电路板塑料颗粒流化床资源化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子工业和信息高科技产业迅猛发展,电子电器设备的更新换代周期不断缩短,废旧电子产品的数量与日俱增。印刷线路板是各类电子产品的重要组成部分,组分复杂,含有塑料、难熔氧化物和金属等,具有数量多、危害大、潜在价值高等特点。因此印刷线路板的无害化和资源化处理成为化学工程和环境工程研究的重要方向。
     在内径56 mm、高1600 mm的冷态流化床实验装置上研究了不同粒径电路板塑料颗粒的流化特性,获得了粒径和颗粒类型对塑料颗粒流化特性的影响规律。实验结果表明,电路板塑料颗粒为A类颗粒时,粘性力大,流化性能较差,具有拟C类颗粒的流化特性;电路板塑料颗粒为B类颗粒时,随着粒径的增大,最小流化速度也增大。B类颗粒用Ergun公式得到的结果比其他公式更接近实验结果,分别为实验结果的94.5%, 114%和91.8%,A颗粒3种公式的计算结果与实验结果相差很大,根据流化床中粘性颗粒的受力分析,提出了力平衡模型。同时发现对于电路板B类颗粒,不同含量的电路板和石英砂双组分混合物在相同的气速下,随着电路板含量的增加,电路板的混合指数变小。相同含量的电路板和石英砂双组分混合物随着气速的增大,电路板的混合指数变大。
     采用积分法对电路板中塑料颗粒的热解动力学行为进行了研究。废弃印刷线路板的热重分析以DTG曲线上的两个热解峰值为界,热裂解第二阶段的活化能比第一阶段大很多,需要更多的热量才可以进行。从红外谱图上可以发现:热解温度为316.1℃和349℃下芳香族物是挥发物的主要成分;三个温度下热解挥发物质中都含有C-O,并且都含有C-Cl;这个结论是合乎逻辑的,因为环氧树脂由双酚A和环氧氯丙烷耦联的结构中包含有芳香族化合物。
     在流化床反应器中热解电路板塑料颗粒,采用元素分析和傅里叶变换红外光谱等方法分析所收集的高沸点液体和固体的性质。结果表明,当温度和气速分别升高时,液体产品的收率也随之升高。热解油主要成分是芳烃,含有羟基、C=C、S=O和苯的取代官能团,热解固体产物主要成分是碳和玻璃纤维。
     对于电路板颗粒床层底部比床层顶部的压力波动幅度和方差大。随着气速的增大,电路板塑料颗粒和SiO2颗粒床层顶部和底部的压力波动幅度减小,方差也随之减小。CaCO3颗粒间的粘性力较大,不能流化,方差出现较大的波动。气速越大,形成的沟流越稳定,方差减小。在流化床时压力波动幅度增大,气泡的行为起了重要作用压力,波动信号的频率表现为低频率。在沟流时压力波动的幅值很小,使得压力波动信号的主频位于高频区域。
With the development of information technologies, the amount of waste electrical and electronic equipments (WEEE) continues to increase rapidly due to limited service life. Printed circuit board (PCB) is an important part of electrical and electronic equipments. It includes plastic, refractory oxides and metals, which is characterized by an abundance of quantity, hazard effect to human health and high commercial value. Accordingly, the recovery of PCB is an important research project in the fields of chemical engineering and environmental engineering.
     The experiments were carried out in a fluidized bed of 56 mm in diameter and 1600 mm in height to determine the fluidization characteristics of different diameter scrap printed circuit board particles. Experimental findings showed that the fluidization characteristics of scrap printed circuit board particles depended on the average sizes and type of particles. The scrap printed circuit boards particles, belonging to Geldart A group with strong viscous force, whose fluidization features were similar to those of Geldart C, was difficult to fluidize. The scrap printed circuit board particles belonged to Geldart B and the minimum fluidization velocity increased as the average size increased. It has been found that the minimum fluidization velocities calculated by Ergun equation approached 94.5%, 114% and 91.8% of experimental minimum fluidization velocities for the particles of Geldart B group. For scrap printed circuit board particles, belonging to Geldart A group, the minimum fluidization velocities calculated by equations were smaller than experimental minimum fluidization velocities, and a model of force balance about cohesive particles was developed to evaluate fluidized characteristics. For scrap PCB particles belonging to Geldart B group, the mixture degree decreased when the mixture composition of scrap PCB particles and sands increased under the same superficial velocity. The mixture degree increased when the velocity increased under the same mixture composition of scrap PCB particles and sands.
