多发性硬化的磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     建立实验性变态反应性脑脊髓炎(Experimental Allergic Encephalomyelitis,EAE)大鼠模型,为进一步研究多发性硬化(Multiple Sclerosis,MS)奠定基础。
     方法
     雌性Lewis大鼠44只随机分为模型组27只和对照组17只。采用免疫诱导法,模型组注射豚鼠脑脊髓匀浆和完全福氏佐剂(Complete Freund's adjuvant,CFA)。对照组注射生理盐水和CFA。每天观察两组大鼠体重变化和临床症状。在不同时间点取大鼠脑组织,行HE染色及髓鞘染色,光镜下观察炎症细胞浸润及髓鞘脱失情况。
     结果
     EAE组大鼠免疫后15-30天出现临床症状,发病率为22/27。组织病理学证实大鼠脑组织内出现炎细胞浸润和脱髓鞘改变。对照组大鼠未出现临床症状,组织病理学未见异常。
     结论
     以豚鼠脑脊髓匀浆免疫雌性Lewis大鼠,可成功诱导EAE模型,发病率高、模型稳定,可作为研究MS的理想动物模型。
     目的
     探讨磁共振对比剂超小型超顺磁性氧化铁粒子(USPIO)增强磁共振(MR)检出实验性变态反应性脑脊髓炎(EAE)动物模型病变的敏感性及其增强病灶的磁化传递率(MTR)的变化。
     方法
     11只EAE组大鼠及10只对照组大鼠行常规T1加权像(T1WI)、T2加权像(T2WI)、三维T1磁化传递(3D T1 MT)、三维T1非磁化传递(3D T1 no MT)、钆喷酸葡胺注射液(Gadopentetate Dimeglumine Injection)增强T1WI及USPIO增强T2WI扫描。计算USPIO及Gd增强检出EAE病变的敏感性、EAE组大鼠第1次出现USPIO异常强化的区域及前一次扫描相应区域的MTR。大鼠脑组织行HE、髓鞘及普鲁士蓝铁染色。
     结果
     Gd对比剂增强扫描未能发现EAE大鼠脑内异常对比增强灶,USPIO增强扫描显示11只大鼠脑内均有异常沉积。EAE组大鼠USPIO异常强化区的MTR值与出现强化前同一区域的MTR值相比差异具有显著性(P<0.05)。USPIO强化区可见炎细胞浸润及脱髓鞘改变,普鲁士蓝铁染色结果阳性。对照组大鼠MR平扫及增强扫描无阳性显示。结论
     USPIO增强MR检出EAE病变的敏感性高。与USPIO增强扫描相结合,磁化传递成像能够提示EAE病变的性质。
     目的
     比较双翻转恢复序列(Double Inversion Recovery,DIR)、液体衰减翻转恢复序列(Fluid-Attenuated Inversion Recovery,FLAIR)、T2快速自旋回波序列(T2-weighted Spin Echo,T2 FSE)检测多发性硬化(Multiple Sclerosis,MS)病变的敏感性。
     方法
     MS患者13例,男性2例,女性11例,年龄范围20-62岁,平均36岁。与之年龄、性别匹配,无神经系统相关疾病的志愿者13例,男性2例,女性11例,年龄范围22-60岁,平均36岁。患者及对照组分别行DIR、FLAIR、T2 FSE序列扫描。根据皮质内、皮质旁、深部灰质、灰白质混合区、脑室周围白质、深部白质、幕下7个部位来分类和计数病变。将DIR检测病变的数目同FLAIR、T2 FSE比较。在3个序列上测量病变和看似正常灰质、看似正常白质及脑脊液间的对比。使用配对t检验进行统计学分析。P<0.05有统计学意义。
     结果
     DIR、FLAIR、T2 FSE检出病变总数分别为709、627、535。DIR较FLAIR增加82个(P=0.003),较T2 FSE增加174个(P=0.001)。DIR检出幕下病变的数目为58个,DIR较FLAIR增加48个(P=0.001),较T2 FSE增加20个(P=0.140)。在幕上,DIR检出皮质内、皮质旁、灰白质混合区、脑室周围白质、深部灰质及深部白质病变数目为82、4、151、103、9、302;DIR较FLAIR分别增加67(P=0.004)、-225(P=0.031)、149(P=0.022)、-41(P=0.176)、-16(P=0.251)、100(P=0.292);DIR较T2 FSE分别增加82(P=0.002)、-119(P=0.104)、141(P=0.019)、15(P=0.092)、-11(P=0.497)、46(P=0.419)。DIR病变和看似正常灰质、病变和看似正常白质间的对比较FLAIR高(P=0.000;P=0.000)、DIR病变和脑脊液间对比较FLAIR低(P=0.109);DIR病变和看似正常白质、病变和脑脊液间对比较T2 FSE高(P=0.000;P=0.000)、DIR病变和看似正常灰质间对比较T2 FSE低(P=0.145)。
     结论
     DIR增加幕下及皮质内病变的检出率,更好地区分皮质内、皮质旁及灰白质混合区病变。DIR病变对比高,是检出MS脑部病变的敏感MR序列。
     目的
     研究多发性硬化(Multiple sclerosis,MS)病人脑组织部分各向异性(fractionalanisotropy,FA)值的变化。
     方法
     MS患者13例,男性2例,女性11例,年龄范围20-62岁,平均36岁。年龄、性别与之匹配,无神经系统相关疾病的志愿者13例,男性2例,女性11例,年龄范围22-60岁,平均36岁。患者及志愿者均行MR检查,包括MR常规序列及扩散张量成像(Diffusion Tensor Imaging,DTI)序列。将感兴趣区分别放在斑块、斑块边缘、斑块周围看似正常白质及对照组白质测量FA值.
     将感兴趣区分别放在MS及对照组看似正常胼胝体膝部、体前部、体后部、压部测量FA值。
     统计学分析使用独立样本t检验,p<0.05有统计学意义。
     结果
     MS病人42个斑块平均FA值为0.21,斑块边缘平均FA值为0.35,斑块周围看似正常白质平均FA值为0.49,对照组白质平均FA值为0.61。与对照组白质比较,斑块(P=0.000)、斑块边缘(P=0.000)及斑块周围看似正常白质(P=0.000)FA值减低。
