动力加载作用与地下水物理动态过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水物理动态中的井孔水位、水温观测是地震预测预报中重要的前兆观测项目。本文通过远场地震波的动力加载作用和人工爆破动力加载作用分析,研究井-含水层系统井孔水位、水温动态响应特征,旨在揭示地震孕育过程中地下水物理动态与地壳介质应力应变之间的关系。
     本文统计了2004年印尼苏门答腊8.7级地震和2008年四川汶川8.0级地震中国大陆地震地下水观测网井孔水位、水温同震效应类型和特征,提出了“热对流-传导模式”并对井孔水位震荡、水温下降的物理机制进行了解释;应用600kg炸药在10m深地下的野外爆破试验结果,分析了爆破动力加载对井孔流量的影响特征,并与地震波效应进行对比分析。以上统计分析、数值模拟与野外试验获得以下研究结果。
     1、中国大陆103个井孔有78个记录到苏门答腊8.7级地震水位同震效应;218个井孔有196个记录到汶川8.0级地震水位同震效应。113个井孔有69个记录到苏门答腊8.7级地震水温同震效应;216个井孔有132个记录到汶川8.0级地震水温同震效应;两次地震对比分析表明,井孔水温下降比例高于水温上升,水位震荡比例高于其它类型;汶川8.0级地震对中国大陆某些地区的影响大于苏门答腊8.7级地震,表明这些地区的应力状态产生了新的变化,对震情跟踪有重要的指示意义。
     2、井孔水位振荡伴随水温的快速下降主要是由于井孔周围含水层垂直渗流作用引起的,地震波结束后水温缓慢恢复是围岩热传导效应。用“热对流-传导模式”完成的模拟结果表明,含水层中的水混入井孔水的混合比θ直接影响水温下降速度,θ越大混合速度越快;而温度下降幅度除了与θ有关,还与混入井孔的初始水温T0有关;影响水温恢复快慢的主要因素是井孔周围垂直渗流混合区范围的大小。在不同的井-含水层系统中,井水温度下降的幅度是受该井本身水文地质环境条件控制;在同一个井-含水层系统中,地震波作用的大小以及水位振荡幅度与水温下降的幅度具有指数统计关系。
     3、爆破试验在地表布设5套强震仪,在井下布设1台地声仪。用强震记录直接计算得到了在150m深处的井底由于SH波场而引起介质的附加应力:切向σt=318.2Pa,径向σn=735.7Pa,垂直σu=2851Pa;爆破时在井底150m处接受的地声声波效声压约为110Pa;爆破激发的能量相当于ML1.3级地震(MS0.37),可以模拟100km以远发生的中强地震对流体观测点的作用。地震波和爆破动力加载作用产生的弹性冲击作用会使井水流量瞬时增加,而由地震波(或爆破)激发的流体孔隙压扩散造成了2天后流量的显著增加。
Observations of borehole water level and water temperature in the physical dynamics of groundwater are the important observed components of precursores for earthquake prediction. In this paper, by analyzing the dynamical loading of far-field seismic wave and artifical explosion, the dynamic response characteristics of borehole water level and water temperature in well-aquifer system is investigated and deeply studied in order to reveal the relationship between physical dynamics of groundwater and crustal stress and strain in the process of earthquake gestation.
     In this study, we made a statistic of types of coseismic effects and characteristics of groundwater level and water temperature in the boreholes of earthquake ground water net between 2004 Sumatra earthquake with magnitude 8.7 in Indonesia and the 2008 Wenchuan 8.0 earthquake in the Chinese mainland. Through these work, we proposed the "thermal convection - conduction model" and interpreted physical mechanism of the borehole water level shock as well as water temperature decline. Using explosion test results, which was generated by 600kg -weighed explosives in the depth of 10m in underground explosion field, we analyzed the impact characteristics of explosion dynamic loading on the borehole flow, and compared them with seismic wave effects. By the statistical analysis, numerical simulation and field tests above-mentioned, the key findings are obtained as follows.
