玉米/大豆条带间作群体PAR和水分的传输与利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间作种植具有充分利用多种资源、提高单位面积作物产量的优点。近些年来,随着人口的快速增加、耕地的不断减少和水资源的日益紧缺,我国的粮食供给安全受到了严重的威胁。在这样的背景下,深入研究间作冠层对辐射的截获与利用、间作群体的蒸腾耗散规律、间作模式下根系的分布及吸水规律,对于优化间作群体的组成结构、提高间作模式管理水平、保证间作种植具有较高的资源利用效率和产量水平都具有重要的理论和现实意义。
     本项研究于2006-2008年在河南商丘农田生态系统国家野外科学观测研究站进行,选取玉米/大豆间作这种在我国北方地区广泛采用的间作种植模式作为研究对象,设置4个试验处理,分别为玉米单作(SM)、大豆单作(SSB)、玉米/大豆1:3间作(I_(13))和玉米/大豆2:3间作(I_(23)),重复4次。三年间,通过较为系统的田间试验,对玉米/大豆间作群体的光环境特性、土壤蒸发、植株蒸腾、根系分布特征、土壤水分运动以及资源利用等问题进行了试验研究和定量模拟,取得的主要研究结果如下:
     (1)在生育早期,I_(13)和I_(23)处理的大豆条带边行(与玉米相邻行)底部的PAR透射率高于大豆条带内行底部的PAR透射率,而I_(23)处理玉米行间底部的PAR透射率高于边行;进入生育后期,冠层底部不同位置处的PAR透射率差异不明显,平均透射率均小于7%; 4个试验处理的消光系数(K)的平均值分别为:SM处理0.46、SSB处理0.59、I_(13)处理0.51、I_(23)处理0.50。
     (2)在群体生育早期(LAI<1),I_(13)和I_(23)处理小区内不同行位置处的土壤蒸发量相差不大。但随着群体的生长发育(LAI≥1),不同位置处的土壤蒸发量呈现出一定的差异。土壤蒸发过程受表层土壤含水率和叶面积指数影响较大,相对土面蒸发强度E/ET0与表土土壤含水率呈指数性正相关关系,与叶面积指数则呈指数性负相关关系。
     I_(23)处理间作群体内,玉米和大豆植株的茎流速率在晴天呈单峰曲线,而在阴天则呈多峰曲线。植株的茎流受诸多环境因子的影响,其中太阳辐射是影响植株茎流的最主要的气象因子。玉米和大豆的单株日茎流量与多个气象因子间存在较好的相关关系,达到极显著水平。茎流观测期内(2008年6月1日-6月30日),I_(23)处理玉米植株的日均蒸腾量(茎流量)(1.44 mm d-1)为大豆日均蒸腾量(0.79 mm d~(-1))的1.8倍,玉米和大豆的蒸腾量分别为间作群体总蒸腾量的64%和36%。利用ERIN模型模拟间作群体的土壤蒸发和植株蒸腾时,阻力项的确定是至关重要的。I_(23)处理间作群体内,玉米/大豆间作群体的土壤表面阻力为300 s m~(-1),间作冠层的空气动力学阻力r~a_a和r~s_a分别为4.50和42.41 s m~(-1),冠层边界层阻力分别为12.19和38.89 s m~(-1),玉米和大豆的气孔阻力分别为81.32和64.92 s m~(-1)。模拟结果表明,间作群体内玉米或大豆日蒸腾量的模拟值均高于实测值,土壤蒸发的模拟值为实测值的94.67%。相关分析表明,观测值和模拟值间有较好的相关关系,相关系数在0.8以上。ERIN模型能够较为准确地模拟间作群体的土壤蒸发和作物蒸腾,亦可以较为准确地确定蒸腾量在间作作物间的分配。
     (3)采用冲洗土壤剖面法来获取根系的分布模式。结果表明,水分充足条件下,I_(23)处理间作群体内,玉米的根系深度要大于大豆根系;玉米根系不仅分布于玉米条带下方的区域,而且可以扩展到邻近的大豆条带内行下方的区域,而大豆根系则水平分布于大豆行对应的相对有限的区域内。由于犁底层和粘土夹层(深度约为30 cm)的存在,16~22 cm土层内玉米和大豆根系的侧向生长距离最远,而根长密度则主要分布在近地表处(0~30 cm)以及作物行处。拟合结果表明,指数模型可以很好地描述I_(23)处理间作群体内作物根长密度的二维分布状况。
     在生长过程中,I_(23)处理间作条带内不同区域的水分状况变化幅度依次为:玉米区域>大豆区域>条带行间。这表明在水分充足条件下,即使根系在大部分土体中都有分布,但同一时间内并非所有根区都具有等效的吸水作用,作物会优先在间作群体中相应的土壤区域内吸水,而后才会从根系混合区域内吸收水分。
     间作群体内,不同作物生长到一定程度后根系会出现混合交叉分布,要准确地确定间作群体中不同作物的根系密度分布状况是比较困难的。本文利用较为容易获得的参数建立了I_(23)处理间作作物根系的二维分布模式,并依据所建立的二维根系吸水模型,利用用HYDRUS-2D软件模拟了I_(23)处理间作条件下的土壤水分运动。模拟结果表明,所建立的二维根系吸水模型能够比较好的模拟间作群体的土壤水分运动规律。
     (4)利用Logistic方程拟合了单作和间作条件下玉米和大豆单株干物质积累的动态过程,相关性均达到极显著水平。由于边际效应的作用,I_(13)和I_(23)处理间作群体内单株玉米的地上部干物质量和籽粒产量都要明显高于单作玉米,I_(13)和I_(23)处理间的差异并不显著。然而不同种植模式下单株大豆的地上部干物质量和籽粒产量的差异并不显著。I_(13)和I_(23)处理内玉米的干物质转换率高于SM处理,而SSB处理大豆的干物质转换率则高于间作处理,I_(13)和I_(23)处理间的差异并不显著。I_(13)和I_(23)处理玉米的籽粒产量分别为SM处理的83%和95%,表明在间作种植模式下,玉米的增产效果并不足以弥补大豆占用面积所引起的籽粒产量下降。I_(13)和I_(23)处理大豆的籽粒产量分别为SSB处理的82%和76%,表明当大豆与玉米间作时,玉米的遮荫导致大豆籽粒产量下降。但是,玉米/大豆间作的总籽粒产量仍要明显高于单作玉米和单作大豆,表明间作种植能够增加群体的干物质积累量,提高群体总产量。
     (5)利用辐射截获率(F)、辐射利用效率(RUE)和收获指数(HI)3个指标,评价了玉米/大豆间作群体对辐射的截获与利用状况。3个生育期内,SM、I_(13)和I_(23)处理玉米收获指数(HI)的平均值分别为0.42、0.45和0.44;SSB、I_(13)和I_(23)处理大豆的收获指数(HI)的平均值分别为0.40、0.35和0.36;I_(13)和I_(23)处理玉米的RUE分别为3.14和3.13 g MJ~(-1),略低于SM处理的RUE(3.18 g MJ~(-1))。I_(13)和I_(23)处理大豆的RUE分别为1.65和1.63 g MJ~(-1),略高于SSB处理的RUE(1.55 g MJ~(-1))。I_(13)处理的RUE(2.82 g MJ~(-1))略高于和I_(23)处理(2.78 g MJ~(-1))。I_(13)和I_(23)处理群体的RUE比SM处理低11%和13%,但要比SSB处理高82%和79%。数据显示,间作种植模式能够通过更有效地利用辐射来增加群体的产量。
     3个生长季内,I_(13)处理ETc的平均值(495.84 mm)略低于I_(23)处理(506.16 mm)。I_(13)处理的ETc分别比SM和SSB处理高15%和6%;I_(23)处理的ETc分别比SM和SSB处理高17%和9%。I_(13)和I_(23)处理间作群体的WUE(I_(13):20.24 kg ha~(-1) mm~(-1);I_(23):21.97 kg ha~(-1) mm~(-1) )略低于SM处理( 22.67 kg ha~(-1) mm~(-1)),但明显高于SSB处理(5.07 kg ha~(-1) mm~(-1))。
     I_(13)和I_(23)处理的土地当量比(LER)分别为1.65和1.71,表明单作种植要多利用65%和71%的土地才能得到与I_(13)和I_(23)处理间作种植相同的产量。试验数据同时指出,玉米/大豆条带间作种植具有明显的产量优势,可以显著提高土地利用效率。
Intercropping is an effective way of using several kinds of natural resources more effectively and improving yield per unit of cultivated land. In recent years, natural resources, such as arable land and water, are becoming more and more limited with quick social development and rapid growth of industry and population, which constitutes a serious threat on food supply security in China. Therefore, it is necessary meaningful to study the radiation interception and utilization by intercropping canopies, the soil evaporation, plant transpiration, and root water uptake dynamics in intercropping systems for optimizing components, improving management and rising resources use efficiency and output of intercropping systems.