     Thermal kinetic behaviors of scrap printed circuit boards were investigated using integral method. Pyrolysis process was divided into two stages characterized by DTG curve. The activation energy of the first stage was greater than it of the second stage. Because bisphnol A and epichlorohydrin contained aromatic compounds, aromatic hydrocarbon was the main composition at 316.1℃and 349℃in TG-FTIR, and the volatile compound contained C-O and C-Cl function under different temperatures from infrared spectra.
     The fluidized bed reactor was used to pyrolyze scrap printed circuit boards particles in inert gas conditions, and the high boiling liquid and solid products were analyzed using elemental analyzer and FTIR. The liquid content increased with increase in temperature or gas velocity. The main composition of liquid products was aromatics compounds which contained O-H, C=C, S=O and substituted functional group of benzene. The solid products contained carbon and fiberglas.
     Pressure fluctuation range and variance of PCB particles from top bed were larger than those from down bed. When the gas velocity increased, pressure fluctuation range and variance of PCB particles and SiO2 particles decreased. CaCO3 particles with strong viscous force was difficult to fluidize, whose variance fluctuation was large. When the gas velocity increased, the channeling stabilized and the variance decreased. Pressure fluctuation range increased owing to the ascending and coalescence of bubbles and the major frequency of pressure fluctuation signals was small in the fluidized state. Pressure fluctuation range decreased and the major frequency of pressure fluctuation signals was high in the channeling.
引文
[1] Leeg Goldberg.The Advent of“Green”Computer Design[J]. Computer, 1998,9:16-19
    [2] Dirk Boghe. Electronic Scrap: A Growing Resource [J]. Precious Metals, 2001,7:21-24
    [3] Onorato,Danielle. Japanese Recycling Law Takes Effect[J]. Waste Age, 2001,32(6): 25-26
    [4]祝大同.对高速发展的中国电路板市场预测[J].印制电路资讯,2003, 6:70-72
    [5]段晨龙,王海锋,何亚群等.电子废弃物的特点[J].江苏环境科技, 2003, 16(3):31-33
    [6]毛玉如,李兴.电子废弃物现状与回收处理探讨[J].再生资源研究, 2004, 2:11-14
    [7] WINTER De, COURENEY K. From Here to Eternity: Recycling Hi-tech Junk[J]. Waste Age, 2001, 32(3):186-190.
    [8] Jens Brobech Legarth, Leo Alting, Gian Luca Baldo. Sustainability Issues in Circuit Board Recycling[J]. IEEE, 1995:126-131.
    [9] JURGEN Ertel. Current Technologies for the Valorisation of PCB’s and Electronic Waste [J]. IEEE, 1994:279-282.
    [10] Klaus Gockmann. Recycling of copper[J]. C1M Bulletin, 1992, 85(3):150-156.
    [11]胡晓峰.国外电子废弃物立法简介[J].节能与环保,2005, 11:17-19.