     MS病人胼胝体膝部(0.65±0.05)、体前部(0.48±0.03)、体后部(0.52±0.03)和压部(0.73±0.05)FA值较对照组相应部位(0.75±0.04、0.71±0.05、0.74±0.04、0.80±0.03)减低(p值均为0.000)。
     结论
     DTI能早期检出MS病人看似正常白质(Normal-Appearing White Matter,NAWM)、看似正常胼胝体的隐匿性损伤,对MS的研究比常规MR成像序列更有效。
Objective
     To establish rats model of experimental allergic encephalomyelitis for further study of multiple sclerosis.
     Methods
     44 female Lewis rats were randomly divided into experimental allergic encephalomyelitis group(27) and control group(17).The experimental allergic encephalomyelitis model was established by immunization with guinea pig cerebrospinal homogenate and Complete Freund's adjuvant.The control group rats were injected normal saline and Complete Freund's adjuvant.The change of weight and clinical symptom of both groups rats were observed everyday.The samples of brain tissue in both group rats were taken at different time points.Hematoxylin and Eosin(HE) staining and myelin staining were performed.Inflammatory cells infiltration and demyelination were observed under light microscope.
     Results
     The clinical symptoms appeared in experimental allergic encephalomyelitis group rats from 15 to 30 day after immunization.The incidence was 22/27.The infiltration of inflammatory cells and demyelination of brain tissue in experimental allergic encephalomyelitis rats were observed histopathologically.No clinical symptoms appeared and no histopathological abnormality were observed in control rats.
     Conclusion
     The animal model of experimental allergic encephalomyelitis was successfully established with guinea pig cerebrospinal homogenate in Lewis rats.The model is stable and high in incidence and can be used to study multiple sclerosis.
     Objective
     To explore the sensitivity of magnetic resonance contrast agent ultrasmall superparamagnetic iron oxide(USPIO) enhancement scan in detecting experimental allergic encephalomyelitis lesions and the change of magnetization transfer of USPIO enhancement lesions in the animal model of experimental allergic encephalomyelitis (EAE).
     Methods
     The routine T1-weighted imaging,T2-weighted imaging,three dimensional T1 magnetization transfer,three dimensional T1 No magnetization transfer,Gd-DTPA (Gadopentetate Dimeglumine Injection) enhancement,and USPIO enhancement scan were performed in 11 EAE rats and 10 control rats respectively.The sensitivity of USPIO and Gd-DTPA enhancement in detecting the lesions in EAE rats was calculated. Magnetization transfer ratio(MTR) of USPIO enhancement area for the first time in EAE rats and MTR of the same area of the last scan were calculated respectively.HE, myelin and prussian Fe staining of brain tissues were performed.