     1. It is found that in Chinese mainland 78 out of 103 boreholes tracked records of water level coseismic effect associated with the Sumatra 8.7earthquake, while water level in 196 out of 218 boreholes showed coseismic responses to Sichuan 8.0 earthquake. Moreover 69 out of 113 boreholes recorded cosesimic water temperature effect related to the Sumatra earthquake, and 132 out of 216 boreholes demonstrated cosesimic water temperature responses to Sichuan 8.0 earthquake. Through comparison and analysis of the two earthquakes related responses, it found out that the proportion of borehole numbers with borehole temperature decreasing is higher than that of temperature-increasing ones, with oscillations type higher than other types. The impact of Wenchuan 8.0 earthquake on some areas of China is greater than Sumatra 8.7-magnitude earthquake, indicating that the stress state in these areas has changed, which has inductive indicating significance to the earthquake tracking.
     2. Borehole water level oscillations with rapid decline of temperature are mainly caused by the vertical seepage in the aquifer surrounding the borehole, and the slow recovery of the water temperature after the transportation of seismic waves are contributed to the surrounding rock thermal conduction. Using "thermal convection - conduction model" to perform the simulation , it shows that the mixture rate (θ) of the aquifer water with the borehole water has directly impact on the decline of water temperature, with greaterθresulting in higher mixing velocity. Besidesθ, temperature decrease depends on the initial mixed borehole temperature T0 . It is seen from the calculated results that the main factor impacting on water temperature recovery velocity is the size of vertical seepage mixture area around the borehole. A key finding is that ,for different wells - aquifer systems, the decline amplitude of well water temperatures is dominated by hydrological environment of the well itself. While, for the same well - aquifer system, the exponential statistic relationship between the intensity of seismic wave as well as water level oscillation has been obtained.
     3. In the explosion test, five sets of strong motion seismograph are installed on the earth surface with one earth acoustical instrument installed in the well. With the strong motion records, the additional stresses induced by SH waves in the depth of 150m have be obtained . The tangentialσt, radialσn, and vertical stressσu are 318.2Pa, 735.7Pa and 2851Pa, respectively. Results show that the acoustical wave pressure received in the depth of 150m from the well bottom reaches approximate110Pa. While Energy induced by explosion is equivalent to ML1.3 earthquake (MS 0.37), which can simulates effects of medium and strong earthquakes occurring beyond 100km on fluid observation points. It proves that the flow of wells is instantaneously enhanced by seismic waves and elastic impacts due to explosion dynamical loading. While porous pressure diffusion induced by seismic waves or explosion contributes to the considerable increase of well flows after two days.
