buck-boost Converter. Doctoral Dissertation of Pontificia Universidad Catolica de Chile. 2005:22
    10张炳力,赵韩,张翔,钱立军.超级电容在混合动力电动汽车中的应用.汽车研究与开发. 2003, (3):48~50
    11 P. Bentley, D. A. Stone, N. Schofield. The Parallel Combination of a VRLA Cell and Supercapacitor for Use as a Hybrid Vehicle Peak Power Buffer. Journal of Power Sources. 2005, 147(1-2):288~294
    12 A. Burke, M. Miller. Comparison of Ultacapacitors and Advanced Batteries for Pulse Power in Vehicle Applications: Performance Life, and Cost. Proceedings of the 19th EVS, Busan, Korea, 2002: 855~866
    13 M. Okamura, H. Nakamura. Important Issues of a Capacitor Storage System Other Than Energy Density. Proceedings of the 20th EVS, Long Beach, California, 2003
    14 T. Ogawa, K. Kimura, K. Uchibori, S. Fujimoto. Development of New Power Train for Fuel Cell Vehicle. Proceedings of the 20th EVS, Long Beach, California, 2003
    15 T. Andersson, J. Groot. Alternative Energy Storage System for Hybrid Electric Vehicles. Master of Science Thesis No. 76E, Chalmers University of Technology. 2003:13~29
    16 J. U. Jeong, H. D. Lee, C. S. Kim, et al. A Development of an Energy Storage System for Hybrid Electric Vehicles Using Supercapacitor. Proceedings of the 19th EVS, Busan, Korea, 2002:1379~1388
    17 A. Di Napoli, F. Crescimbini, L. Solero, et al. Multiple-input DC-DC Power Converter for Power-Flow Management in Hybrid Vehicles. Proceedings of the 37th Industry Applications Conference Record, 2002 3:1578~1585
    18 B. J. Arnet, L. P. Haines. Combining Ultra-Capacitors with Lead-Acid Batteries. Proceedings of the 17th EVS, Montreal, Canada, 2000
    19 D. Heinemann, D. Naunin. Ultracaps in Power-Assist Applications in Battery Powered Electric Vehicles-Implications on Energy Management Systems. Proceedings of the 18th EVS, Berlin, Germany, 2001
    20 G. Wight, D. Y. Jung, H. Garabedian. On-Road and Dynamometer Testing of a Capacitor-Equipped Electric Vehicles. Proceedings of the 19th EVS, Busan, Korea, 2002:1357~1367
    21 J. Lott, H. Spath. Double Layer Capacitors as Additional Power Source in Electric Vehicles. Proceedings of the 18th EVS, Berlin, Germany, 2001
    22 J. W. Dixon, M. E. Ortuzar. Ultracapacitors + DC-DC Converters in Regenerative Braking System. IEEE Aerospace and Electronic Systems Magazine. 2002, 17(8):16~21
    23李军求,孙逢春,张承宁等.纯电动大客车超级电容器参数匹配与实验.电源技术. 2004, 28(8):483~486
    24曹秉刚,曹建波,李军伟等.超级电容在电动车中的应用研究.西安交通大学学报. 2008, 42(11):1317~1322
    25仇斌,陈全世,黄勇.采用超级电容的燃料电池城市客车参数匹配和性能仿真.汽车工程. 2007, 29(1):42~45
    26 J. M. Miller, J. C. K.Yeung, Y. Q. Ma, G. Sartorelli. Ultracapacitors Improve SWECS Low Wind Speed Energy Recovery. IEEE Power Electronics and Machines in Wind Applications, 2009:1~6
    27 T. Bossmann, A. Bouscayrol. Energetic Macroscopic Representation of a Hybrid Storage System Based on Supercapacitors and Compressed Air. IEEE International Symposium on Industrial Electronics, 2007:2691~2696
    28唐西胜,齐智平.基于超级电容器储能的独立光伏系统.太阳能学报. 2006, 27(11): 1097~1102
    29唐西胜,齐智平.独立光伏系统中超级电容器蓄电池有源混合储能方案的研究.电工电能新技术. 2006, 25(3):37~41
    30唐西胜,齐智平.超级电容器蓄电池混合电源.电源技术. 2006, 30(11):933~936
    31唐西胜,李海冬,齐智平,李云虎.有源式超级电容器-蓄电池混合储能系统的研究.高技术通讯. 2006, 16(12):1273~1277
    32王晓峰.主从能源电动汽车能源匹配研究.哈尔滨工业大学硕士学位论文. 2006:2~3, 8~15
    33张炳力,朱可,赵韩.燃料电池城市客车动力系统结构研究.合肥工业大学学报. 2006, 29(11):1359~1361
    34 X. H. Wen, Z. J. Xu, G. Y. Hu, et al. The Research on Electric System of the PEMFC Testing Mini Bus. Proceedings of the 18th EVS, Berlin, Germany, 2001