     Results
     No abnormally enhanced lesions were showed in EAE rats' brain in Gd-DTPA enhancement scan,while abnormally enhanced lesions were showed in 11 EAE rats' brain in USPIO enhancement scan.The MTR value of USPIO enhancement area for the first time was significantly different from MTR of the same area of the last scan in EAE rats(P<0.05).Inflammation cells and demyelination lesions were found in USPIO enhancement area histopathologically.The result of prussian Fe staining were positive. There were no positive findings in control rats.
     Conclusion
     The sensitivity of USPIO enhancement scan in detecting EAE lesions was high.MT imaging,together with USPIO enhancement scan,was helpful to determine the features of the EAE lesions.
     Objective
     To compare the sensitivity of double inversion recovery with fluid-attenuated inversion recovery and T2-weighted Fast Spin Echo imaging in detecting multiple sclerosis lesions.
     Methods
     MR examination including DIR,FLAIR and T2 FSE sequences was performed in 13 patients with MS(11 females,2 males,age ranged from 20 to 62 years,average age 36 years) and 13 age and gender-matched healthy volunteers(11 females,2 males,age ranged from 22 to 60 years,average age 36 years).Lesions were categorized on the basis of 7 anatomic regions:intracortical,juxtacortical,deep gray matter,mixed white-gray matter,periventricular white matter,deep white matter and infratentorial brain tissue and the number of lesions was calculated accordingly.The numbers of lesions detected by DIR in different regions was compared with those detected by FLAIR and T2 FSE sequences.The contrasts between lesions and normal-appearing gray matter, normal-appearing white matter and CSF in patient group were measured in 3 sequences respectively.The statistical differences were assessed using the t test for matched pairs.P values < 0.05 were considered as statistically significant.
     Results
     The total numbers of lesions shown by DIR,FLAIR and T2 FSE were 709,627 and 535 respectively.There were gains of 82 and 174 in DIR compared with the FLAIR(P= 0.003)and T2 FSE(P=0.001) respectively.DIR depicted 58 infratentorial lesions, increasing 48 and 20 compared with the FLAIR(P=0.001) and T2 FSE(P=0.140).In the supratentorial brain,DIR detected 82 intracortical lesions,4 juxtacortical lesions,151 mixed gray-white matter lesions,103 periventricular lesions,9 deep gray matter lesions and 302 deep white matter lesions.There were gains of 67(P=0.004)、-225(P=0.031)、 149(P=0.022)、-41(P=0.176)、-16(P=0.251)、100(P=0.292) than FLAIR and 82(P =0.002)、-119(P=0.104)、141(P=0.019)、15(P=0.092)、-11(P=0.497)、46(P=0.419) than T2 FSE accordingly.The contrasts between lesions and normal-appearing gray matter and between lesions and normal-appearing white matter in DIR were higher than FLAIR(P=0.000;P=0.000).The contrast between lesions and CSF in DIR was lower than FLAIR(P=0.109).The contrasts between lesions and normal-appearing white matter and between lesions and CSF in DIR were higher than T2 FSE(P=0.000;P= 0.000).The contrast between lesions and normal-appearing gray matter in DIR was lower than T2 FSE(P=0.145).
     Conclusion
     DIR was able to increase the detection of infratentorial and intracortical lesions and improved categorization of intracortical,juxtacortical and mixed white-gray matter lesions.With higher lesions contrast ratio,DIR was more sensitive MR sequence in detecting MS lesions in brain.
     Objectives
     To investigate the change of fractional anisotropy values of brain in patients with multiple sclerosis.
     Methods
     13 patients with MS(11 females,2 males,age ranged from 20 to 62 years,average age 36 years) and 13 age and gender-matched controls(11 females,2 males,age ranged from 22 to 60 years,average age 36 years) without nervous system disease were studied. Conventional MR imaging protocols and diffusion tensor imaging were performed.The regions of interest were placed on the plaques,peri-plaque regions,normal-appearing white matter around the plaques in MS patients and in white matter around lateral ventricle in control group.The FA values of both MS patients and the controls were measured.
     The regions of interest were placed on four different portions of the normal-appearing corpus callosum,namely genu,anterior and posterior portion of the body and splenium in both groups.The FA values of both MS patients and the controls were measured respectively.