    [12]马淑文,陈辽辽,王华,黄菊文.有关上海市电子废弃物的法建工作初步设想[J].交通部上海船舶运输科学研究所学报, 2004, 27(1) :65-70
    [13]胡晓峰.我国电子废弃物立法的困局与出路韩立琳法制与管理[J].环境保护, 2005, 5:27-30
    [14]曹亦俊,赵跃民,温雪峰.废弃电子设备的资源化研究发展现状[J].环境污染与防治, 2003, 25:289-292
    [15]李运清,秦政萍,席国喜.废旧碱性二氧化锰电池特点和湿法再资源化研究[J].环境科学与技术, 2006, 29:82-85
    [16]魏金秀.废弃印刷线路板中金回收的试验研究[D].东华大学.硕士论文.20050101
    [17] Abdel mnim Altwaiq,Marion Wolf, Rudi van Eldik. Extraction of brominated flame retardants from polymeric waste material using different solvents and supercritical carbon dioxide[J]. Analytica Chimica Acta, 2003, 4:111-123
    [18] Yokoyama S, Iji M. Recycling of Printed Wiring Board Waste. Proceedings of 1993 IEEE/Tsukuba International Workshop on Advanced Robotics[J]. IEEE, 1993:55-58
    [19] Klaus Feldmann, Herbert Scheller. Disassembly of electronic products[J]. IEEE, 1994:81-86
    [20] A D Stennett, D C Whalley. Novel rework techniques for electronic assemblies[J]. IEEE, 1998:196-201
    [21] E D Grenchus, ROBERT Keene, CHARLES Nobs. Demanufacturing of Information Technology Equipment [J]. IEEE, 1997:157-160
    [22]顾帼华,戚云峰.废旧印刷电路板的粉碎性能及资源特征[J].中国有色金属学报, 2004,14(6):1037-1041
    [23]赵跃民,王全强,焦红光,温雪峰,曹亦俊.废弃电路板选择性破碎基础研究[J],中国矿业大学学报,2005, 34(6):683-687
    [24]周翠红,潘永泰,路迈西,唐民.ZKB剪切破碎机及其性能分析[J].选煤技术,2004,12(6):21-24
    [25]周翠红.低温破碎技术及其在资源回收中的应用[J].北京石油化工学院学报,2005,11(3):23-26
    [26] Nusruth Mohabuth,Nicholas Miles .The Recovery of Recyclable Materials from Waste Electrical and Electronic Equipment (WEEE) by Using Vertical Vibration Separation. Resources[J]. Conservation and Recycling, 2005, (45): 60–69
    [27]王海锋,段晨龙,温雪峰,何亚群.电子废弃物资源化处理现状及研究[J].中国资源综合利用,2004,(3):7-9
    [28] Jens Brobech Legarth,Leo Alting,Gian Luca Baldo. Sustainability Issues in Circuit Board Recycling[J]. IEEE,1995:126-131
    [29] GoossensW R A, Dumont G L, Spaepen G L. Fluidization of binary mixtures in the laminar flow region[J]. Chem Eng Prog Symp Ser, 1971, 67: 38 - 45
    [30] T R Rao, J V Ram, Bheemarasetti. Minimum fluidization velocities of mixtures of biomass and sands[J]. Fuel and Energy Abstracts, 2002,43(3):197-198
    [31] Rowe P N, Nienow A W, Agbim A ]. The mechanic by which particles segregation in gas fluidized Beds:binary systems of near-spherical particles[J]. Trans Instn Chem Engrs, 1972a,50:310-323
    [32] Rowe P N, Nienow A W, Agbim A J. The mechanic by which particles segregation in gas fluidized Beds:binary systems of near-spherical particles[J]. Trans Instn Chem Engrs, 1972b,50:324-333
    [33]罗国华,张济宇,张碧江.气固流化床中颗粒分离研究进展[J].化学反应工程与工艺, 1995,11, (2):107-119
    [34]温雪峰,范英宏.用静电选的方法从废弃电路板中回收金属富集体的研究[J].环境工程,2004,(22):78-80
    [35] M.L. Mastellone, F. Perugini, M. Ponte, U. Arena.Fluidized bed pyrolysis of a recycled polyethylene[J]. Polymer Degradation and Stability,2002,76:479–487
    [36] Lein Tangea, Dieter Drohmannb, et al .Waste Electrical and Electronic Equipment Plastics with Brominated Flame Retardants-from Legislation to Separate-Treatment Thermal Processes[J]. Polymer Degradation and Stability, 2005, 88:35-40