    35 M. C. Pera, D. Hissel, J. M. Kauffmann. Fuel Cell Systems for Electrical Vehicles.
    55th IEEE Vehicular Technology Conference, 2002, 4:2097~2102
    36 C. C. Chan. The State of the Art of Electric and Hybrid Vehicles. Proceedings of the IEEE, 2002, 90(2):247~266
    37 Y. M. Gao, M. Ehsani. A Torque and Speed Coupling Hybrid Drivetrain-Architecture, Control, and Simulation. IEEE Transactions on Power Electronics. 2006, 21(3):743~748
    38 M. Ehsani, Y. Gao, S. Gay, A. Emadi. Modern Electric, Hybrid Electric and Fuel Cell Vehicles—Fundamentals, Theory, and Design. Boca Raton, FL: CRC, 2004:117~136
    39孙逢春,张承宁,祝嘉光.电动汽车—21世纪的重要交通工具.北京理工大学出版社. 1997
    40 S. L. Pay. Hybrid Electric Vehicle Regenerative-Braking Using Ultracapacitor. The Master’s Thesis, University of Nevada, 2000
    41 J. R. Anstrom, B. Zile, K. Smith, H. Hofmann, A. Batra. Simulation and Field-Testing of Hybrid Ultra-capacitor/Battery Energy Storage Systems for Electric and Hybrid-Electric Transit Vehicles. 20th Annual IEEE Power Electronics Conference, 2005, 1:491~497
    42 P. C. K. Luk, L. C. Rosario. Power and Energy Management of a Dual-Energy Source Electric Vehicle-Policy Implementation Issues. 5th International Power Electronics and Motion Control Conference, Shanghai, 2006, 1:1~6
    43 A. W. Stienecker. An Ultracapacitor-Battery Energy Storage System for Hybrid Electric Vehicles. Doctorial Dissertation of the University of Toledo. 2005
    44 M. ZOLOT. Dual-Source Energy Storage-Control and Performance Advantages inAdvanced Vehicles. Proceedings of the 20th EVS, Long Beach, California, 2003
    45 M. Pagano, L. Piegari. Hybrid Electrochemical Power Sources for Onboard Applications. IEEE Transactions on Energy Conversion. 2007, 22(2):450~456
    46 R. M. Schupbach, J. C. Balda, M. Zolot, B. Kramer. Design Methodology of a Combined Battery-Ultracapacitor Energy Storage Unit for Vehicle Power Management. IEEE 34th Annual Power Electronics Specialist Conference, 2003, 1:88~93
    47 R. M. Schupbach; J. C. Balda. The Role of Ultracapacitors in an Energy Storage Unit for Vehicle Power Management. IEEE 58th Vehicular Technology Conference, 2003, 5:1090~3038
    48 N. Schofield, H. T. Yap, C. M. Bingham. Hybrid Energy Sources for Electric and Fuel Cell Vehicle Propulsion. IEEE VPPC 2005, Chicago, Illinois, USA, 2005:522~529
    49 D. Hoelscher, A. Skorcz, Yimin Gao, and M. Ehsani. Hybridized Electric Energy Storage Systems for Hybrid Electric Vehicles. Proceedings of IEEE VPPC 2006, Windsor, England, United Kingdom, 2006:1~6
    50 J. Moreno, M. E. Ortuzar, J. W. Dixon. Energy-Management System for a Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks. IEEE Transactions on Industrial Electronics. 2006, 53(2):614~623
    51 J. M. Miller, P. J. McCleer, M. Everett, E. G. Strangas. Ultracapacitor plus Battery Energy Storage System Sizing Methodology for HEV Power Split Electronic CVT’s. Proceedings of the IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia, 2005, 1:317~324
    52 W. Gao, K. PorandlaS. Design Optimization of a Parallel Hybrid Electric Powertrain. Proceedings of IEEE VPPC 2005, Chicago, Illinois, USA, 2005:530~536
