复叠温区新型共沸工质的整机性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
-80℃的低温环境在生物材料的活性储存、食品的低温保鲜、医学工程、低温环境模拟等领域都有着广泛的应用和良好的应用前景。单级蒸汽压缩制冷循环由于受到压比及冷凝、蒸发压力等条件的制约,而无法有效实现-40℃以下的制冷温度,工业界较为普遍采用双级复叠式系统实现这个温区的制冷需求。
     传统的应用于-80℃温区的复叠制冷系统低温级的制冷工质主要有R13、R503和R23,前两者具有很高的ODP值和GWP值,逐渐将停止使用,后者GWP值、压比及排气温度都很高。现在常用的制冷工质是R508系列,仍然具有较高的GWP系数,且润滑油溶解性能较差,将会导致系统可靠性和效率的降低。因此,开发一类高效、环保的替代工质显得异常紧迫和至关重要。
     对于替代工质而言,其整机性能研究的重要性是不言而喻的。本文针对复叠温区的新型共沸工质开展了一系列的整机性能研究,主要工作如下:
     1.新型共沸工质的循环性能计算
     利用美国国家标准技术研究所NIST(National Institute of Science and Technology)开发的制冷剂热物性计算软件REFPROP7.1计算了新型共沸工质的循环特性,并与R508B进行了比较,计算结果显示:R170+R116系和R170+R116+R23系具有相对较好的制冷性能。
     2.双级复叠式制冷循环实验系统的设计与搭建
     通过参考专利CN2364403Y、CN2694182Y、CN1485589A和国标GB/T5773-2004,建立了一套两级复叠制冷实验装置,来实验测量上述制冷剂的循环性能。在实验测量方面,采用高精度的温度、压力测量及采集系统,保证能得到精确的实验数据。本实验台适用于复叠温区各种工质。
     3.传统复叠温区制冷工质的整机性能实验研究
     通过实验测试,比较了不同冷凝、蒸发温度下低温级常用制冷工质R13、R23、R503、R508A和R508B的COP、压比及制冷量等循环性能,又结合各制冷工质的环境性能、热工性能,分析了现有常用复叠系统低温级制冷工质各自的优缺点,为新工质的开发及进一步制冷性能对比实验工作提供了有益的帮助。
     4.新型共沸混合物的整机性能实验研究
     在不同冷凝温度和蒸发温度下,分别测量了新共沸工质R170+R116系、R170+R23系和R170+R116+R23系的整机性能。从跟传统制冷工质中性能较好的制冷工质R508B比较来看,新开发的这三种共沸混合物不仅ODP系数为零,GWP系数较小,而且整机制冷性能较为优越,具有替代现有复叠温区常用制冷工质的巨大潜力。
There are many wide applications in the temperature range of -80℃, such as biology, iatrology, biophysics, life science, and so on. Generally, the lowest effective refrigeration temperature for a traditional vapor-compression cycle is about -40℃, limited by the pressure ratio, condensing temperature and evaporating temperature. In order to achieve a lower temperature of -80℃, a two-stage cascade refrigeration cycle is necessary.
     In the low temperature stage of a two-stage cascade system, R13, R23 and R503 are the traditionally used refrigerants. However, because of their high ozone depletion potential (ODP) values and global warming potential (GWP), the usage of those kinds of refrigerant are limited and finally forbidden. So the popularly used refrigerant in the low temperature stage is R508B now, which is an azeotropic mixture of R23 and R116, still with a large GWP value because of its HFC and FC components. Furthermore, the refrigerant of R508 is less soluble in compressor lubricant, which would lead to a reduction of system reliability. So, it is necessary and important to find some effective and environment-friendly alternative refrigerants used in the low temperature stage of the two-stage cascade refrigeration cycle. It is self-evident that the investigation on refrigerating performances is essential for alternative refrigerants. Capacity measurements for the new azeoreopic refrigerants have been conducted by the author, which are presented as follow:
     1.Refrigeration performance calculation for new mixtures
     With a software of REFPROP7.1, the thermodynamic performances of some new proposed refrigerant mixtures and R508B were compared by calculation of such important parameters as COP, pressure ratio, discharge temperature and volumetric refrigerating capacity. It is clear that, the new azeotropic mixtures of R170+R116 and R170+R116+R23 have better performances.