     The statistical analysis was performed with independent sample t test and p<0.05 was considered significant statistically.
     Results
     The average FA value of 42 plaques,peri-plaque regions and NAWM in MS patients was 0.21,0.35 and 0.49 respectively.The average FA value of white matter of control was 0.61.There were significant differences of FA values in plaques(p=0.000), peri-plaque regions(p=0.000),NAWM near the plaques(p=0.000) compared with the white matter in the control group.
     The FA values in the genu(0.65±0.05),anterior body(0.48±0.03),posterior body (0.52±0.03) and splenium of corpus callosum(0.73±0.05) were lower in the MS patients in comparison with the FA value(0.75±0.04、0.71±0.05、0.74±0.04、0.80±0.03) in corresponding areas of corpus callosum in controls(p=0.000、0.000、0.000、0.000,respectively).
     Conclusion
     DTI could show the occult injury of the NAWM and normal-appearing corpus callosum of MS patients in the early phase of disease and was considered more effective than conventional MR imaging sequences in studying MS patients.
引文
[1]MancardiG,Hart B A,CapelloE,et al.Restricted immune responses lead to CNS demyelination and axonal damage[J].J Neuroimmunol,2000,107(2):178-183.
    [2]Wolff SD,Balaban RS.magnetization transfer imaging:practical aspects and clinical applications[J].Radiology,1994,192(3):593-599.
    [3]Poser CM,Paty DW,Seheinberg L,et al.New diagnostic criteria for multiple sclerosis:Guidelines for research protocols[J].Ann Neurol,1983,13:227.
    [4]Filippi M,Rocca MA.MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system[J].J Neurol,2005,252 Suppl 5:v16-24.
    [5]Caramia F,Pantano P,Di Legge S,et al.A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis[J].Magn Reson Imaging,2002,20:383-388.
    [1]Kono DH,Urban JL,Horvath SJ,et al.Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice[J].J Exp Med,1988,168(1):213-227.
    [2]陈玉社,公丕欣,杨明峰.实验性变态反应性脑脊髓炎模型研究进展[J].国际神经病学神经外科学杂志,2005,32(6):533-536.
    [3]Slavin A,Ewing C,Liu J,et al.Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein[J].Autoimmunity,1998,28(2):109-120.
    [4]Mix E,Ibrahim S,Pahnke J,et al.Gene-expression profiling of the early stages of MOG-induced EAE proves EAE-resistance as an active process[J].J Neuroimmunol,2004,151(1-2):158-170.
    [5]Maatta JA,Eralinna JP,Roytta M,et al.Physical state of the neuroantigen in adjuvant emulsions determines encephalitogenic status in the BALB/c mouse[J].J Immunol Methods,1996,190(1):133-141.
    [6]Lassmann H.Experimental models of multiple sclerosis[J].Rev Neurol(Paris),2007,163(6-7):651-655.
    [7]邢清和,王永铭,郑荣远.影响EAE动物模型建立的因素分析[J].中国临床神经科学,2000,8(4):305-306.
    [1]Schroeter M,Saleh A,Wiedermann D,et al.Histochemical detection of ultrasmall superparamagnetic iron oxide(USPIO) contrast medium uptake in experimental brain ischemia[J].Magn Reson Med,2004,52(2):403-406.
    [2]Rausch M,Hiestand P,Baumann D,et al.MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE[J].Magn Reson Med,2003,50(2):309-314.
    [3]Bourrinet P,Bengele HH,Bonnemain B,et al.Preclinical safety and pharmacokinetic profile of ferumoxtran-10,an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent[J].Invest Radiol,2006,41(3):313-324.
    [4]Floris S,Blezer E L,Schreibelt G,et al.Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis.A quantitative MRI study[J].Brain,2004,127(3):616-627.
    [5]Brochet B,Deloire MS,Touil T,et al.Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE[J].Neuroimage,2006,32(1):266-274.
    [6]王 芳,陆菁菁,金征宇.实验性变态反应性脑脊髓炎动物模型的制备及其磁共振成像[J].中华放射学杂志,2008,42(12):1340-1342.
    [1]Wattjes MP,Lutterbey GG,Gieseke J,et al.Double inversion recovery brain imaging at 3T:diagnostic value in the detection of multiple sclerosis lesions[J].AJNR Am J Neuroradiol,2007,28(1):54-59.
