基于飞轮储能的柔性功率调节器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于飞轮储能系统的柔性功率调节器(Flexible Power Conditioner, FPC)由双馈感应电机和作为交流励磁电源的双PWM变换器组成。FPC能够独立的进行有功和无功功率调节,拥有储能、发电、调相等多种功能,具有提高电力系统稳定性的能力。与其他储能方式相比,基于飞轮储能的FPC很适合应用于低频率、大容量、长时间的功率补偿应用领域。
     本文主要从FPC的原理、FPC中双馈感应电机建模、双馈感应电机励磁控制以及FPC在提高提高电力系统稳定性方面的应用等方面进行阐述,主要包括以下部分:
     本文首先介绍了课题的背景,讨论了各种储能技术的发展及其在电力应用,对FPC的结构和工作原理进行了介绍,并对其中关键技术的研究现状进行了讨论。
     建立了FPC中双馈电机的数学模型,得到稳态运行条件下等值电路和能量流动关系,详细分析了FPC的各种工作状态。研究了FPC中双馈电机的励磁控制技术。对其电网侧变换器和转子侧变换器的数学模型和控制策略进行了讨论。在EMTDC/PSCAD仿真平台上建立了相应的仿真模型,对FPC运行特性进行了仿真研究,验证了控制策略的正确性和实用性。
     详细分析了FPC在电网电压对称跌落情况下的故障穿越控制技术。在电网侧变换器控制中加入负载电流前馈,以减小在电网电压扰动过程中直流电压波动。对于转子侧变换器的控制,先从转子开路模型进行了暂态磁链和转子电压的分析,然后建立了考虑转子电流时的双馈电机暂态模型,并得出电机转子侧过电流的原因是由于定子侧的暂态磁链变化所引起。接着利用暂态分析的结论,采用了一种新的励磁控制策略,通过在转子侧变换器励磁控制中加入虚拟阻抗,来抑制转子过电流冲击从而保护转子侧变换器的安全,扩大双馈电机在电网电压跌落时的运行范围。最后通过仿真验证了方案的有效性。
     探讨了FPC阻尼电力系统功率振荡的机理,提出通过FPC的阻尼控制增大发电机电磁转矩对功率振荡的阻尼效果。设计了FPC抑制发电机功率振荡的阻尼控制器,并在EMTDC/PSCAD仿真平台上建立了FPC接入单机无穷大系统以阻尼发电机功率振荡的仿真研究。考察了FPC在该控制器作用下对电力系统功率振荡的阻尼控制效果。
     自行研制一套FPC系统实验装置,依托此装置研究了一系列关键问题:对电网侧变换器的启动控制以及正常工况运行时对直流电压的稳定控制进行实验,结果显示电网侧变换器可以对直流电压的稳定起到很好的控制效果,并且能为转子转差功率提供与电网连接的通道,且具有良好的动、静态特性;转子侧变换器对双馈感应电机进行启动控制,速度控制和有功、无功功率的解耦控制,实验结果表明转子侧变换器启动投入平滑,没有过大的电流和功率冲击,FPC能正常运行于超、次同步储能和发电以及调相等工作状态,具有良好的有功、无功功率解耦控制性能;在电力系统动态模拟实验条件下,将FPC接入单机无穷大系统的发电机端口进行阻尼发电机功率振荡的实验研究,实验结果证明FPC具有阻尼发电机功率振荡的作用,以此验证了所设计FPC阻尼功率振荡控制器的可行性,从实践上证明了对FPC阻尼系统功率振荡机理分析的正确性。为进一步开展FPC在电力系统的其它应用研究,提供了物理实验平台。
The Flexible Power Conditioner (FPC) incorporates the functions of the synchronous condenser and flywheel energy storage. It is made up of a doubly-fed induction machine connected with flywheel, a back-to-back converter for AC excitation and an excitation vector control system. The advantage of FPC is its capacity of controlling both active and reactive power, and it have the storage, generate and synchronous condenser operating mode.So it can be used to improve the stability of power system.Additional advantage of the FPC over the other storage system is that it is suitable for power compensation of low frequence, large capacity and long time.
     The principle, modeling, and applications in power system of the FPC have been discussed in this dissertation.The dissertation consists of six main chapters as follows:
     The background of this project is introduced.The energy storage technology and its applications in power system have been discussed. And then, the structure and principle of the FPC are introduced and the key technologies are discussed.