引文
Atilla A. Fractures.faults,and hydrocarbon entrapment,migration and flow. Marine and Petroleum Geology,2000,17:797-814
    Blanchard F B,Byefly.A Study of a Well Gauge as a Seismograph.Buletion of the Seismological Society of America,1935,25:3846
    Brodsky E E, Roeloffs E, Woodcock D. A mechanism for sustained groundwater pressure changes induced by distant earthquakes,J. Geophys. Res. 2003,08 (B8):2390
    Byerlee J. Model for episodic flow of high-pressure water in fault zones before earthquakes.Geology,1993,21:303-306
    Cooper H H, Bredehoeft J D, Papadopulous I S, Bennett R R. The response of well-aquifer systems to seismic waves. J. Geophys. Res.1965, 70:3915~3926
    Cox S F. Faulting progresses at high fluid pressures:An example of fault valve behavior from the Wattle Gully Fault,Victoria,Australia. Journal of Geophysical Research,1995,100(B7):12841-12859
    Eaton J P, Takasaki K J.Seismological interpretation of earthquake-induced water-level fluctuations in well, Bull. Seismol. Soc. Am., 1959,49: 227~245
    Gudmundsson A,Berg S,Lyslo K B.Fracture networks and fluid transport in active fault zone.Journal of Structure Geology,2001,23:343~353
    Harris R. A.. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard.J Geophys Res, 1998,103: 24347-24358
    Isabelle Moretti. The role of faults in hydrocarbon migration.Petroleum Geoscience,1993,4:81-94
    King,C.Y.,Azima,S.,Igarashi,G.,et al..Earthquake-related water-evel changes at 16 closely clustered wells in Tono, central Japan. J. Geophys. Res.,1999,104(B6),13073~13082 (June 10)
    Kitagawa Y., N. Koizumi, M. Takahashi,et al.. Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M9.0), Earth Planets Space, 2006,58: 173~179
    Koizumi N Y, Kitagawa N, Matsumoto M, et al..Presseimic groundwater level changesinduced by crustal deformations related to earthquake swarms off the east coast of Izu Peninsula, Japan, Geophys Res. 2004,Lett, 31: 1~5
    Lin A,Tanaka N,Uda S.Repeated coseismic infiltration of meteoric and seawater into deep fault zones: a case study of the Nojima fault zone,Japan.Chemical Geology,2003,202:139~153
    Mogi K,Mochizuki H,Kurokawa Y.Temperature changes in an artesian spring at Usami in the Izu Peninsula(Japan) and their relation to earthquakes. Tectonophysics,1989,159:95~108
    Notsu, K., Abiko, T., Wakita, H.. Co-seismic temperature changes of well water related to volcanic activities of the Usu volcano. J. Phys. Earth, 1980,28, 617~624
    Pratsch J C. Vertical Hydrocarbon migration:a major exploration parameter. Journal of Petroleum Geology.1991,14(4):429-444
    Reasenberg P. A., R W Simpson. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake.Science,1992,255: 1687-1 690