     2.Design and establishment of an experimental apparatus for performance test
     On the basis of patents of CN2364403Y, CN2694182Y, CN1485589A and GB/T5773-2004, an experimental apparatus was designed and fabricated. High precision thermometers, pressure transmitters were used to obtain the precise data. Furthermore, the experiment apparatus is designed to adapt to different kinds of refrigerants for cascade refrigeration systems.
     3.Research on traditional refrigerants for cascade refrigeration systems
     Thermodynamic performances of COP, pressure ratio and refrigerating capacity for five traditional refrigerants of R13, R23, R503, R508A and R508B were messured at different condensing temperatures and evaporating temperatures. Based on the environmental features and thermodynamic performances, disadvantages of these traditionally used refrigerants in the low temperature stage of a two-stage cascade refrigeration cycle were analyzed. The results obtained in this study are useful for searching some effective and environment-friendly alternative refrigerants and further experimental capacity comparison.
     4. Research on new refrigerants for cascade refrigeration systems
     Series binary and ternary azeotropic mixtures of R170, R116 and R23 have zero ODP and less GWP values were proposed and their performances were measured and compared with R508B. All of them show good potential for use in cascade refrigeration system for -80℃applications.
引文
[1] 曹德胜, 史琳. 制冷剂使用手册. 北京: 冶金工业出版社, 2003.
    [2] Perkins J. Apparatus for Producing Ice and Cooling Fluids. United Kingdom Patent 6662, 1834.
    [3] Calm J M, Didion D A. Trade-offs in Refrigerant Selections: Past, Present, and Future. International Journal of Refrigeration, 1998, 21(4), 308~321.
    [4] 史琳, 朱明善. 环保制冷剂研究的现状和趋势. 制冷空调新技术进展, 上海交通大学出版社, 2003.
    [5] 王如竹, 丁国良, 吴静怡, 连之伟, 谷波. 制冷原理与技术. 北京: 科学出版社, 2003.
    [6] 吴业正, 翁文兵等. 小型制冷装置设计指导. 机械工业出版社, 1998.
    [7] 吴业正, 韩宝琦. 制冷原理及设备. 西安交通大学出版社, 1997.
    [8] 吴孟余, 周高峰, 庞立东等. 制冷工质 R22 替代 R12 的试验研究. 工程热物理学报, 1995, 16(4): 397~400.
    [9] 宣永梅. 新型替代制冷剂的理论及实验研究. 浙江大学博士学位论文, 2004.
    [10] 郑贤德. 制冷原理与装置. 北京: 机械工业出版社, 2003.
    [11] 李松寿, 徐世琼, 朱富强, 谢烈. 制冷原理与设备. 上海: 上海科学技术出版社, 1988.
    [12] 郑晓斌. 制冷工质 CFCs、HCFC 的限制使用及其对策. 能源与环境, 2004年第 1 期: 32~34.
    [13] 叶斌, 赵韩. 制冷工质替代研究. 合肥工业大学学报(自然科学版), 2004年 3 月, 第 27 卷第 3 期: 247~250.
    [14] Molina M J and Rowland F S. Stratospheric Sink for Chlorofluoromethane: Chlorine Atom Catalyzed Destruction of Ozone.Nature,1974,249:810~812.
    [15] Powell R L. CFC phase-out: have we met the challenge? Journal of Fluorine Chemistry, 2002, 114(2): 237~250.
    [16] 张宇. 复叠温区新型共沸工质的气液相平衡研究. 中国科学院理化技术研究所博士学位论文, 2006.
    [17] 陈光明, 陈国邦. 制冷与低温原理. 机械工业出版社, 2000.
    [18] 王如竹, 丁国良等. 制冷原理与技术. 科学出版社, 2003.
    [19] 王文, 史琳等. 节能型环保制冷剂的热物性规律研究. 流体机械, 29(4), 46~49.