     The mathematic model of the FPC is discussed.The steady state equivalent-circuit model of DFIG is established and the energy floating of FPC is discussed. Based on the analysis above, the operation of the FPC is analyzed.For this basis, the vector excitation control strategy of the FPC will be discussed detailedly in the next chapter.The vector excitation control strategy of the FPC is researched.The mathematic models and control strategies of a back-to-back converter is discussed. The simulation model of FPC on EMTDC/PSCAD environments is established. At last, simulation results show the effectiveness of the proposed scheme.
     The control strategy of the FPC during the grid voltage drop is researched.For the grid side converter, the control strategy based on the load current feed-forward is presented to suppress fluctuation of DC capacitor voltage.For the rotor side converter, firstly, the transient flux and rotor voltage from the rotor open model is analyzed.Then, basing on the establishing of the transient model which considering rotor current, we get a conclusion that the transient flux of stator side is the reason of the over-current on rotor side.Based on the conclusion of the transient analysis, a new excitation control strategy was adopted in this paper.To guarantee the safety of the rotor side converter, using the virtual impedance control strategy to suppress the rotor over-current, it can expand the operating range of doubly-fed generator during the grid voltage drop.At last, simulation shows the effectiveness of the proposed scheme.
     The application of FPC in damping out power system oscillations is discussed.The principle of FPC on damping out power oscillation is analyzed theoretically.It is found that variation of the active power where the FPC is applied is the best signal used for FPC to damp out power system oscillations.The simulation model of FPC used to damp out power system oscillation is carried out and very encouraging results are obtained.
     At last, it designs and implements a laboratory platform of FPC system with DFIG which main part is a set of a back-to-back converter which is made up of the grid-side converter and rotor-side converter. A lot of experiment items are performed on this platform, which including the grid-side converter control and the rotor-side converter control.Another experiment test of the FPC prototype is used to damp out power system oscillation is carried out in a power system dynamic simulation laboratory environment.The experimental results testify the validity of the theory and the control strategy proposed in this dissertation.
引文
[1]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象.电网技术,2005,29(15):1-5
    [2]刘鹏,吴刚.世界范围内两起典型电压崩溃事故分析.电网技术.2003,27(5):35-37
    [3]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示.电力系统自动化,2003,27(18):1-5
    [4]文劲宇,李刚,程时杰等.一种增强电力系统稳定性的多功能柔性功率调节器.中国电机工程学报,2005,25(25):6-11
    [5]闵勇,李函,林姿峰.基于绝对动能增量的扩展0-1规划在线准实时决策算法.中国电机工程学报,2003,23(3):5-9
    [6]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006
    [7]程时杰,文劲宇,潘垣.一种新型电力系统稳定控制装置.继电器,2007,35(1):1-8
    [8]Chen H S, Cong T N, et al. Progress in electrical energy storage system:A critical review. Progress in Natural Science,2009,19:291-312
    [9]Hall P J, Bain E J. Energy-storage technologies and electricity generation. Energy Policy,2008,36:4352-4355
    [10]Chan C C, Wang Y S. Electric vehicles charge forward. IEEE Power and Energy Magazine,2004,2(6):24-33
    [11]Walter A V S, Bruno S. Advances in Lithium-ion Batteries. New York:Kluwer Acadimic/Plenum Publishers,2002
    [12]黄彦瑜.锂电池发展简史.物理,2007(8):643-651