    [37]李飞.电子废弃物处理技术与生命周期评价[D].华南理工大学.硕士论文,20040501
    [38]徐敏,李光明,贺文智,黄春洁.废弃印刷线路板热解回收研究进展[J].化工进展,2006,25(3):297-300
    [39] Luda M P, Balabanovich A I, Camino G.Themal decomposition of fire retardant brominated epoxy resins[J]. Journal of Analytical and Applied Pyrolysis ,2002 , 65 (1):25-40
    [40] Balabanovich A I, Hornung A, Merz D, et al.[J]. Polymer Degradation and Stability, 2004, 85(1): 713-723
    [41] Chien Y, Wang H, Lin K, et al. Fate of bromine in pyrolysis of printed circuit board wastes[J]. Chemosphere, 2000, 40(4): 383-387
    [42] Tange L, Drohmann D.Waste management concept for WEEE plastic containing brominated flam retardants,including bromine recycling and energy recovery [A]. Challenges for flame retardants in polymersystems, Brussels[C], 2003, 12(3):15-21
    [43] Rasul M G, Rudolph V, Wang F Y. Int. Particles separation using fluidization techniques[J]. International Journal of Mineral Processing, 2000,60 (3-4):163–179
    [44] Liu Y Z, Zhang J Y, Zhang B J. Separation of a Binary Particle Mixture in a Vibrating Fluidized Bed of Dense Medium[J]. Powder Technology, 1998,100(1):41-45
    [45]王垚,金涌,魏飞.纳米级SiO2颗粒流化床的塌落行为[J].化工学报,2001,52(11):958-961
    [46] Ergun S. Fluid Flow through Packed Columns[J]. Chem. Eng. Prog., 1952,48(2):89-94
    [47] Macdonald I F, El-Sayed M S, Mow K, et al. Flow through Porous Media—the Ergun Equation Revised[J]. Ind. Eng. Chem. Fundam., 1979,18 (3):199-208
    [48] Hartman M, Poho?ely M, Trnka O.Fluidization of Dried Wastewater Sludge[J]. Powder Technology, 2007,178(3):415–422
    [49]金涌,祝京旭,汪展文等.流态化工程原理[M].第一版,北京:清华大学出版社,2001,
    [51]李洪钟,郭慕孙.气固流态化的散式化[M].第一版,北京:化学工业出版社,2002,23
    [52] Guo Q J, Yang X P, Shen W Z. Agglomerate Size in an Acoustic Fluidized Bed with Sound Assistance[J]. Chemical Engineering and Processing, 2007, 46(4):307-313
    [53]周涛,李洪钟.粘性颗粒流化床中聚团大小的计算模型[J].化学反应工程与工艺,1999,15(1):44-51
    [54] Rowe P N, Nienow A W, Agbim A ]. The mechanic by which particles segregation in gas fluidized Beds:binary systems of near-spherical particles[J]. Trans Instn Chem Engrs, 1972a,50:310-323
    [55] L.T.Fan, Tho-ching Ho, S.Hiraoka, W.P.Walawender,. Pressure fluctuations in a fluidized bed[J]. AICHEJ,1981,27(3):388-396
    [56]郭庆杰,王启民,徐猛等.高温鼓泡流化床的压力波动[J].燃烧科学与技术,2002,8(6):487-492
    [57]陈亚勇. MATLAB信号处理详解[M].人民邮电出版社,2001:131-153
    [58] J.Verloop, P.M.Heerjes. Periodic pressure fluctuations in beds[J]. Chem.Eng.Sci, 1974,29(1):1035-1042
    [59]兰静.基于小波变换的鼓泡流化床压力脉动信号分析[D].东南大学, 2004
    [60]郭庆杰,吕俊复,岳光溪,刘志宏,须田俊之,佐藤顺一.高温鼓泡流化床流体动力学特性[J].化学工程, 2003,31(3):31-36
    [61]孙路石,陆继东,王世杰,曾丽,张娟.印刷线路板废弃物的热解及其产物分析[J].燃料化学学报, 2002,30(2):285-288
    [62]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究[D].武汉:华中科技大学, 2004
    [63] Ikuta Y., M. Iji, Ayukawa D., Shibano S. A pyrolysis-based technology for usefulmaterials from IC package molding resin waste[A]. IEEE International Symposium on Electronics and the Environment[C], 1996, 124-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700