     Field experiments were conducted at Shangqiu Agro-ecosystem Experimental Station in 2006-2008 years to study the maize/soybean intercropping system, a widely practiced intercropping model in Northern China. The field experiment comprised of four treatments with four replications. Four treatments were set as: sole maize (SM), sole soybean (SSB), maize/soybean 1:3 intercropping (three rows of soybean by every one row of maize, I_(13)) and maize/soybean 2:3 intercropping (three rows of soybean by every two rows of maize, I_(23)). Light environment characteristics, soil evaporation, plant transpiration, root distribution, soil water movement and resources utilization efficiency in the four different cropping systems were investigated and simulated with field experimental data got in three years. The main results were as following:
     (1) About the PAR radiation interception and distribution in intercropping systems
     In earlier growing stage, photosynthetically active radiation (PAR) transmittance at the bottom of edge row of soybean strip adjacent to maize row in I_(13) and I_(23) treatments was higher than that of inner row of soybean strip, while it was in adverse for maize strip in I_(23) treatment. In later growing stage, PAR transmittance at the bottom of the intercropping canopies did not vary significantly, and the averaged PAR transmittance was less than 7%. The averaged extinction coefficient (K) of treatment SM, SSB, I_(13) and I_(23) over three growing seasons was 0.46, 0.59, 0.51 and 0.50, respectively.
     (2) About soil evaporation and plant transpiration
     In earlier growing stage (LAI<1), there were little differences for soil evaporation at different locations in I_(13) and I_(23) treatments. With development of crop canopy (after LAI≥1), the differences among soil evaporation rates at different locations became more and more significant. Soil evaporation rate was mainly influenced by water content in surface layer of soil and leaf area index (LAI). The relative soil evaporation intensity (E/ET0) showed a good positive exponential growth relation with water content in 0-5 cm layer of soil, and a good negative exponential growth relation with LAI.
     The diurnal variation of maize and soybean plant sap flow in I_(23) treatment fitted a single-peak curve in sunny day and multi-peak curve in cloudy day, respectively. Sap flow was influenced by many environmental factors, but showed a closest relationship with solar radiation. The correlations between daily sap flow of maize or soybean and environmental factors was extremely significant. During observation period of sap flow (June 1st– June 30th , 2008), mean diurnal transpiration value for maize plant (1.44 mm d-1) in I_(23) treatment was 1.8 time of that for soybean plant (0.79 mm d-1), and maize transpiration and soybean transpiration contributed 64% and 36% to the total transpiration in I_(23) treatment, respectively.
     It is very important to determine correctively relevant resistances for modeling soil evaporation and plant transpiration in intercropping systems with ERIN model. In maize/soybean 2:3 intercropping system (I_(23) treatment), surface resistance of substrate soil was 300 sm~(-1), aerodynamic resistance r~a_a and r~s_a was set as 4.50 and 42.41 sm~(-1), boundary layer resistances as 12.19 and 38.89 sm~(-1) for maize and soybean canopies, and stomatal resistance as 81.32 and 64.92 sm~(-1) for maize and soybean leaves, respectively. Results indicated that simulated maize or soybean transpiration value was higher than measured value, and calculated soil evaporation value 94.67% of measured value in I_(23) treatment. Statistics analysis showed that there was a significant correlation relationship between measured values and simulated values with a correlation coefficient of greater than 0.8. Simulated results showed ERIN model in relative excellent for estimating soil evaporation and plant transpiration of intercropping systems, and for determining transpiration contribution of each component in an intercropping system.