    [13]Spurrett R, Thawaite C, Slimm M, et al. Lithium-ion batteries for space, in: Proceedings of the six European Space Power Conference. Porto, Portugal,2002: 477-482
    [14]张华明.高效大规模化学储能技术研究开发现状及展望.电源技术,2007,31(3): 587-591
    [15]Iijima Y, Sakanaka Y, Kawakami N, et al. Development and field experiences of NAS battery inverter for power stabilization of a 51 MW wind farm. in:Power Electronics Conference (IPEC),2010 International. Sapporo, Japan,2010: 1837-1841
    [16]Linden D, Reddy T B. Handbook of Batteries.3rd edition. New York:McGraw-Hill, 2001:3713-3716
    [17]Ohtaka T, Uchida A, Iwamoto S. A voltage Control Strategy with NAS Battery Systems Considering Interconnection of Distributed Generations. in:POWERCON 2004. Singapore,2004:226-231
    [18]温兆银.钠硫电池及其储能应用.上海节能,2007(2):7-10
    [19]Blanc C, Rufer A. Multiphysics and energetic modeling of a vanadium redox flow battery. in:IEEE ICSET. Singapore,2008:696-701
    [20]周汉涛,张华明,赵平等.多硫化钠/溴氧化还原液流电池.可再生能源,2005,121(3):62-64
    [21]赵平,张华明,高虹等.多硫化钠/溴流电池研究进展.现代化工,2007,27(5):18-21
    [22]张远明,李伟善.多硫化钠/溴与全钒流电池的发展现状.电池工业,2006,11(6):414-416
    [23]崔艳华,孟凡明.钒电池储能系统的发展现状及其应用前景.电源技术,2005,29(11):776-780
    [24]朱顺泉,孙娓荣,汪钱等.大规模蓄电储能全钒液流电池研究进展化工进展.化工进展,2007,26(2):207-211
    [25]张华民,赵平,周汉涛等.钒氧化还原液流储能电池.能源技术,2005,26(1):23-26
    [26]Zhang X Q, Wei Y, Xu S C, et al. Optimization design of all-vanadium redox flow battery energy storage system. in:Electricity Distribution (CICED),2010 China International Conference, Nanjing, China,2010:1-4
    [27]Vazque S, Lukic S M, Galvan E, et al, Energy storage system for transport and grid applications. IEEE Trans. Industrial Electronics,2010,57(12):3881-3895
    [28]Jin K, Ruan X B, Yang M X, et al. A hybrid fuel cell power system. IEEE Trans. Industrial Electronics,2009,56(4):1212-1222
    [29]Ribeiro P F, Johnson B K, Crow M L, et al. Energy storage systems for advanced power applications. Proceedings of the IEEE,2001,89(12):1744-1756
    [30]Lukic S M, Jian C, Bansal R C, et al. Energy storage systems for automotive applications. IEEE Trans. Industrial Electronics,2008,55(6):2258-2267
    [31]尹婷,陈轩恕,刘飞等.基于混合储能系统的动态电压恢复器.高电压技术,2009,35(1):181-185
    [32]朱武,操瑞发,应彭华等.超级电容器系统在改善并网风电场输出中的应用.电网技术,2008,32:256-259
    [33]Gao L J, Dougal R A, Liu S Y. Power enhancement of an actively controlled battery /ultracapacitor hybrid. IEEE Transactions on. Power Electronics,2005,20(1): 236-243
    [34]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用.电力系统自动化,2010,34(12):85-89
    [35]Shi J, Tang Y J, Zhou Y S, et al. Development of a Conduction-Cooled HTS SMES. IEEE Trans. Applied Superconductivity,2007,17(3):3846-3852
    [36]Shi J, Tang Y J, Li Z, et al. Temperature Characteristic of a Conduction-Cooled HTS SMES Magnet. IEEE Trans. Applied Superconductivity,2009,19(3):2044-2047
    [37]Shi J, Tang Y J, Yang K, et al. SMES Based Dynamic Voltage Restorer for Voltage Fluctuations Compensation. IEEE Trans. Applied Superconductivity,2010,20(3): 1360-1364
    [38]Shi J, Tang Y J, Ren L, et al. Discretization-Based Decoupled State-Feedback Control for Current Source Power Conditioning System of SMES. IEEE Trans. Power Delivery,2008,23(4):2097-2104
    [39]Ren L, Tang Y J, Li J D, et al. Conduction-Cooled YBCO HTS Current Lead for SMES Application. IEEE Trans. Applied Superconductivity,2010,20(3):1737-1740
    [40]Ali M H, Murata T, Tamura J. A Fuzzy Logic Controlled Superconducting Magnetic Energy Storge for Transient Stability Augmentation. IEEE Trans. Control Systems Technology,2007,15(1):144-150