    53 C. C. Chan. The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles. Proceedings of the IEEE. 2007, 95(4):704~718
    54 F. R. Salmasi. Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison, and Future Trends. IEEE Transactions on Vehicular Technology. 2007, 56(5):2393~2397
    55 C. C. Lin, J. M. Kang, J.W. Grizzle, H. Peng. Energy Mangagement Strategy for Parallel Hybrid Electric Truck. Proceedings of American Control Conference, Arlington, USA, 2001:2878~2883
    56 R. Langari, J. S. Won. Intelligent Energy Management Agent for a Parallel Hybrid Vehicle-Part I: System Architecture and Design of the Driving Situation Identification Process. IEEE Transactions on Vehicular Technology. 2005, 54(3):925~934
    57 J. S. Won, R. Langari. Intelligent Energy Management Agent for a Parallel Hybrid Vehicle-Part II: Torque Distribution, Charge Sustenance Strategies, and Performance Results. IEEE Transactions on Vehicular Technology. 2005, 54(3):935~953
    58 M. Ehsani, Y. M. Gao, K. L. Butler. Application of Electrically Peaking Hybrid (ELPH) Propulsion System to a Full-Size Passenger Car with Simulated Design Verification. IEEE Transaetions on Vehicular Technology. 1999, 48(6):1779~1787
    59 C. C. Lin, H. Peng, J, W. Grizzle. Power Management Strategy for a Parallel Hybrid Electric Truck. IEEE Transaction on Control Systems Technology. 2003. 38(11):839~849
    60 N. J. Schouten, M. A. Salman, N. A. Kheir. Fuzzy Logic Control for Parallel Hybrid Vehicles. IEEE Transactions on Control Systems Technology. 2002, 10(3):460~468
    61 N. J. Schouten, M. A. Salman, N. A. Kheir. Energy Management Strategies for Parallel Hybrid Vehicles Using Fuzzy Logic. Control Engineering Practice. 2003, 11(2):171~177
    62 S. Delprat T. M. Guerra, J. Rimaux. Optimal Control of a Parallel Powertrain: From Global Optimization to Real Time Control Strategy. Proceedings of the 18th EVS, Berlin, Germany, 2001
    63 S. Delprat et al. Control Strategy Optimization for a Hybrid Parallel Powertrain. Proceedings of the American Control Conference, Arlington, USA, 2001
    64 G. Paganelli, S. DelPrat. Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains. IEEE Vehicular Technology Conferenee, 2002, 4:2076~2081
    65 V. H. Johnson, K. B. Wipke, D. J. Rausen. HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions. SAE, 2000
    66 P. Pisu, G. Rizzoni. A Supervisory Control Strategy for Series Hybrid Electric Vehicles with Two Energy Storage Systems. Proceedings of IEEE VPPC 2005, Chicago, USA, 2005:65~72
    67 P. Pisu, G. Rizzoni. A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles. IEEE Transactions on Control Systems Technology. 2007, 15(3): 506~517
    68 A. Wagener, C. Korner, P. Seger, et al. Cost Function Based Adaptive Energy Management in Hybrid Drivetrains. Proceedings of the 18th EVS, Berlin, Germany, 2001
    69 L. C. Rosario, P. C. K. Luk. Implementation of a Modular Power and Energy Management Structure for Battery-Ultracapacitor Powered Electric Vehicles. The IET Hybrid Vehicle Conference, 2006:141~156
    70李贵远,陈勇.动力电池与超级电容混合驱动系统设计与仿真.系统仿真学报. 2007, 19(1):101~105