     (3) About root distribution and water uptake
     Root growth and distribution of intercropping system was investigated with washing out, numbering, sampling and measuring growing roots from a thin practical soil profile on site. Results indicated that developed depth for intercropped maize was greater than that for intercropped soybean in I_(23) treatment under full irrigation. In maize/soybean 2:3 intercropping system (I_(23) treatment), maize roots not only developped horizontally in the soil zone just under the maize strip, but also extended in adjacent soil zone and can reach the position just vertical under the middle row of the soybean strip. For soybean, however, most roots developped horizontally in the soil zone just under the soybean strip. The greatest horizontal extension distance for maize and soybean roots appeared in 16~22 cm soil layer from surface, relative to the existing of a plough pan and clay intercalation.
     Root length density (RLD) of maize and soybean in I_(23) treatment were primarily distributed in surface soil layer of 0~30 cm and in soil zone under crop rows. An exponential model fitted very well to the 2D distribution of root length density for I_(23) treatment. In maize-soybean 2:3 intercropping system (I_(23) treatment), the ranges of soil water content change were in the order: maize zone>soybean zone>middle zone. This order indicated that each crop preferentially absorbed soil water from soil zone just under its strip, and then from adjacent mixed zone in intercropping system.
     It was very difficult to determine accurately root density distribution in intercropping system, because of mixed root distribution of different crops. A two-dimensional root distribution and water uptake model for intercropped crops was developed with some easily acquired parameters. Soil water transport in intercropping system (I_(23) treatment) was simulated with HYDRUS software package and the two-dimensional root water uptake model. Results showed that the model was suitable for simulating soil water transport in intercropping system.
     (4) About biomass accumulation and yield
     Biomass accumulation of maize and soybean was fitted with Logistic equation for both the intercropping and monocultures, and correlation reached very significant level (P<0.01). Mean above-ground biomass accumulations and grain yield of each intercropped maize plant were higher than that of each sole maize plant because of edge effect. There was no significant difference for biomass and yield between I_(13) and I_(23) treatments. However, there was little difference between intercropped soybean plant and sole soybean plant. Comparing with sole maize, the intercropped maize had higher translocation rate of biomass. Translocation rate of biomass of the sole soybean was slightly higher than that of the intercropped soybean. There was no significant difference for translocation rate of biomass of soybean in I_(13) and I_(23) treatments.
     Grain maize yield for I_(13) and I_(23) treatments was 83% and 95% of that for SM treatment, respectively, which indicated that the grain yield increase caused by edge-effect was not enough to compensate the grain yield lose caused by maize occupied area decrease. Grain soybean yield for treatment I_(13) and I_(23) was 82% and 76% of that for SSB treatment, respectively, wihch showed that the shading effects of maize to soybean in maize/soybean intercropping system. The total yield of maize/soybean intercropping system, however, was significantly higher than the yield of each sole cropping, which showed that the advances of intercropping in increasing biomass and yield for per unit of cultivated land.
     (5) About resource use efficiency
     PAR interception and utilization by maize/soybean intercropping canopy were evaluated with the fraction of radiation intercepted (F), radiation use efficiency (RUE) and harvest index (HI). The averaged maize HI for treatment SM, I_(13) and I_(23) over three growing seasons was 0.42, 0.45 and 0.44, respectively; the averaged soybean HI for treatment SSB, I_(13) and I_(23) was 0.40, 0.35 and 0.36, respectively. Maize RUE of treatment I_(13) and I_(23) was 3.14 and 3.13 g MJ~(-1), slightly less than that of treatment SM (3.18 g MJ~(-1)). Soybean RUE of treatment I_(13) and I_(23) was 1.65 and 1.63 g MJ~(-1), slightly higher than that of treatment SSB (1.55 g MJ~(-1)). RUE of treatment I_(13) (2.82 g MJ~(-1)) was slightly higher than that of treatment I_(23) (2.78 g MJ~(-1)). RUE of treatment I_(13) and I_(23) was less than that of treatment SM by 11% and 13%, but higher than that of treatment SSB by 82% and 79%, respectively. The results indicated that intercropping may increase grain yield per unit of land by more efficient radiation utilization.
     Mean evapotranspiration (ETc) of I_(13) treatment (495.84 mm) was slightly lower than that of treatment I_(23) (506.16 mm) over three growing seasons. ETc of I_(13) treatment was 15% and 6% higher than that of SM and SSB treatments, respectively. ETc of I_(23) treatment was 17% and 9% higher than that of SM and SSB treatments, respectively. Water use efficiency (WUE) of I_(13) and I_(23) treatments (I_(13):20.24 kg ha~(-1) mm~(-1);I_(23):21.97 kg ha~(-1) mm~(-1)) was slightly lower than that of SM treatment (22.67 kg ha~(-1) mm~(-1)), but significantly higher than that of SSB treatment (5.07 kg ha~(-1) mm~(-1)).
     Land equivalent ratio (LER) of I_(13) and I_(23) treatments was 1.65 and 1.71, which derived that 65% and 71% more land in the monocultures was required than that in the intercropping for producing same grain, and that maize/soybean intercropping has significant advantage of improving yield and land use efficiency.