    [2]Bo L,Vedeler CA,Nyland H,et al.Intracortical lesions are not associated with increased lymphocyte infiltration[J].Mult Scler,2003,9:323-331.
    [3]Miller DH,Thompson AJ,Filippi M,et al.Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis[J].J Neurol,2003,250(12):1407-1419.
    [4]McDonald WI,Compston A,Edan G,et al.Recommended diagnostic criteria for multiple sclerosis:guidelines from the International Panel on the diagnosis of multiple sclerosis[J].Ann Neurol,2001,50(1):121-127.
    [5]Calabrese M,De Stefano N,Atzori M,et al.Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis[J].Arch Neurol,2007,64(10):1416-1422.
    [6]Guerts JJG,Pouwels PJW,Uitdehaag BMJ,et al.Intracortical lesions in multiple sclerosis:improved detection with double inversion-recovery MR imaging[J].Radiology,2005,236:254-260.
    [7]Wattjes MP,Lutterbey G,Harzheim M,et al.Imaging of inflammatory lesions at 3.0 Tesla in patients with clinically isolated syndromes suggestive of multiple sclerosis:a comparison of fluid-attenuated inversion recovery with T2 turbo spin-echo[J].Eur Radiol,2006,16:1494-1500.
    [8]Brink BP,Veerhuis R,Breij EC,et al.The pathology of multiple sclerosis is location-dependent:no significant complement activation is detected in purely cortical lesions[J].J Neuropathol Exp Neurol,2005,64(2):147-155.
    [9]Schick F.Whole-body MRI at high field:technical limits and clinical potential[J].Eur Radiol,2005,15:639-644.
    [10]Frayne R,Goodyear BG,Dickhoff P,et al.Magnetic resonance imaging at 3.0 Tesla:challenges and advantages in clinical neurological imaging[J].Invest Radiol,2003,38:385-402.
    [1]Andrade RE,Gasparetto EL,Cruz LC Jr,et al.Evaluation of white matter in patients with multiple sclerosis through diffusion tensor magnetic resonance imaging[J].Arq Neuropsiquiatr,2007,65(3A):561-564.
    [2]Hasan KM,Gupta RK,Santos RM,et al.Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients[J].J Magn Reson Imaging,2005,21:735-743.
    [3]Ito R,Mori S,Melhem ER.Diffusion tensor brain imaging and tractography[J].Neuroimaging Clin N Am,2002,12:1-19.
    [4]Ge Y,Law M,Johnson G,et al.Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging[J].J Magn Reson Imaging,2004,20:1-7.
    [5]Melhem ER,Mori S,Mukundan G,et al.Diffusion tensor MR imaging of the brain and white matter tractography[J].AJR,2002,178:3-16.
    [6]Jellison BJ,Field AS,Medow J,et al.Diffusion tensor imaging of cerebral white matter.a pictorial review of physics,fiber tract anatomy and rumor imaging patterns[J].AJNR,2004,25:356-369.
    [7]Kealey SM,Kim YJ,Provenzale JM.Redefinition of multiple sclerosis plaque size using diffusion tensor MRI[J].AJR,2004,183:497-503.
    [8]Ge Y,Law M,Grossman RI.Applications of diffusion tensor MR imaging in multiple sclerosis[J].Ann N Y Acad Sci,2005,1064:202-219.
    [9]Guo AC,MacFall JR,Provenzale JM.Multiple sclerosis diffusion tensor MR imaging for evaluation of normal-appearing white matter[J].Radiology,2002,222:729-736.
    [10]Vrenken H,Pouwels PJ,Geurts JJ,et al.Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue:cortical diffusion changes seem related to clinical deterioration[J].J Magn Reson Imaging,2006,23:628-636.
    [11]Rocca MA,Filippi M.Diffusion tensor and magnetization transfer MR imaging of early-onset multiple sclerosis[J].Neurol Sci,2004,25:344-345.
    [12]Figueira FFA,Santos VS,Figueira GMA,et al.Corpus callosum index:a practical method for long-term follow-up in multiple sclerosis[J].Arq Neuropsiquiatr,2007,65:931-935.
    [13]Ciccarelli O,Werring DJ,Barker GJ,et al.A study of the mechanisms of normal-appearing white-matter damage in multiple sclerosis using diffusion tensor imaging[J].J Neurol,2003,250:287-292.
    [14]Hasan KM,Gupta RK,Santos RM,et al.Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients[J].J Magn Reson Imaging,2005,21:735-743.