    [41]Ali M H, Murata T, Tamura J. Transient Stability Enhancement by Fuzzy Logic-Controlled SMES Considering Coordination with Optimal Reclosing of Circuit Breakers. IEEE Trans. Power Systems,2008,23(2):631-640
    [42]Ali M H, Park M, Yu I K, et al. Improvement of Wind-Generator Stability by Fuzzy Logic Controlled SMES. IEEE Trans. Industry Application,2009,45(3):1045-1051
    [43]Ali M H, Wu B. Comparison of Stabilization Methods for Fixed Speed Wind Generator Systems. IEEE Trans. Power Delivery,2010,25(1):323-331
    [44]Wang L, Chen S S, Lee W J, et al. Dynamic Stability Enhancement and Power Flow Controll of a Hybrid Wind and Marine-Current Farm Using SMES. IEEE Trans. Energy Conversion,2009,24(3):626-639
    [45]Dechanupaprittha S, Hongesombut K, Watanabe M, et al. Stabilization of Tie-Line Power Flow by Robust SMES Controller for Interconnected Power System with Wind Farms. IEEE Trans. Applied Superconductivity,2007,17(2):2365-2368
    [46]樊冬梅,雷金勇,甘德强.超导储能装置在提高电力系统暂态稳定性中的应用.电网技术,2008,32(18):82-86
    [47]刘昌金,胡长生,李霄等.基于超导储能系统的风电场功率控制系统设计.电力系统自动化,2008,32(16):83-88
    [48]王康,兰洲,甘德强等.基于超导储能装置的联络线功率控制.电力系统自动化,2008,32(8):5-9
    [49]杜晓纪,赵彩宏,肖立业.1MJ高温超导储能磁体的设计方案研究.低温物理学报,2005,27(5):1058-1062
    [50]蒋晓华,褚旭,吴学智等.20kJ/15kW可控超导储能实验装置.电力系统自动化,2004,28(4):88-91
    [51]谢江波,王惠龄,吴钢等.35kJ高温超导磁储能(SMES)的热输运实验研究.低温工程,2006(1):31-34
    [52]Hebner R, Beno J, Wall A. Flywheel batteries come around again. IEEE Spectrum, 2002,39(4):46-51
    [53]赵韩,杨志轶.飞轮储能装置设计初探.太阳能学报,2002(4)
    [54]Flynn M M, Mcmullen P, Solis O. Saving energy using flywheels. IEEE Industry Applications Magazine,2008,14(6):69-76
    [55]Lawrence R G, Craven K L, Nichols G D. Flywheel UPS. IEEE Industry Applications Magazine,2003,9(3):44-50
    [56]Cimuca G O, Saudemont C, Robyns B, et al. Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator. IEEE Trans. Industrial Electronics,2006,53(4):1074-1085
    [57]Weissbach R S, Karady G G, Farmer R G. A combined uninterruptible power supply and dynamic voltage compensator using a flywheel energy storage system. IEEE Trans. Power Delivery,2001,16(2):265-270
    [58]Bolund B, Bernhoff H, Leijon M. Flywheel energy and power storage systems. Renewable and Sustainable Energy Reviews,2007,11(2):235-258
    [59]Iglesias I J, Garcia-Tabares L, Agudo A, et al. Design and simulation of a stand-alone wind-diesel generator with a flywheel energy storage system to supply the required active and reactive power. in:IEEE Annual Power Electronics Specialists Conference.2000,3:1381-1386
    [60]Cimuca G O, Saudemont C, Robyns B, et al. Control and Performance Evaluation of a Flywheel Energy-Storage System Associated to a Variable-Speed Wind Generator. IEEE Trans. Industrial Electronics,2006,53(4):1074-1085
    [61]Kan H P, Chau K T, Cheng M. Development of doubly salient permanent magnet motor flywheel energy storage for building integrated photovoltaic system, in:IEEE Applied Power Electronics Conference and Exposition-APEC,2001,1:314-321
    [62]Wang M H, Chen H C. Transient stability control of multimachine power systems using flywheel energy injection. IEE Proceedings:Generation, Transmission and Distribution,2005,152(5):589-596
    [63]Akagi H, Sato H. Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans. Power Electronics,2002, 17(1):109-116
    [64]Samineni S, Johnson B K, Hess H L, et al. Modeling and analysis of a flywheel energy storage system for voltage sag correction. IEEE Trans. Industry Applications, 2006,42(1):42-52
    [65]Cardenas R, Pena R, Perez M, et al. Power smoothing using a switched reluctance machine driving a flywheel. IEEE Trans. Energy Conversion,2006,21(1):294-295