引文
1.陈杨,李隆,张福锁.大豆和蚕豆苗期根系生长特性的比较[J].应用生态学报,2005,16(11):839-842
    2.高阳,段爱旺.冬小麦间作种植方式下棵间蒸发规律试验研究[J].灌溉排水学报,2005,24(2):13-17
    3.高阳,段爱旺,刘祖贵,等.玉米和大豆条带间作模式下的光环境特性[J].应用生态学报, 2008, 19(6):1248-1254
    4.高阳,段爱旺,刘祖贵,等.单作和间作对玉米和大豆群体辐射利用率及产量的影响[J].中国生态农业学报,2009,17(1):7-12
    5.中国统计年鉴[M].北京:中国统计出版社,2008
    6.郝艳如,劳秀荣,孟庆强,等.玉米/小麦间作对根际土壤和养分吸收的影响[J].中国农学通报,2002,18(4):20-23
    7.黄高宝,黄鹏,柴强,等.小麦玉米套作复合群体生长特征与生产力间的关系[J].甘肃农业大学学报,1999,34(3):263-269
    8.焦念元,陈明灿,付国占,等.玉米花生间作复合群体的光合物质积累与叶面积指数变化[J].作物杂志,2007,1:34-35
    9.雷志栋,杨诗秀,谢森传.田间土壤水量平衡与定位通量法的应用[J].水利学报,1988,5:
    1-7
    10.雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988
    11.李潮海,李胜利,王群,等.不同质地土壤对玉米根系生长动态的影响[J].中国农业科学,2004,37(9):1334-1340
    12.李来祥,刘广才,李隆.小麦/玉米间作优势及地上部与地下部因素的相对贡献研究[J].干旱地区农业研究,2008,26(1):74-80
    13.李隆,杨思存,孙建好,等.小麦/大豆间作中作物种间的竞争作用和促进作用[J].应用生态学报,1999,10(2):197-200
    14.刘浩.间作条件下作物根系吸水规律研究[D].北京:中国农业科学院研究生院,2006
    15.刘浩,段爱旺,高阳.间作种植模式下冬小麦棵间蒸发变化规律及估算模型研究[J].农业工程学报,2006,22(12):34-38
    16.刘浩,段爱旺,高阳,等.间作种植模式下冬小麦根系生长的时空分布及变化规律研究[J].灌溉排水学报,2006,25(1):5-8
    17.刘浩,段爱旺,孙景生,等.间作模式下冬小麦与春玉米根系的时空分布规律[J].应用生态学报,2007,18(6):1242-1246
    18.卢良恕.中国立体农业概论[M].成都:四川科学技术出版社,1999
    19.宋日,牟瑛,王玉兰,等.玉米、大豆间作对两种作物根系形态特征的影响[J].东北师大学报自然科学版,2002,34(4):83-86
    20.孙宏勇,张喜英,陈素英,等.水分胁迫对冬小麦冠层结构及光合特性的研究[J].灌溉排水学报,2005,24(2):31-34
    21.佟屏亚.试论耕作栽培学科的发展趋势和研究重点[J].耕作栽培,1993,64(4):1-7
    22.佟屏亚.我国耕作栽培技术成就和研究重点[J].耕作栽培,1994,64(4):1-7
    23.王冀川,徐雅丽,段黄金.新疆不同密度下油葵干物质积累、分配及转移规律的研究[J].中国油料作物学报,2002,24(2):32-36
    24.王锡平,李保国,郭焱,等.玉米冠层内光合有效辐射三维空间分布的测定与分析[J].作物学报,2004,30(6):568-576
    25.谢云,Kiniry J R.国外生物生长模型发展综述[J].作物学报,2002,28(2):190-195
    26.叶优良,包兴国,宋建兰,等.长期使用不同肥料对小麦/玉米间作产量、氮吸收利用和土壤硝态氮累积的影响[J].植物营养与肥料学报,2004,10(2):113-119
    27.于贵瑞.不同冠层类型的陆地植被蒸发散模型研究进展[J].资源科学,2001,23(6):72-84
    28.张恩和,胡华.小麦玉米带田根系竞争和补偿效应研究[J].甘肃农业大学学报,1997,4:295-299
    29.张恩和,黄高宝.间套种植复合群体根系时空分布特征[J].应用生态学报,2003,14(8):1301-1304
    30.张恩和,黄高宝,黄鹏.不同供磷水平下粮豆间套种植对根系分布和根际效应的影响[J].草叶学报,1999,8(3):35-38
    31.张恩和,李玲玲,黄高宝,等.供肥对小麦间作蚕豆群体产量及根系的调控[J].应用生态学报,2002,13(8):939-942
    32.张劲松,孟平,尹昌君,等.苹果-小麦复合系统中作物根系时空分布特征[J].林业科学研究, 2002,15(5):537-541
    33.赵秉强,张福锁,李增嘉,等.间套作条件下作物根系数量与活性的空间分布及变化规律研究Ⅱ间作早春玉米根系数量与活性的空间分布及变化规律[J].作物学报,2001,27(6):974-979
    34. Adiku S G K, Carberry P S, Rose C W, et al. A maize (Zea mays)– cowpea (Vigna unguiculata) intercrop [A]. In: Sinoquet H, Cruz P, Ecophysiology of Tropical Intercropping [C]. Paris: INRA, 1995
    35. Adiku S G K, Ozier-Lafontaine H, Thierry Bajazer. Patterns of root growth and water uptake of a maize-cowpea mixture grown under greenhouse conditions [J]. Plant and Soil, 2001, 235: 85-94
    36. Alados-Arboledas L, Olmo F J, Alados I, et al. Parametric models to estimate Photosynthetically active radiation in Spain [J]. Agricultural and Forest Meteorology, 2000, 101: 187-201
    37. Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration guidelines for computing crop water requirements [M]. Irrigation and Drain, Paper No. 56. FAO, Rome, 1998
    38. Allen R G, Smith M, Perrier A, et al. Updated reference evapotranspiration definition and calculation procedures [M]. Revision of FAO Methodologies for Crop Water Requirements, 1993
    39. Anadranistakis M, Liakatas A, Kerkides P, et al. Crop water requirements model tested for crops grown in Greece [J]. Agricultural Water Management, 2000, 45: 297-316
    40. Andersen M K, Hauggaard-Nielsen H, Ambus P, et al. Biomass production, symbiotic nitrogenfixtion and inorganic N use in dual and tri-component intercrops [J]. Plant and Soil, 2004, 266: 273-287
    41. Anil L, Park J, Philps R J, et al. Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK [J]. Grass and Forage Scienc, 1998, 53: 301-317
    42. Awal M A, Koshi H, Ikeda T. Radiation interception and use by maize/peanut intercrop canopy [J]. Agricultural and Forest Meteorology, 2006, 139: 74-83
    43. Azam-Ali S. Assessing the efficiency of radiation use by intercrops [A]. In: Sinoquet H, Cruz P, Ecophysiology of Tropical Intercropping [C]. Paris: INRA, 1995
    44. Baker J M, van Bavel C H M. Measurement of mass flow of water in stems of herbaceous plants [J]. Plant, Cell and Environment, 1987, 10: 777-782
    45. Baumann D T, Bastiaans L, Goudriaan J, et al. Analysing crop yield and plant quality in an intercropping system using an eco-physiological model for interplant competition [J]. Agricultural Systems, 2002, 73: 173-203
    46. Benites J R, McCollum R E, McCollum R E, et al. Production efficiency of intercrops relative to sequentially-planted sole crops in a humid tropical environment [J]. Field Crops Research, 1993, 31: 1-18
    47. Berntsen J, Nielsen H, Olesen J E, et al. Modelling dry matter production and resource use in intercrops of pea and barley [J]. Field Crops Research, 2004, 88: 69-83
    48. Bethenod O, Katerji N, Goujet R, et al. Dtermination and validation of corn crop transpiration by sap flow measurement under field conditions [J]. Theoretical and Applied Climatology, 2000, 67: 153-160
    49. Brisson N, Itier B, Hotel JC, et al. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop model [J]. Ecological Modelling, 1998, 107: 159-169
    50. Caldwell R M, Richards J H. Hydraulic lift water efflux from upper roots improves effectiveness of water uptake by deep roots [J]. Oecologia, 1989, 79: 1-5
    51. Camillo P J, Gurney R J. A resistance parameter for bare soil evaporation models [J]. Soil Science, 1986, 141: 95-106
    52. Choudhury B J. Modeling radiation-and carbon-use efficiencies of maize, sorghum and rice [J]. Agricultural and Forest Meteorology, 2001, 106: 317-330
    53. Choudhury B J, Monteith J L. A four-layer model for the heat budget of homogeneous land surfaces [J]. Quarterly Journal of the Royal Meteorological Society, 1988, 114: 373-398