    [1]Mancardi G,Hart BA,Capello E,et al.Restricted immune responses lead to CNS demyelination and axonal damage[J].J Neuroimmunol,2000,107(21):178-183.
    [2]Lassmann H.Experimental models of multiple sclerosis[J].Rev Neurol(Paris),2007,163(6-7):651-655.
    [3]Bettelli E.Building different mouse models for human MS[J].Ann N Y Acad Sci,2007,1103:11-18.
    [4]Aghdami N,Gharibdoost F,Moazzeni SM.Experimental autoimmune encephalomyelitis(EAE) induced by antigen pulsed dendritic cells in the C57BL/6mouse:influence of injection route[J].Exp Anim,2008,57(1):45-55.
    [5]Blezer EL,Bauer J,Brok HP,et al.Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis[J].NMR Biomed,2007,20(2):90-103.
    [6]Brockmann MA,Ulmer S,Leppert J,et al.Analysis of mouse brain using a clinical 1.5 T scanner and a standard small loop surface coil[J].Brain Res,2006,1068(1):138-142.
    [7]Pirko I,Fricke ST,Johnson A J,et al.Magnetic resonance imaging,microscopy and spectroscopy of the central nervous system in experimental animals[J].NeuroRx,2005,2(2):250-264.
    [8]Boretius S,Schmelting B,Watanabe T,et al.Monitoring of EAE onset and progression in the common marmoset monkey by sequential high-resolution 3D MRI[J].NMR Biomed,2006,19(1):41-49.
    [9]Nessler S,Boretius S,Stadelmann C,et al.Early MRI changes in a mouse model of multiple sclerosis are predictive of severe inflammatory tissue damage[J].Brain,2007,130(Pt8):2186-2198.
    [10]Floris S,Blezer EL,Schreibelt G,et al.Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis:a quantitative MRI study[J].Brain,2004,127(Pt 3):616-627.
    [11]赵红如,董万利,王涛等.实验性自身免疫性脑脊髓炎小鼠的磁共振研究[J].中国神经精神疾病杂志,2005,31(5):351-354.
    [12]Degaonkar MN,Khubchandhani M,Dhawan JK,et al.Sequential proton MRS study of brain metabolite changes monitored during a complete pathological cycle of demyelination and remyelination in a lysophosphatidyl choline(LPC)-induced experimental demyelinating lesion model[J].NMR Biomed,2002,15(4):293-300.
    [13]Pirko I,Johnson A,Gamez J,et al.Disappearing "T1 black holes" in an animal model of multiple sclerosis[J].Front Biosci,2004,9:1222-1227.
    [14]Rumboldt Z,Marotti M.Magnetization transfer,HASTE and FLAIR imaging[J].Magn Reson Imaging Clin N Am,2003,11(3):471-492.
    [15]Blezer EL,Bauer J,Brok HP,et al.Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis[J].NMR Biomed,2007,20(2):90-103.
    [16]Gareau PJ,Rutt BK,Karlik SJ,et al.Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS[J].J Magn Reson Imaging,2000,ll(6):586-595.
    [17]Pirko I,Johnson AJ.Neuroimaging of demyelination and remyelination models[J].Curr Top Microbiol Immunol,2008,318:241-266.
    [18]DeBoy CA,Zhang J,Dike S,et al.High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord[J].Brain,2007,130(Pt 8):2199-2210.
    [19]Bendszus M,Stoll G.Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in experimental autoimmune encephalitis[J].J Magn Reson Imaging,2005,21(6):850-851.
    [20]Steinbrecher A,Weber T,Neuberger T,et al.Experimental autoimmune encephalomyelitis in the rat spinal cord:lesion detection with high-resolution MR microscopy at 17.6 T[J].AJNR Am J Neuroradiol,2005,26(1):19-25.
    [21]Pirko I,Ciric B,Johnson AJ,et al.Magnetic resonance imaging of immune cells in inflammation of central nervous system[J].Croat Med J,2003,44(4):463-468.
    [22]Gareau PJ,Wymore AC,Cofer GP,et al.Imaging inflammation:direct visualization of perivascular cuffing in EAE by magnetic resonance microscopy[J].J Magn Reson Imaging,2002,16(1):28-36.
    [23]Bulte JW,Ben-Hur T,Miller BR,et al.MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain[J].Magn Reson Med,2003,50(1):201-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700