    71 S. M. Lukic, S. G. Wirasingha, F. Rodriguez, J. Cao, A. Emadi. Power Management of an Ultracapacitor/Battery Hybrid Energy Storage System in an HEV. Proceedings of IEEE VPPC 2006, Windsor, England, United Kingdom, 2006:1~6
    72 A. C. Baisden, A. Emadi. Advisor-Based Model of a Battery and Ultra-capacitor Energy Source for Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology. 2004, 53(1):199~205
    73 S. Pay, Y. Baghzouz. Effectiveness of Battery-Supercapacitor Combination in Electric Vehicles. Proceedings of IEEE Power Tech Conference, Bologna, 2003, 3:1~6
    74 Y. Zhang. Z. H. Jiang, X. W. Yu. Control Strategies for Battery/Supercapacitor Hybrid Energy Storage Systems. IEEE Conference on Global Sustainable Energy Infrastructure: Energy2030, Atlanta, Georgia, USA, 2008
    75 Y. Zhang. Z. H. Jiang. Dynamic Power Sharing Strategy for Active Hybrid Energy Storage Systems. 5th International IEEE VPPC 2009, Dearborn, USA, 2009:558~563
    76 H. F. Yu, R. G. Lu, T. C. Wang, C. B. Zhu. Energetic Macroscopic Representation Based Modeling and Control for Battery/Ultracapacitor Hybrid Energy Storage System in HEV. 5th International IEEE VPPC 2009, Dearborn, USA, 2009:1390~1394
    77 J. J. Awerbuch, C. R. Sullivan. Control of Ultracapacitor-Battery Hybrid Power Source for Vehicular Applications. IEEE Conference on Global Sustainable Energy Infrastructure: Energy2030, Atlanta, Georgia, USA, 2008
    78 A. L. Allegre, A. Bouscayrol, R. Trigui. Influence of Control Strategies on Battery/Supercapacitor Hybrid Energy Storage Systems for Traction Applications. 5th International IEEE VPPC 2009, Dearborn, USA, 2009:213~220
    79 J. Cao, A. Emadi. A New Battery/Ultra-Capacitor Hybrid Energy Storage System for Electric, Hybrid and Plug-in Hybrid Electric Vehicles. 5th International IEEE VPPC 2009, Dearborn, USA, 2009:941~946
    80 J. M. Miller, U. Deshpande, T. J. Dougherty, T. Bohn. Power Electronic Enabled Active Hybrid Energy Storage System and its Economic Viability. 24th Annual IEEE Applied Power Electronics Conference and Exposition, 2009:190~198
    81 A. Bouscaycol, R. Schoenfeld, G. Dauphin-Tanguy, G.-H. Geitner, X. Guillaud, A. Pennamen, J. P. Hautier. Different Energetic Descriptions for Electromechanical Systems. Proceedings of EPE, Dresden, 2005:1~10
    82 K. Chen, P. Delarue, A. Bouscayrol, R. Trigui. Influence of Control Design on Energetic Performances of an Electric Vehicle. IEEE Transactions on Vehicular Technology, 2008, 57(4):2081~2088
    83 W. Lhomme, A. Bouscayrol, P. Barrade. Simulation of a Series Hybrid ElectricVehicle Based on Energetic Macroscopic Representation. Proceedings of IEEE-ISIE, Ajaccio, France, 2004, 2:1525~1530
    84 L. Boulon, M. C. Pera, A. Bouscayrol, D. Hissel. Energetic Macroscopic Representation of a Fuel Cell-Supercapacitor System. Proceedings of IEEE VPPC 2007, Arlington, Texas, USA, 2007:290~297
    85 D. Chrenko, M. C. Pera, D. Hissel. Fuel Cell System Modeling and Control with Energetci Macroscopic Representation. Procedings of ISIE 2007, 2007:169~174
    86 T. Bossmann, A. Bouscayrol, P. Barrade, S. Lemoufouet, A. Rufer. Energetic Macroscopic Representation of a Hybrid Storage System Based on Supercapacitors and Compressed Air. Proceedings of IEEE-ISIE, 2007:2691~2696