    54. da Silva J M, Arrabac M C. Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits [J]. Physilolgia Plantarum, 2004. 2: 409-420
    55. Daamen C C, Simmonds L P, Wallace J S, et al. Use of microlysimeters to measure evaporation from sandy soils [J]. Agricultural and Forest Meteorology, 1993, 65: 159-173
    56. de Kroon H. How do roots interact? [J]. Science, 2007, 318: 1562-1663
    57. de Willigen P, van Noordwijk M. Uptake potential of non-regularly distributied roots [J]. Journal of Plant Nutrition, 1987, 10: 1273-1280
    58. Dhima K V, Lithourgidis A S, Vasilakoglou I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio [J]. Field Crops Research, 2007, 100: 249-256
    59. Dynagage Sap Flow Sensor User Manual [M]. Dynamax Inc, USA, 2005
    60. Feddes R A, Kowalik P J, Zaradny H. Simulaiton of Field Water Use and Crop Yield [M]. John Wiley&Sons, New York, NY, 1978
    61. Federer C A, Vorosmarty C J, Fekete B. Intercomparison of methods for potential evapotranspiration in regional or global water balance models [J]. Water Resource Research, 1996, 32: 2315-2321
    62. Francis C A. Multiple Cropping Systems [C]. Macmillan Publishing Company, Inc., New York, 1986
    63. Fuchs M, Tanner C B. Evaporation from drying soil [J]. Journal of Applied Meteorology, 1967, 6: 852-857
    64. Fukai S. Intercropping-bases of productivity [J]. Field Crops Research, 1993, 34: 239-245
    65. Gao Y, Duan A W, Sun J S, et al. Crop coefficient and water use efficiency of winter wheat/spring maize strip intercropping [J]. Field Crops Research, 2009, 111: 65-73
    66. Gardiol J M, Serio L A, Maggiora A I D. Modeling evapotranspiration of corn (Zea mays) under different plant densities [J]. Journal of Hydrology, 2003, 217: 188-196
    67. Ghaffarzadeh M, Prechac F G, Cruse R M. Grain yield response of corn, soybean and oat grown in a strip intercropping system [J]. American Journal of Alternative Agriculture, 1994, 9: 171-177
    68. Ghannoum O. C4 photosynthesis and water stress [J]. Annals of Botany, 2009, 103: 635-644
    69. Gilbert R A, Heilman J L, Juo A S R. Diurnal and seasonal light transmission to cowpea in sorghum-cowpea intercrops in Mali [J]. Journal of Agronomy and Crop Science, 2003, 189: 21-39
    70. Gregory P J and Reddy M S. Root growth of an intercrop pearl millet/groundnut [J]. Field Crops Research, 1982, 5: 241–252
    71. Ham J M, Heilman J L, Lascano R J. Determination of soil water evaporation and transpiration from energy balance and stem flow measurements [J]. Agricultural and Forest Meteorology, 1990, 52: 287-301
    72. Hao X M. Modeling water flow and solute transport in soil under different irrigation management practices [D]. University of Wyoming, Laramie, Wyoming, 2004
    73. Harris D, Natarajan M, Willey R W. Physiological basis for yield advantage in a sorghum– groundnut intercrop exposed to drought. I. Dry-matter production, yield, and light interception [J]. Field Crops Research, 1987, 17: 259-272
    74. Hillel D. Environmental Soil Physics [M]. Academics Press, London, 1998
    75. Huang B, Fry J D. Root anatomical, physiological and morphological responses to drought stress for tall fescue cultivars [J]. Turfgrass Science, 1998, 38: 1017-1022
    76. Iragavarapu T K, Randall G W. Border effects on yields in a strip-intercropped soybean, corn andwheat production system [J]. Journal of Production Agriculture, 1996, 9: 101-107
    77. Jackson N A, Wallace J S. Soil evaporation measurements in an agroforestry system in Kenya [J]. Agricultural and Forest Meteorology, 1999, 94: 203-215
    78. Jara J, Stockle C O, Kjelgaad J. Measurement of evapotranspiration and its components in a corn (Zea Mays L.) field [J]. Agricultural and Forest Meteorology, 1998, 92: 131-145
    79. Jarvis P G. The interpretation of the variation in leaf water potential and stomatal conductance found in canopies in the field [J]. Philosophical Transactions of the Royal Society of London, B, 1976, 273: 593-610
    80. Jones H G. Plants and Microclimate: A quantitative Approach to Environmental Plant Physiology, second ed [M]. Cambridge University Press, New York, 1992
    81. Jurik T W, Van K. Microenvironment of a corn-soybean-oat strip intercrop system [J]. Field Crops Research, 2004, 90: 335-349
    82. Karalis J D. Characteristics of direct synthetically active radiation [J]. Agricultural and Forest Meteorology, 1989, 48: 225-234
    83. Keating B A, Carberry P S. Resource capture and use in intercropping: solar radiation [J]. Field Crops Research, 1993, 34: 273-301
    84. Kelliher F M, Whitehead D, McAneney K J, et al. Partioning evapotranspiration into tree and understorey components in two yong Pinus radista D.Don Stand [J]. Agricultural and Forest Meteorology, 1990, 50: 211-227
    85. Kiniry J R, Williams J R, Gassman P W, et al. A general process-oriented model for two competing plant species [J]. Transactions of the American Society of Agricultural Engineers, 1992, 35: 801-810
    86. Kondo J, Saigusa N, Sato T. A parameterization of evaporation from bare soil surface [J]. Journal of Applied Meteorology, 1990, 29: 383-387
    87. Kropff M J, van Laar H H. Modelling crop-weed interaction [M]. CAB International Wallingford, UK, 1993
    88. Lafolie F, Bruckler L, Ozier-Lafontaine H, et al. Modeling soil-root water transport and competition for single and mixed crops [J]. Plant and Soil, 1999, 210: 127-143
    89. Lal R. Soil temperature, soil moisture and maize yield from mulched and unmulched tropical soil [J]. Plant and Soil, 1974, 40: 129–143
    90. Lantinga E A Nassiri M, Kropff M J. Modelling and measuring vertical light absorption within grass-clover mixtures [J]. Agricultural and Forest Meteorology, 1999, 96: 71-83