    [66]Cardenas R, Pena R, Perez M, et al. Power smoothing using a flywheel driven by a switched reluctance machine. IEEE Trans. Industrial Electronics,2006,53(4): 1086-1093
    [67]戴兴建,唐长亮,张剀.先进飞轮储能电源工程应用研究进展.电源技术,2009,33(11):1026-1028
    [68]邹旭东,刘新民,段善旭等.储能调相功率调制系统柔性功率调节器研究.电工技术学报,2009,24(6):146-153
    [69]李刚.飞轮储能型柔性功率调控装置原理及其控制技术的研究:[博士学位论文].武汉:华中科技大学图书馆,2007
    [70]黄安,李刚,程时杰等.多功能柔性功率调节器的稳态工作特性研究.电网技术.2006,30(22):13-18
    [71]Ribeiro P F, Johnson B K, Crow M L, et al. Energy storage systems for advanced power applications. in:Proceedings of the IEEE,2001,89(12):1744-1756
    [72]李刚,程时杰,文劲宇等.利用柔性功率调节器提高电力系统稳定性.中国电机工程学报,2006,26(23):1-6
    [73]Zhao Y, Zou X D, Huang D C. Research on Excitation Control of Flexible Power Conditioner Doubly Fed Induction Machine. in:PESC 2007 IEEE. Orlando, USA, 2007,92-97
    [74]赵阳,邹旭东,刘新民等.多功能柔性功率调节器控制技术.中国电机工程学报,2008,28(9):116-121
    [75]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报,2003,23(3):108-111
    [76]Peresada S, Tilli A, Tonielli A. Robust active-reactive power control of a doubly-fed induction generator. IECON,1998,3:1621-1625
    [77]Peresada S, Tilli A, Tonielli A. Dynamic output feedback linearlizing control of a doubly-fed induction motor. ISIE,1999,3:1256-1260
    [78]Sergei Peresada, Andrea Tilli, et al. Indirect stator flux-oriented output feedback control of a doubly fed induction machine. IEEE Trans. On Control System Technology,2003,11(6):875-888
    [79]R W De Doncker, S Muller, M Deicke. Doubly fed induction generator systems for wind turbines. IEEE Ind, Appl. Mag,2000,8(3):26-33
    [80]Pena R, Cardenas R, Clare J. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl,1996,143(3):231-241
    [81]Pena R, Cardenas R, Clare J. Control strategy of doubly fed induction generators for a wind diesel energy system. IECON 2002,4:3297-3302
    [82]李健,李华德.双馈感应变速恒频风力发电机控制系统研究.电气传动,2004,4:16-18
    [83]B Hopfensperger, R A Lakin. Stator flux oriented control of a cascaded doubly-fed induction machine. IEE Proc. Electric Power Application,1999,146(6):597-605
    [84]B Hopfensperger, R A Lakin. Stator flux oriented control of a doubly-fed induction machine with and without position encoder. IEE Proc. Electric Power Application, 2000,147(4):241-250
    [85]A Tapia, G Tapia, J X Ostolaza, et al. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. on Energy Convers,2003,18(2): 194-204
    [86]J W Park, K W. Lee, H J Lee. Control of active power in a doubly-fed induction generator taking into account the rotor side apparent power. PESC,2004,3: 2060-2064
    [87]Abolhassani M T, Enjeti P, Toliyat H A. integrated doubly-fed electric alternator/ active filter (IDEA), a viable power quality solution, for wind energy conversion systems. IAS,2004,3:2036-2043
    [88]Mehdi T, Abolhassani, Peyman Niazi, et al. A sensorless integrated doubly-fed electric alternator/active filter (IDEA) for variable speed wind energy system. IEMDC,2003:507-514
    [89]M Yamamoto, O Motoyashi. Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans. Power Electronics,1991,6(4): 624-629
    [90]Abbey C, Joos G Integration of Energy Storage with a Doubly-fed Induction Machine for Wind Power Applications. PESC 2004,3:1964-1968
    [91]Zhang Xin-fang, Xu Da-ping, Liu Yi-bing. Predictive Functional Control of a Doubly Fed Induction Generator for Variable Speed Wind Turbines. WCICA,2004, 4:3315-3319
    [92]Khatounian F, Monmasson E, Berthereau F. Control of a Doubly Fed Induction Generator for Aircraft Application. IECON,2003,3:2711-2716
    [93]T Yifan, X Longya. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation. IEEE Trans. Energy Convers,1995,10(4): 661-668