    Rexin E E, Oliver J, Prentiss D. Seismically—Induced Fluctuation of the Water Level in the Nunn—Bush Well in Milwaukee.Bulletion of the Seismological Society of America, 1962,52(1);17~25
    Roeloffs E A, Quilty E G.Water level changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake, Pure Appl. Geophys,1997,149:21~60
    Roeloffs,E.A..Persistent water level changes in a well near Parkfield, California,due to local and distant earthquakes. J.Geophys.Res.,1998, 103,869~889
    Shimamura H., Ino, M., Hikawa, H., Iwasaki, T..Groundwater micro-temperature in earthquake regions. Pure Appl. Geophys.1985,122, 933~946
    Shimamura H., Watanabe, H. Co-seismic changes ingroundwater temperature of the Usu volcanic region. Nature, 1981. 291,137~138
    Shimazaki K., Nakata, T. Time predictable recurrence model for large earthquakes. Geophys. Res. Lett. , 1980. 7, 279~282
    Steven L,Lorraine E,Martin S,et al. Vertical and lateral fluid flow related to a larger growth fault,South Eugene Island Block 330 Field,Offshore Louisiana. AAPF 1999,83(N2):244-276
    Wakita H.Water wells as possible indicators of tectonic strain.Science,1975,189:553~555
    Wang C H,Wang C Y,Kuo C H, et al..Some isotopic and hydrological changes associated with the 1999 Chi-Chi earthquake.Taiwan.Island Arc,2005,27:37~54
    北京市地震队.爆破地震、氡气、天然地震.地震战线,1971,第6期
    蔡祖煌.北京洼里深井水位变化所记录的地球固体潮和地震波.地震学报,1980,2(2):205~214
    车用太,刘五洲,鱼金子,等.井水位对地壳应力-应变响应灵敏度的研究.地震,2003A,23(3):113~120
    车用太,刘喜兰,姚宝树,等.首都圈地区井水温度的动态类型及其成因分析.地震地质,2003B,25(3):403~420
    车用太,王吉易,李一兵,等.首都圈地下流体监测与地震预测.北京:气象出版社,2004
    车用太,王铁城,鱼金子.我国水震波研究的现状与动向.地震,1989,1:70~72
    车用太,鱼金子,刘春国.我国地震地下水温度动态观测与研究.水文地质工程地质,1996,4:34~37
    车用太,鱼金子,刘五洲.地下流体的源兆、场兆、远兆及其在地震预报中的意义.地震,1997,17(3):283~289
    车用太,鱼金子等著.地震地下流体学.北京:气象出版社.2006
    陈大庆,刘耀炜,杨选辉,等.远场大震的水位、水温同震响应及其机理研究.地震地质,2007,29(1):122~130
    陈立德,罗平.澜沧7.6级地震前兆异常特征(二)—短临异常及其综合特征.地震,1992,5:13~20
    陈棋福.海城地震预报过程的回顾及地震预报发展思考.国际地震动态,2005,5,154~155
    丁仁杰等,井孔水位记震能力与地震关系的探讨,地震预报方法实用化研究文集(水位水化专集).北京:地震出版社,1990.186~193
    付虹,刘丽芳,王世芹,万登堡.地方震及近震地下水同震震后效应研究.地震,2002,22(4):55~66
    付子忠.地热动态观测与地热前兆.见:国家地震局地壳应力研究所编.地壳构造与地壳应力(1).北京:地震出版社,1988.1~7
    傅承义.有关地震预告的几个问题.科学通报,1963,3,30~36
    谷元珠,刘春国,刘成龙,等.我国地震地下流体前兆台网现状的调查与分析.国际地震动态,2001(11),19~28
    郭增建.地震发生前地下水位变化.地球物理学报,1964,3(3),223~226
    国家地震局地球物理研究所.地震学基础.北京:地震出版社,1984
    国家地震局科技监测司.地震地下水手册.北京:地震出版社,1995.288~343
    国家地震局预测预防司.地震预报系列—教材地震地下流体地震预报方法.北京:地震出版社,1997.15~16
    胡敦宽,谢春雷,燕小渝,等.大同一阳高震群序列地热异常与异常机理探讨.山西地震,1997(1-2):77~83
    胡圣标,汪集呖.沉积盆地地热体制研究的基本原理和进展.地学前缘,1995,2(4):171~179
    华保钦.构造应力场、地震泵和油气运移.沉积学报,1995,13(2):77~85
    黄辅琼,陈颙,白长清,等.八宝山断层的变形行为与降雨及地下水的关系.地震学报,2005,27(6):637~646
    黄辅琼,迟恭财,徐桂明,等.大陆地下流体对台湾南投7.6级地震的响应研究,地震,2000,20(增刊):119~125
    贾化周,杨玉荣.地震地下水动态及其影响因素分析.北京:地震出版社,1985
    李清河,闵祥仪,郭健康,等.爆破地震效应的分析方法.西北地震学报,1988,10(1):44~50
    刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响.地质力学学报,2001,7(1):41~44
    刘江,熊水英,李富光,等.水震波中的P、S震相.华北地震科学,1986,4(3):43~47