    91. Le Roux X, Bariac T, Mariotti A. Spatial partioning of the soil water resource between grass and shrub components in a West African humid savanna [J]. Oecologia, 1995, 104: 147-155
    92. Lesoing G W, Francis C A. Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean [J]. Agronomy Journal, 1999, 91: 807-813
    93. Li L, Li S M, Sun J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils [J]. Proceedings of the National Academy ofScience of the United States of America, 2007, 104: 1192-1196
    94. Li L, Sun J H, Zhang F S, et al. Wheat/maize or wheat/soybean strip intercropping.Ⅰ. Yield advantage and interxpecific interactions on nutrients [J]. Field Crops Research, 2001, 71: 123-137
    95. Li L, Sun J H, Zhang F S, et al. Root distribution and interactions between intercropped species [J]. Oecologia, 2005, 147 (2): 280-290
    96. Lund M R, Soegaard H. Modelling of evaporation in a sparse millet crop using a two-source model including sensible heat advection within the canopy [J]. Journal of Hydrology, 2003, 280: 124-144
    97. Mahfouf J F, Noilhan J. Comparative study of various formulations of evaporation from bare soil using in situ data [J]. Journal of Applied Meteorology, 1991, 30 (9): 1354-1365
    98. Mandal B K, Das D, Saha A, Mohasin M. Yield advantage of wheat (Triticum aestivum) and chickpea (Cicer arietinum) under different spatial arrangements in intercropping [J]. Indian Journal of Agronomy, 1996, 41 (1): 17-21
    99. Mandal B K, Dagupta S, Ray P K. Yield of wheat, mustard and chickpea grown as sole crop and intercrop with 4 moisture regimes [J]. Indian Journal of Agricultural Sciences, 1986, 56 (3): 187-193
    100.Marshall B, Roberts J A. Leaf Development and Canopy Growth [C]. Sheffield Academic Press Ltd, England, 2000
    101.Marshall B, Willey R W. Radiation interception and growth in an intercrop of pearl millet– groundnut [J]. Field Crops Research, 1983, 7: 141-160
    102.Matthews R B, Saffell R A. An instructment to measure light distribution in row crops [J]. Agricultural and Forest Meteorology, 1987, 39: 177-184
    103.McMaster G S, Wilhelm W W. Growing degree-days: one equation, two interpretations [J]. Agricultural and Forest Meteorology, 1997, 87: 291-300
    104.McMurtrie R, Wolf L. A model of competition between trees and grass for radiation, water and nutrients [J]. Annals of Botany. 1983, 52: 449-458
    105.Monteith J L. Evaporation and surface temperature [J]. Quarterly Journal of the Royal Meteorological Society, 1981, 102: 1-27
    106.Monteith J L. Principles of Ecvironmental Physics [M]. Edward Arnold, London, 1973
    107.Morris R A, Garrity D P. Resource capture and utilization in intercropping: Water [J]. Field Crops Research, 1993, 34, 303–317
    108.Mushagalusa G N, Ledent J F, Draye X. Shoot and root competition in potato/maize intercropping: Effects on growth and yield [J]. Environmental and Experimental Botany, 2008, 64: 108-188
    109.Natarajan M, Willey R W. Soughum/pigeon pea intercropping and effects of plant population density. 2. Resource use [J]. Journal of Agricultural Science, 1980, 95: 59-65
    110.Noilhan J, Planton S. A simple parameterization of land surface process for meteorological models [J]. Monthly Weather Review, 1989, 17: 536-549
    111.Ofori F, Stern W R.. Cereal-legume intercropping systems [J]. Advances in Agronomy, 1987, 41: 41-90
    112.Ong C K. Alley cropping-ecological pie in the sky [J]. Agroforestry Today, 1994, 6 (3): 8-10
    113.Ozier-Lafontaine H, Lafolie F, Bruckler L, et al. Modelling competition for water in intercrops:theory and comparison with field experiments [J]. Plant and Soil, 1998, 204: 183-201
    114.Ozier-Lafontaine H, Lecompte F, Sillon J P. Fractal analysis of the root architecture of Gliricidia Sepium for the spatial prediction of root branching, size and mass. Model development and evaluation in agroforestry [J]. Plant and Soil, 1999, 209: 167-180
    115.Ozier-Lafontaine H, Vercambre G, Tournebize R. Radiation and transpiration partioning in a maize- sorghum intercrop: Test and evaluation of two models [J]. Field Crops Research, 1997, 49: 127-145
    116.Papaioannou G, Nikolidakis G, Asimakopoulos D, et al. Photosynthetically active radiation in Athens [J]. Agricultural and Forest Meteorology, 1996, 81: 287-298
    117.Raats P A C, Steady flows of water and salt in uniform soil profiles with plant roots [J]. Soil Science Society of American Journal, 1974, 38: 717-722
    118.Rao C R. Photosynthetically active components of global solar radiation: measurements and model computations [J]. Achieves for Meteorology Geophysics, and Bioclimatology, Ser B, 1984, 33: 89-98
    119.Raupach M R, Thom A S. Turbulence in and above plant canopies [J]. Annual Review of Fluid Mechanics, 1981, 13: 97-129
    120.Reddy M S, Willey R W. Growth and resource use studies in an intercrop of pearl millet / groundnut [J]. Field Crops Research, 1981, 4: 13-24
    121.Rees D J. Crop growth, development and yield in semi-arid conditions in Botswana.Ⅱ. The effects of intercropping Sorghum bicolor with Vigna unguiculata [J]. Experimental Agriculture, 1986 a, 22: 169-177
    122.Rees D J. The effects of population density and intercropping with cowpea on the water use and growth of sorghum in semi-arid conditions in Botswana [J]. Agricultural and Forest Meteorology, 1986 b, 37: 293-308
    123.Rimmington G M. A model of the effect of interspecies competition for light on dry-matter production [J]. Australian Journal of Plant Physiology, 1984, 11: 277-286
    124.Robert H S. Significant historical developments in thermal methods for measuring sap flow in trees [J]. Agricultural and Forest Meteorology, 1994, 72: 113-132