    [94]H Akagi, H Sato. Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans. Power Electronics,2002, 17(1):109-116
    [95]Akagi H, Sato H. Control and performance of a flywheel energy storage system based on a doubly-fed induction generator-motor for power conditioning. PESC, 1999,1:32-39
    [96]Slavomir Seman, Jouko Niiranen, Sami Kanerva, et al. Performance study of a doubly fed wind-power induction generator under network disturbances. IEEE Trans. Energy conversion,2006,21(4):883-890
    [97]Santiago A G, Jose L R A. Grid synchronization of doubly fed induction generators using direct torque control. IEEE 28th Annual Conference of Industrial Electronics Society,2002:3338-3343
    [98]Arnalte S, Burgos J C, Rodriguez A J L. Direct torque control of a doubly fed induction generator for variable speed wind turbines. Electric Power Components and Systems,2002,30(2):199-217
    [99]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术.沈阳工业大学学报,2006,28(2):206-209
    [100]关中杰,赵克友.基于直接转矩控制的双馈感应电机速度及无功控制.青岛大学学报(工程技术版),2007,22(4):11-16
    [101]李燕.双馈风力发电机直接转矩控制系统的研究:[硕士学位论文].西安:西安理工大学图书馆,2010
    [102]魏学森.双馈电机直接转矩控制的研究:[硕士学位论文].天津:河北工业大学图书馆,2003
    [103]Zbigniew Krzeminski. Sensorless multisealar control of double fed machine for wind power generator, in:Proc. of PCC. Osaka, Japan,2002,334-339
    [104]廖勇,杨顺昌.交流励磁发电机励磁控制.中国电机工程学报,1998,18(2)
    [105]杨顺昌,廖勇,漆小龙.动态同步轴系及其应用.电工技术学报,1999,14(2)
    [106]Xiang D W, Ran L, Peter J, et al. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Trans. Energy Conversion,2006, 21(3):652-662
    [107]Chad Abbey, Wei Li, Loic Owatta, Geza Joos. Power electronic converter control techniques for improved low voltage ride through performance in WTGs, Proc. of 37th IEEE PESC,2006:2905-2909
    [108]Andreas Petersson. Analysis, modeling and control of doubly-fed induction generators for wind turbines. Ph. D. Thesis, Department of Energy and Environment, Chalmers University of Technology, Goteborg, Sweden,2005
    [109]C Zhan, C D Barker. Fault ride-through capability investigation of a doubly-fed induction generator with an additional series-conneeted voltage source converter, Proc. of AC and DC Power Transmission,2006:79-84
    [110]Johan Morren, Sjoerd W H. de Haan. Ride through of wind turbines with doubly-fed induction generator during a voltage dip,. IEEE Trans. Energy Conversion,2005, 20(2):435-441
    [111]J B Ekanayake, L Holdsworth, X Wu, et al. Dynamic modeling of doubly fed induction generator wind turbines, IEEE Trans. Power Systems,2003,18(2): 803-809
    [112]C Abbey, G Joos. Effect of low voltage ride through (LVRT) characteristic on voltage stability, in:Proc. of IEEE Power Engineering Soeiety General Meeting, 2005:1901-1907
    [113]Rathi M R, Mohan N. A novel robust low voltage and fault ride through for wind turbine application operating in weak grids, in:Proc. of 32nd IEEE IECON,2005: 2481-2486
    [114]Xie B, Fox B, Flynn D. Study of fault ride-through for DFIG based wind turbines, in:Proc. of IEEE International Conference on Eleetric Utility Deregulation, Restructuring and Power Teehnologies,2004:411-416
    [115]Erlich I, Winter W, Dittrieh A. Advanced grid requirements for the integration of wind turbines into the German transmissions system, in:Proe. of IEEE Power Engineering Soeiety General Meeting,2006:1-7
    [116]Petersson A, Lundberg S, Thiringer T. A DFIG wind-turbine ride-through system influence on the energy produetion, in:Proe. of Nordic Wind Power Conference. Sweden,2004:1-7
    [117]Francisco K A. Lima, Alvaro Luna, Pedro Rodriguez. Rotor Voltage Dynamics in the Doubly Fed Induction Generator During Grid Faults. IEEE Trans. Power Electronics,2010,25(1):118-130