    [20] 杜康荣, 李树林等. 用全 HFCs 混合制冷剂替代 R12 的分析. 流体机械, 1995(8), 58~62.
    [21] 徐和. 制冷剂发展动向. 低温与特气. 1996 年第 2 期: 5~12.
    [22] 徐世琼等. 新编制冷技术问答. 中国农业出版社, 1999.
    [23] Morrison G. McLinden MO. Azeatropy in Refrigeration Mixtures. International Journal of Refrigeration, 1993, 16, 129~138.
    [24] 孙兆虎. 混合工质池沸腾传热实验研究. 中国科学院理化技术研究所博士学位论文, 2005.
    [25] Dongsoo Jung, Kilhong Song, et al. Nucleate Boiling Heat Transfer Coefficient of Mixtures Containing HFC32, HFC125 and HFC134a. International Journal of Refrigeration, 2003, 26, 764~771.
    [26] Fujita Y, Tsutsui M. Heat Transfer in Nucleate Pool Boiling of Binary Mixtures. International Journal of Refrigeration, 1994, 37, 291~302.
    [27] Zhang L Q, Gong M Q, Zhang Y, et al. Nucleate Pool Boiling Heat Transfer Measurements of HC170/HFC23 System. International Communications in Heat Transfer, Submitted.
    [28] Cavallini A. Working Fluid for Mechanical Refrigeration-Invited Paper Presented at the 19th International Congress of Refrigeration, The Hague, August 1995. International Journal of Refrigeration, 1996, 17, 485~496.
    [29] Stoecker W F. Industrial Refrigeration Handbook, McGraw-Hill, New York, USA, 1998.
    [30] 查世彤, 马一太等. CO2-NH3低温复叠式制冷循环的热力学分析与比较. 制冷学报, 2002(2), 15~19.
    [31] 马一太, 宁静红等. 自然工质复叠式制冷循环替代与节能研究. 节能技术, 2005(4), 309~311.
    [32] Fuderer M and Andrijia A.German Patent 1426956, 1969.
    [33] Longsworth R C. Cryogenic refrigerator with single stage compressor. US Patent No. 5337572, 1994.
    [34] Alfeev V N, et al. Great Britain Patent No. 1336892, 1973.
    [35] 公茂琼, 罗二仓, 周远. 用于复叠温区的多元混合工质节流制冷机. 工程热物理学报, 2000 年 3 月, 第 21 卷第 2 期: 147~149.
    [36] 罗二仓. 液氮温区混合物工质节流制冷机的工作机理与实验研究. 中国科学院低温技术实验中心/华中理工大学博士学位论文, 1997.
    [37] 程有凯, 常琳等. 两级压缩与复叠式制冷方式的比较. 制冷与空调. 2004 年6 月, 第 4 卷第 3 期: 66~69.
    [38] 刘永忠, 杨丽坤等. 复叠式与二级压缩式热泵冷冻干燥系统循环特性比较. 真空与低温, 2004(2), 89~93.
    [39] 曹丹. 一种新型的自动复叠制冷循环研究. 浙江大学硕士学位论文, 2003.
    [40] 张红线.具有精馏的自行复叠制冷循环研究. 浙江大学硕士学位论文, 2000.
    [41] 季益华.自行复叠制冷循环理论及实验研究. 浙江大学硕士学位论文, 2000.
    [42] 王生龙. 精馏型自动复叠式低温箱的实验研究. 浙江大学硕士学位论文, 2005.
    [43] 刘志勇. 具有精馏装置的自动复叠制冷循环试验研究. 浙江大学硕士学位论文, 2004.
    [44] 王忠良, 杜垲. R23/R134a 自然复叠循环和经典复叠循环的分析比较. 流体机械, 2005 年第 33 卷增刊: 364~367.
    [45] 何丕志. 使用 R13 和 22 复叠式制冷系统的试验室设计. 设计参考, 2001 年第 31 卷第 5 期: 66~67.
    [46] 孙耀华, 史志敬. 复叠式深冷机组在半合成抗生素生产过程中的应用. 机电信息, 2004 年第 12 期: 44~47.