    125.Rodrigo V H L, Stirling C M, Teklehaimanont Z. Intercropping with banana to improve fractional interception and radiation-use efficiency of immature rubber plantations [J]. Field Crops Research, 2001, 69: 237-249
    126.Rowe E C, Noordwijk M V, Suprayogo D, et al. Nitrogen use efficiency of monoculture and hedgerow intercropping in the humid tropics [J]. Plant and Soil, 2005, 268: 61-74
    127.Ryel R J, Barnes P W, Beyschlag W. Plant competition for light analyzed with a multispecies canopy model. 1. Model development and influence of enhanced UV-B conditions on Photosynthesis in mixed wheat and wild oat nopies [J]. Oecologia, 1990, 82: 304-310
    128.Sakuratani T. A heat balance method for measuring water flow in the stem of intact plant [J].Japanese Agricultural Meteorology, 1981, 37: 9-17
    129.Santos A M, Cabelguenne M, Santos FL, et al. EPIC-PHASE: a model to explore irrigation strategies [J]. Journal of Agricultural Engineering Research, 2000, 75: 409-416
    130.Sellami M H, Sifaoui M S. Estimating transpiration in an intercropping system: measuring sap flow inside the oasis [J]. Agricultural Water Management, 2003, 59: 191-204
    131.Shuttleworth W J. A simplified one-dimensional theoretical description of the vegetation- atmosphere interaction [J]. Boundary-Layer Meteorology, 1978, 14: 3-27
    132.Shuttleworth W J, Gurney R J. The theoretical relationship between foliage temperature and canopy resistane in sparse crops [J]. Quarterly Journal of the Royal Meteorological Society, 1990, 116: 497-519
    133.Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory [J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111: 839-855
    134.Sillon J F, Ozier-Lafontaine H, Brisson N. Modelling daily root interactions for water in a tropical shrub and grass alley cropping system [J]. Agroforestry Systems, 2000, 49: 131-152
    135.?im?nek J, ?ejna M, van Genuchten M Th. The HYDRUS Software Package for Simulating the Two- and Three- Dimensional Movement of Water, Heat, and Multiple Solutes in Variably- Saturated Media [M]. User Manual, Version 1.0, PC Progress, Prague, Czech Republic, 2007
    136.Sinclair T R, Gardner F P. Principles of Ecology in Plant Production [M]. CAB International, Wallingford, 1998
    137.Singh S, Narwal S S, Chander J. Effect of irrigation and cropping systems on consumptive use, water use efficiency and moisture extraction patterns of summer fodders [J]. International Journal of Tropical Agriculture, 1988, 6: 76-82
    138.Sinoquet H, Bonhomme R. A theoretical analysis of radiation interception in a two-species plant canopy [J]. Mathematical Biosciences, 1991, 105: 23-45
    139.Sinoquet H, Bonhomme R. Modeling radiative transfer in mixed and row intercropping systems [J]. Agricultural and Forest Meteorology, 1992, 62: 219-240
    140.Sinoquet H, Caldwell R M. Estimation of light capture and partitioning in intercropping systems [A]. In: Sinoquet H, Cruz P, Ecophysiology of Tropical Intercropping [C]. Paris: INRA, 1995
    141.Sinoquet H, Rakocevic M, Varlet-Grancher. Comparison of models for daily light partitioning in multispecies canopies [J]. Agricultural and Forest Meteorology, 2000, 101: 251-263
    142.Sinoquet H, Mouha B, Gastal F, et al. Modelling the radiative balance of the components of a well-mixed canopy: application to a white clover tall fescue mixture [J]. Acta Oecologica, 1990, 11: 469-486
    143.Smith M A, Carter P R. Strip intercropping corn and alfalfa [J]. Journal of Production Agriculture, 1998, 11: 345-353
    144.Smucker A M J, Aiken R M. Dynamic root responses to water deficits [J]. Soil Science, 1992, 154: 281-289
    145.Spitters C J T, Aerts R. Simulation of competition for light and water in a crop-weed associations[J]. Aspects Applied Biology, 1983, 4: 467-483
    146.Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland [J]. Water Resource Research, 1993, 29 (5): 1379-1392
    147.Stewart J B. Modelling surface conductance of pine forest [J]. Agricultural and Forest Meteorology, 1988, 43: 19-35
    148.Stewart J B, Gay L W. Preliminary modeling of transpiration from the FIFE site in Kansas [J]. Agricultural and Forest Meteorology, 1989, 48: 305-315
    149.Teh C B S, Simmonds L P, Wheeler T R. Modelling the partitioning of evaporanspiration in a maize-sunflower intercrop [C]. The 2nd international conference on tropical climatology, meteorology and hudrology TCMH-2001, Brussels, Belgium
    150.Tennant D. A test of a modified line intersection method of estimating root length [J]. Journal of Ecology, 1975, 63: 995-1103
    151.Thom A S. Momentum, mass and heat exchange of vegetation [J]. Quarterly Journal of the Royal Meteorological Society, 1972, 8: 124-134
    152.Thorsted M D, Olesen J, Weiner J. Mechanical control of improves nitrogen supply and growth of wheat in winter wheat/white clover intercropping [J]. European Journal of Agronomy, 2006, 24: 149-155
    153.Tofinga M P, Snaydon R W. The root activity of cereals and peas when grown in pure stands and mixture [J]. Plant and Soil, 1992, 142: 281-285
    154.Tournebize R, Sinoquet H, Bussiere F. Modelling evapotranspiration partioning in a shrub/grass alley crop [J]. Agricultural and Forest Meteorology, 1996, 81: 255-272
    155.Tournebize R, Sinoquet H. Light interception and partioning in a shrub/grass mixture [J]. Agricultural and Forest Meteorology, 1995, 72: 277-294
    156.Tourula T, Heikinheimo M. Modelling evapotranspiration from a barly field over the growing season [J]. Agricultural and Forest Meteorology, 1998, 91: 237-250
    157.Tsubo M, Walker S, Mukhala E. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations [J]. Field Crops Research, 2001, 71: 17-29