    [118]Mohsen Rahimi, Mostafa Parniani. Transient Performance Improvement of Wind Turbines with Doubly Fed Induction Generators Using Nonlinear Control Strategy. IEEE Trans. Energy Conversion.2010,25(2):514-525
    [119]A Petersson, L Harnefors, T Thiringer. Evaluation of current control methods for wind turbines using doubly-fed induction machines. IEEE Trans. Power Eleetronics, 2005,20(1):227-235
    [120]Jun Yao, Hui Li, Yong Liao, et al. An Improved Control Strategy of Limiting the DC-Link Voltage Fluctuation for a Doubly Fed Induction Wind Generator. IEEE Trans. Energy Conversion,2008,23(3):1205-1213
    [121]Jin Yang, John E Fletcher, John O'Reilly. A Series-Dynamic-Resistor-Based Converter Protection Scheme for Doubly-Fed Induction Generator During Various Fault Conditions. IEEE Trans. Energy Conversion,2010,25(2):422-432
    [122]Patrick S Flannery, Giri Venkataramanan. A Fault Tolerant Doubly Fed Induction Generator Wind Turbine Using a Parallel Grid Side Rectifier and Series Grid Side Converter. IEEE Trans. Power Electronics,2008,23(3):1126-1135
    [123]李华德.交流调速控制系统.北京:电子工业出版社,2003
    [124]肖强晖,姚若萍,许善椿.交流励磁发电机的励磁稳态分析.清华大学学报(自然科学版),1997,37(1):45-47
    [125]韦忠朝,黄声华,陶醒世等.变速恒频双馈感发电机运行原理及稳态性能分析.华中理工大学学报,1996,24(5):34-37
    [126]邱培基,汤宁平,叶文键.变速交流励磁感应发电机的稳态分析.电工技术学报,1998,13(5):16-20
    [127]王勇,刘宪林,娄和恭.交流励磁发电机动态分析模型.郑州工业大学学报,2001,22(1):86-88
    [128]肖强晖,姚若萍,郑逢时.交流励磁发电机稳态运行的相量分析——发电机的稳态性能.电工技术学报,1997,12(4):25-36
    [129]宁玉泉.双馈交流励磁变速电机的稳态特性及励磁容量分析.大电机技术,2005,6:24-27
    [130]赵阳.风力发电系统用双馈感应发电机矢量控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2008
    [131]陈坚.交流电机数学模型及调速系统.北京:国防工业出版社,1989
    [132]陈伯时.电力拖动自动控制系统.北京:机械工业出版社,1996
    [133]何仰赞,温增银.电力系统分析(上册).武汉:华中科技大学出版社,2002
    [134]杨淑英.双馈型风力发电变流器及其控制:[博士学位论文].合肥:合肥工业大学图书馆,2007
    [135]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2005
    [136]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002
    [137]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响.中国电机工程学报,2005,25(11):6-11
    [138]谢光龙,马智泉,张步涵等.利用并联储能型FACTS抑制特高压互联电网功率振荡.高电压技术,2010,1(36):237-243
    [139]彭晓涛.电力系统稳定控制用SMES装置及其性能研究:[博士学位论文].武汉:华中科技大学,2006
    [140]Wang H E, Swift E J. A unified mode for the analysis of FACTS devices in damping power system oseillations.1. Single- maehine infinite-bus Power systems. IEEE Trans. Powe Delivery,1997,12(2):941-946
    [141]Wang H E, Swift E J. Facts-Based Stabilizer Designed by the Phase Compensation Method Part II Multi-Machine Power Systems. Advances in Pwer System control, APSCOM-97,1997,2:644-649
    [142]惠东.电压源型超导储能装置及其斩波器结构的研究:[博士学位论文].北京:中国科学院电工研究所,1998
    [143]Li Wang. Damping Subsynchronous Resonance Using Supercongducting Magnetic Energy Storage Unit. IEEE Trans. Energy Coversion,1994,9(4):770-775
    [144]C Wu, Y Lee. Application of Superconducting Magnetic Energy Storage Unit to Damp Turbine Generator Subsynchronous Oscillations. IEEE Trans. Energy Conversion,1991,6:573-578
    [145]K Y Lim. Decentralized, Discrete. Robust Load-Frequency Control for Power Systems with Super. Conducting Magnetic Energy Storage. IPEC'97,1997: 436-441
    [146]Yoke Lin Tan, Youyi Wang. Augmentation ofTransient Stability Using A Superconducting Ciol and Adaptive Nonlinear Control. IEEE Trans. Power Systems, 1998,13(2):361-365
    [147]Bikash C, Pal Alun H, lmad M. Jalmoukha, et al. A Linear Matrix Inequality Approach to Robust Damping Control Design in Power Systems with Superconducting Magnetic Energy Storage Device. IEEE Trans. Power Systems,2000,15(1): 356-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700