    刘澜波,郑香媛,彭贵荣.地震波引起洼里井水位震荡的初步分析.地震,1986,5:12~19
    刘五洲,孙君秀.地下水在地震前兆应力场演化过程中的作用.地震,2000,20(4):12~18
    刘耀炜,曹玲玲,张昱.昆仑山8.1级地震前后青藏块体东北缘地下流体前兆特征.地震,2004A,24(增刊):1~9
    刘耀炜,马胜利,卢军,等.地震短期预测方法物理机理的研究途径.内陆地震,2004B(2):9~14
    刘耀炜,马玉川,任宏微,杨选辉,孙小龙.汶川8.0级地震对中国大陆地下流体影响
    特征分析.见:中国地震局地壳应力研究所.汶川8.0级地震地壳动力学研究专辑.北京:地震出版社,2009.346~360
    刘耀炜,孙小龙,王世芹,任宏微.井孔水温异常与2007年宁洱6.4级地震关系分析.地震研究,2008,31(4):347~353
    刘耀炜,杨选辉,刘永明,等.地下流体对苏门答腊8.7基地震的响应研究.见:中国地震局监测预报司编.2004年印度尼西亚苏门答腊8.7级大地震及其对中国大陆地区的影响.北京:地震出版社,2005.131~258
    刘耀炜.地震水文地球化学干扰因素的定性分析与定量排除方法.见:国家地震局科技监测司.地震预报方法实用化研究论文集—水位、水化专集.北京:地震出版社,1990.282~288
    刘耀炜.水氡非随机干扰的定量排除.地震学报,1989,11(4),411~423
    刘耀炜.我国地震地下流体科学40年探索历程回顾.中国地震,2006,22(3):222~235
    马丽,尹宝军,黄建平,等.唐山井水温同震变化特征.见:中国地震预报探索.北京:地震出版社,2008:356-363
    邱泽华、石耀霖,观测应变阶在地震应力触发研究中的应用,地震学报,2004,26(5):481~188
    任长吉,黄涛.裂隙岩体渗流场与应力场耦合数学模型的研究.武汉大学学报(工学版),2004,37(2):8~12
    石耀霖,曹建玲,马丽,等.唐山井水温的同震变化及其物理解释.地震学报,2007,29(5):265~273
    舒优良,张世民,黄辅琼.印尼8.7级和8.5级两次强震周至深井的震时效应研究,地震地磁观测与研究,2006,27(2):16~22
    舒优良,张世民.周至深井水震波数字化记录与地震波记录的对比研究.地震地磁观测与研究,2003,4(5):26~31
    孙君秀,刘五洲,车用太.地下水对震源体应力、应变场的影响.地震地质,2000,22(2):179~186
    孙仁远,成国祥.人工振动对多孔介质中液体流动的影响.水动力学研究与进展,2004,19(4):552~557
    孙天林,刘耀炜.甘肃井网的流量观测及震例分析.内陆地震,1991,5(5):317~323
    孙雄,洪汉净.构造应力场对油气运移的影响.石油勘探与开发,1998,25(1):1~3
    孙自明,何发歧.断裂作用与流体流动耦合动力学研究进展.新疆石油地质,2002,23(4):348~350
    童亨茂.断层开启与封闭的定量分析.石油与天然气地质,1998,19(3):215~220
    万登堡,王家彬,刘国寿,列车荷载作用对某些前兆观测的影响,地震,1994,14(3),91~94
    万登堡.井孔水位记震能力变化与近大地震关系研究.地震研究,1992,15(4):381~391
    汪成民,车用太,万迪堃.地下水微动态研究.北京:地震出版社,1988
    汪成民,车用太,万迪堃.中国地震地下水动态观测网.北京:地震出版社,1990.81~88
    王兰民.黄土动力学.北京:地震出版社,2003
    王志欣,信荃麟.关于地下断层封闭性的讨论-以东营凹陷为例.高校地质学报,1997,3(3):293~300
    熊亮萍,汪集肠.钻孔地温分布与地下水活动.地质科学,1992(增刊):313~321
    薛禹群.地下水动力学原理.北京:地质出版社,1986
    杨世铭,陶文铨.传热学(面向21世纪课程教材).北京:高等教育出版社.2006.122~160
    杨竹转,邓志辉,陶京玲,等.北京塔院井数字化观测水温的同震效应研究,地震学报,2007,29(2):203~213
    易立新,车用太,王广才.水库诱发地震研究的历史、现状与发展趋势.华南地震,2003,23(1):28~37
    易立新,王广才,李榴芬.水文地质结构与水库诱发地震.水文地质工程地质,2004,31(2):29~32
    幼雄.地震的研究.东方杂志,1923,20(16):93~102
    余兆康,蔡诗凰,林家涛,等.两种类型爆破的水文地球化学效应的初步研究.地震地质,1986,8(1):35~42
    鱼金子,车用太,刘五洲.井水温度微动态形成的水动力学机制研究.地震,1997,17(4):389~395
    鱼金子,车用太,王爱英,等.水震波异常与中期强震危险性关系初探.地震,1993,8:30~37
    岳明生.地震预测研究发展战略几点思考.国际地震动态,2005,5,7~21
    张伯崇,邬慧敏,刘长义,等.应力对岩石中孔隙流体压力的影响和地下水位震前异常变化机理.地震学报,1991,13(1):88~95
    张树林,田世澄,陈建渝.断裂构造与成藏动力系统.石油与天然气地质,1997,18(4):261~266
    张炜,李宣瑚.我国地震水文地球化学观测台网概述.中国地震,1991,7(4),72~78
    张炜,王吉易,鄂修满,等.水文地球化学预报地震的原理与方法.北京:教育科学出版社,1988
    张炜主编.水文地球化学地震前兆观测与预报.北京:地震出版社,1992
    张永仙,石耀霖,张国民.流量与水温关系的模型研究及地震水温前兆机制的探讨.中国地震,1991,7(3):88~94
    张昭栋,迟镇乐,陈会民,等.水井的频率特性试验和对地震波的响应.地震学报,1999,21(3):329~331
    张昭栋,郑金涵,冯初刚.水井水位的气压效率和降水荷载效率之间的定量关系.地震,1989,6:38~44
    张昭栋、郑金涵、冯初刚.一种估算地震引起应力调整的新方法.地震,1988,(3):19~27
    张昭拣,郑香媛,段积涛,等.井水位振荡试验及其结果.地震地质,1992,14(2):183~188
    张子广,万迪堃,董守玉.水震波与地震面波的对比研究及其应用.地震,1998,18(4):399-404
    中国地震局监测预报司.汶川8.0级地震科学研究报告.北京:地震出版社:2009.序,1,20~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700