    158.Tsubo M, Walker S, Ogindo H O. A simulation model of cereal-legume intercropping systems for semi-arid regions.Ⅰ.Model development [J]. Field Crops Research, 2005, 93: 10-22
    159.Tsubo M, Walker S. A model of radiation interception and use by a maize-bean intercrop canopy [J]. Agricultural and Forest Meteorology, 2002, 110: 203-215
    160.Udo S O, Aro T O. Global PAR related to global solar radiation for central Nigeria [J]. Agricultural and Forest Meteorology, 1999, 97: 21-31
    161.van de Griend A A, Owe M. Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions [J]. Water Resource Research, 1994, 30 (2): 181-188
    162.Vandermeer J. The Ecology of Intercropping [M]. Cambridge University Press, New York, 1989
    163.Van Genuchten M T, Leij F J, Yates S R. The RETC code for quantifying the Hydraulic Functionsof unsaturated soils [M]. U.S.Salinity Laboratory, U.S.Department of Agriculture, Agricultural research service riverside, California, 1991
    164.Vesala T, Markkanen T, Palva L, et al. Effect of variations of PAR on CO2 exchange estimation for Scots pine [J]. Agricultural and Forest Meteorology, 2000, 100: 337-347
    165.Vikki L G, Morison J I L, Simmonds L P. Including the heat storage term in sap flow measurements with the heat balance method [J]. Agricutural and Forest Meteorology, 1995, 74: 1-25
    166.Volker B, Wolfgang B. Different inhibition of photosynthesis during pre-flowering drought stress in sorghum bicolor genotypes with different senescence traits [J]. Physiologia Plantarum, 2005, 124: 249-259
    167.Vrugt J A, Hopmans J W, Simunek J. Calibration of a two-dimensional root water uptake model [J]. Soil Science Society of American Journal, 2001, 65 (4) : 1027-1037
    168.Vrugt J A, van Wijk M T, Hopmans J W, et al. One-, two-, and three-dimensional root water uptake functions for transient modeling [J]. Water Resource Research, 2002, 37 (10) : 2457-2470
    169.Waddington S R, Palmer A F E, Edje O T. Research methods for cereal/legume intercropping [C]. CIMMYT, Mexico, 1989
    170.Walker S, Ogindo H O. The water budget of rainfed maize and bean intercrop [J]. Physics and Chemistry of the Earth, 2003, 28: 919-926
    171.Wallace J S, Batchelor C H, Dabeesing D N, et al. A comparison of the light interception and water use of plant and first ratoon sugar cane intercropped with maize [J]. Agricultural and Forest Meteorology, 1991, 57: 85-105
    172.Wallace J S, Batchelor C H, Dabeesing D N, et al. The partioning of light and water in drip irrigated plant cane with a maize intercrop [J]. Agricultural Water Management, 1990, 17: 235-256
    173.Wallace D H, Enriqueze G A. Daylength and temperature effects on days to flowering of early and late maturing beans (Phaseolus vulgaris L.) [J]. Journal of American Society of Horticulture Science, 1980, 105: 583-591
    174.Wallace J S, Jackson N A, Ong C K. Modeling soil evaporation in an agroforestry system in Kenya [J]. Agricultural and Forest Meteorology, 1999, 94: 189-202
    175.Wallace J S, Verhoef A. Modelling interactions in mixed-plant communities: light, Water and Carbon dioxide [A]. In: Marshall B, Roberts J A. Leaf Development and Canopy Growth [C]. England, Sheffield Academic Press Ltd, 2000
    176.Warrick A W. Soil Water Dynamics [M]. Oxford University Press, London, 2003
    177.Watson C A, Atkinson D, Gosling P, et al. Managing soil fertility in organic farming systems [J]. Soil Use Management, 2002, 18: 239-247
    178.West T D, Griffith D R. Effect of strip-intercropping corn and soybean on yield and profit [J]. Journal of Production Agriculture, 1992, 5: 107-110
    179.Willey R W. Evaluation and presentation of intercropping advantages [J]. Experimental Agriculture, 1985, 21, 119-133
    180.Willey R W. Intercropping-its importance and research needs. PartⅠ. Competition and yieldadvantages [J]. Field Crops Abstract, 1979, 32: 1-10
    181.Willey R W. Resource use in intercropping systems [J]. Agricultural Water Management, 1990, 17: 215-231
    182.Willmott C J. Some comments on the evaluation of model performance [J]. Bulletin of the American Meteorological Society, 1982, 63 (11): 1309-1313
    183.Wilson R, Shaw R. A higher order closure model for canopy flow [J]. Journal of Applied Meteorology, 1977, 16: 1197-1205
    184.Wong S C, Osmond C B. Elevated atmospheric partial pressure of CO2 and plant growth. III. Interaction between Triticum aestivum (C3) and Echinocloea fumentacea (C4) during growth in mixed culture under different CO2, N nutrition and irradiance treatments, with emphasis on below ground responses, estimated usingδ13C value of root mass [J]. Australian Journal of Plant Physiology, 1991, 18: 137–152
    185.Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China [J]. Agricultural and Forest Meteorology, 2008 a, 148: 1629-1640
    186.Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency [J]. Plant and Soil, 2003, 248: 305-312
    187.Zhang L Z, van der Werf W, Bastiaans L, et al. Light interception and utilization in relay intercrops of wheat and cotton [J]. Field Crops Research, 2008 b, 107: 29-42
    188.Zhang L Z, van der Werf W, Zhang S, et al. Growth, yield and quality of wheat and cotton in relay strip intercropping systems [J]. Field Crops Research, 2007, 103: 178-188
    189.Zhang X Z, Zhang Y G, Zhou Y H. Measuring and modeling Photosynthetically active radiation in Tibet Plateau during April-October [J]. Agricultural and Forest Meteorology, 2000, 102: 207-212
    190.Zhou M C, Ishidaira H, Hapuarachchi H P, et al. Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin [J]. Journal of Hydrology, 2006, 327: 151-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700