    87 P. Delarue, A. Bouscayrol, A. Tounzi, X. Guillaud, G. Lanciqu. Modelling, Control and Simulation of an Overall Wind Energy Conversion System. Renew. Energy, 2003, 28(8):1169~1185
    88 Y. D. Wankam, P. Sicard, A. Bouscayrol. Maximum Control Structure of a Five-drive Paper System Using Energetic Macroscopic Representation. Proceedings of IEEE-IECON, Paris, 2006:5332~5336
    89 J. C. Mercieca, J. N. Verhille, A. Bouscayrol. Energetic Macroscopic Representation of a Subway Traction System for a Simulation Model. Proceedings of IEEE-ISIE Ajaccio, France, 2004, 2:1519~1522
    90 J. N. Verhille, A. Bouscayrol, P. J. Barre, J. P. Hautier. Model Validation of the Whole Traction System of an Automatic Aubway. Proceedings of IEEE VPPC 2006, Windsor, England, United Kingdom, 2006:1~6
    91程远.基于四端口机电能量变换器的混合动力系统的研究.哈尔滨工业大学博士学位论文. 2009:31~50
    92 (波兰)安东尼·所左曼诺夫斯基著.混合动力城市公交车系统设计.何洪文译.北京理工大学出版社. 2007:119
    93 P. Delarue, A. Bouscaycol, E. Semail. Generic Control Method of Multileg Voltage-Source-Converters for Fast Practical Implementation. IEEE Transactions on Power Electronics. 2003, 18(2):517~526
    94王军平,陈全世,曹秉刚等.电动车用镍氢电池模块的充放电模型研究.西安交通大学学报. 2006, 40(1):51~52, 119
    95林成涛,仇斌,陈全世.电动汽车电池非线性等效电路模型的研究.汽车工程. 2006, 28(1):39~42, 47
    96谭巧玲. MH-Ni电池充放电特性的建模与仿真.北方工业大学硕士学位论文. 2007
    97 J. V. Mierlo, G. Maggetto. Models of Energy Sources for EV and HEV: Fuel Cells,Batteries, Ultra-Capacitors, Flywheels and Engine Generators. Proceedings of the 18th EVS, Berlin, Germany, 2001
    98逯仁贵.基于模型的牵引型超级电容组均衡控制技术研究.哈尔滨工业大学博士学位论文. 2008: 6~8
    99陈全世,朱家琏,田光宇.先进电动汽车技术.化学工业出版社. 2007:110~116
    100 R. M. Nelms, D. R. Cahela, B. J. Tatarchuk. Modeling Double-Layer Capacitor Behavior Using Ladder Circuits. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(2):430~438
    101 W. Lajnef, J. M. Vinassa, O. Briat, et al. Characterization Methods and Modelling of Ultracapacitors for Use as Peak Power Sources. Journal of Power Sources. 2007, 168:553~560
    102肖明,张逸成,姚勇涛等.燃料电池汽车用DC/DC变换器的控制策略及仿真.低压电器. 2002, (6):48~50
    103韩明武,黄军,杨世彦.超级电容电动公交车用双向直流驱动器的设计.电力电子技术. 2007, 41(1):51~53
    104 O. M. Dixon, J. Moreno. Design, Construction and Performance of a Buck-boost Converter for an Ultracapacitor-based Auxiliary Energy System for Electric Vehicles. The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003, 3:2889~2894
    105 I. Voss, R. W. De Doncker, H. G. Kim. Selection of a Bi-directional DC/DC Converter for Future Fuel Cell Hybrid Electric Vehicles. Proceedings of the 20th EVS, Long Beach, California, 2003
    106张冬.并联混合动力驱动系统建模与能量管理策略仿真研究.大连海事大学硕士学位论文. 2008:19
    107王海滨,于水,李理光.并联式混合动力汽车控制策略及其发动机的优化.小型内燃机与摩托车. 2008, 37(5):7~11
    108郭晓建.轻度混合动力汽车动力电池匹配研究.大连理工大学硕士学位论文. 2007:25
    109刘明辉.混合动力客车整车控制策略及总成参数匹配研究.吉林大学博士学位论文. 2005:40
    110 D. J. Santini, A. D. Vyas, J. L. Anderson. Fuel Economy Improvement via Hybrididzation vs. Vehicle Performance Level. SAE 2002-01-1901
    111 Y. S. Wong, K. T. Chau, C. C. Chan. Optimization of Energy Hybridization in Electric Vehicles. Proceedings of the 17th EVS, Montreal, Canada, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700