    [47] 胡卫. 原料药生产过程中的新型制冷冷源——深冷机组. 机电信息, 2005年第 18 期: 53~55.
    [48] 王智明, 季红丽, 张术学. R404A/R23复叠制冷机组设计中的几个关键问题. 制冷与空调. 2006 年 4 月, 第 6 卷第 2 期: 55~58.
    [49] 安源, 周寿林. 浅议-80℃低温冰箱的研制. 医疗设备, 2000 第 1 期: 9~10.
    [50] 王京晖. 超低温箱的设计研制及实验分析. 制冷学报, 1993(4): 7~11.
    [51] http://www.dupont.com.
    [52] 吴剑峰. 应用于双级复叠式制冷循环低温级的新系列共沸/近共沸工质. 第四届全国制冷空调新技术研讨会论文集. 2006: 20~23.
    [53] Calm J M. Property, safety, and environmental data for alternative refrigerants. Proceedings of the Earth Technologies Forum, Washington DC, 1998: 201~205.
    [54] 公茂琼, 吴剑峰, 张宇. 一种用于复叠制冷系统低温级的混合工质. 中国发明专利, CN200510123231.2.
    [55] Kitzmiller W R. Advantages of CO2-Ammonia system for low-temperature refrigeration. Power, 1932(1): 92~94.
    [56] Giovanni Di Nicola, Giuliano Giuliani, Fabio Polonara, et al. Blends of carbon dioxide and HFCs as working fluids for the low-temperature circuit in cascade refrigerating systems. International Journal of Refrigeration, 2005, 28:130~140.
    [57] Niu B L, Zhang Y F. Experimental study of the refrigeration cycle performance for the R744/R290 mixtures. International Journal of Refrigeration, 2007, 30: 37~42.
    [58] 查世彤, 马一太等. 自然工质低温复叠式制冷循环的热力学分析与比较. 热科学与技术, 2003 年 3 月, 第 2 卷第 1 期: 20~24.
    [59] 张宇, 公茂琼, 朱洪波, 等. 共沸混合物 R170+R116 汽液相平衡数据的关联与预测. 第七届全国低温与制冷工程大会会议论文集. 兵器工业出版社, 2006: 461~464.
    [60] Lemmon E W, Mclinden M O, Huber M L. NIST Reference Fluid Thermo- dynamic and Transport Properties(REFPROP), version 7.1. Physical and Chemical Properties Division, National Institute of Standard and Technology: Gaithersburg, MD, 2002.
    [61] 金钟昆. 超低温冷冻系统. 中国发明专利, CN1627001A.
    [62] 陈光明, 张绍志, 王剑峰, 等. 低温制冷机. 中国发明专利, CN2364403Y.
    [63] 李建周. 二元复叠式低温冷柜制冷循环系统. 中国发明专利, CN2694182Y.
    [64] 刘占杰, 白文涛, 李标, 蔡文东, 等. 环保无氟超低温冷柜. 中国发明专利, CN1485589A
    [65] 戴伦华. 节能型高低温试验设备. 中国发明专利, CN1077029A.
    [66] Glenn D. Short, Thomas E. Rajewski. Refrigeration lubricants-current practice and future devel. CPI Engineering, south Africa-publications.
    [67] 阚怡松, 朱瑞琪. 环保型制冷剂的冷冻油及其相容性分析. 流体机械, 2001年第 29 卷第 5 期: 58~60.
    [68] 朱瑞琪. 新制冷剂的溶油性. 流体工程, 1992: 60~62.
    [69] 2005 ASHRAE handbook: fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.. 1791 Tullie Circle, N.E., Atlanta, GA 30329, 2005.
    [70] PROII, User Manual, Simulation Science Inc. 601 S. Valencia Ave., Brea, CA 92621, USA.
    [71] John S. Fleming, Alex C. Bwalya, William W. Dempster. The testing and eva- luation of trial refrigerants: Part 2. The practical use of measured data. International Journal of energy research, 2000(24): 1243~1256.
    [72] 蒋其斌, 张正愈. 第二制冷剂电量热器法中压缩机制冷量误差的确定. 机械, 2001 年第 2E 卷第 2 期: 19~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700