半连续式与序批式餐厨垃圾与猪粪混合厌氧消化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取餐饮场所的餐厨垃圾为对象,接种物猪粪取自成都市郊区一养殖户,在不同有机负荷条件下,将餐厨垃圾与猪粪混合进行中温厌氧消化,分别采用半连续与序批式进料方式。
     在中温35℃条件下,对厨余垃圾与猪粪进行混合厌氧消化试验,采用半连续式进料方式,逐渐提高加入物料的有机负荷率。结果表明:在0.5gVS/L.d和0.75gVS/L.d有机负荷条件下,混合厌氧消化系统所产生的VFA与氨氮,能够使系统的酸碱度(pH值)维持在有利于产甲烷细菌的生长和繁殖的范围内。甲烷含量可稳定在48%-57%范围内,甲烷含量最大值可达60.28%。甲烷产率与日产气量表现趋势一致,甲烷产率最高可达483 mL.VSg-1.d-1。整个厌氧消化系统产酸到产甲烷阶段的微生物的消长与生化反应均能达到动态平衡。
     在中温35℃条件下,对厨余垃圾与猪粪进行混合厌氧消化试验,按照有机负荷为0.5 gVS/L.d,采用序批式填料方式,总共运行61天。结果表明:序批式厌氧消化试验过程中pH由最初的7.1下降到6.5,然后又逐渐回升至7.0;VFA含量最高达到8160mg/L,随着反应的进行,VFA逐渐被转化成CH4和CO2等物质排出,使系统内的酸性物质得到降解,系统产气恢复正常,日产气量在试验的第45天达再次达到峰值5570mL/d,最高甲烷含量为68.9245%;甲烷产率为323mL/gVS,累计产气量为116366 mL由此可见,在0.5 gVS/L.d有机负荷条件下,序批式混合厌氧消化反应经过水解酸化阶段后,能够顺利进入到产甲烷阶段,使消化系统运行稳定。
In this thesis, studies semi-continous and sequencing batch anaerobic co-digestion with the kitchen waste and pig waste at the temperature of 35℃. Selected targeted inoculum pig waste from the outskirts of Chengdu.
     A semi-continous anaerobic co-digestion with the kitchen waste and pig waste at the temperature of 35℃to The test was gradually increased on the organic loading rate. The results show that the VFA and ammonia produced could maintain the pH in a certain range, which could help methanogenic bacteria growth and reproduction with the organic load of 0.5gVS/L.d and 0.75gVS/L.d. The methane content could be stabilized at 48%-57%, and the maximum value could reach 60.28%. The methane production rate and the performance of daily gas production rate were in the consistent, and the maximum methane production rates could be reached by 483 mL.VSg-1.d-1 The process from producing of the organic acid to the methanogenic phase could be reached a dynamic equilibrium.
     A sequencing batch anaerobic co-digestion with the kitchen waste and pig waste at the temperature of 35℃with the organic load of 0.5gVS/L.d, running a total of 61 days. The results show that the pH from the initial 7.1 dropped to 6.5, and then gradually rose to 7.0; The VFA content up to 8160mg/L and VFA was gradually transformed into CH4 and CO2 and other substances discharged with the reaction,, so that the acidity of a substance within the system degradation, system gas production back to normal, daily gas production reachde to peak 5570 mL.d-1, the maximum methane content of 68.9245%; the maximum methane production rates could be reached by 323 mL.VSg-1.d-1,and the cumulative gas production for the 116366 mL. Thus, the sequencing batch reaction mixture of anaerobic digestion phase after hydrolysis acidification and smoothly into the methane production phase with the organic load of 0.5gVS/L.d, so that the digestive system running stable.
引文
[1]孙营军.杭州市餐厨垃圾现状调查及其厌氧沼气发酵可行性研究.浙江大学硕士学位论文.2008.
    [2]李远.我国规模化畜禽养殖业存在的环境问题与防治对策[J].上海环境科学.2002,4(10):19-21.
    [3]石吉,邵青,米晓.城市污水污泥的处理利用及发展[J].中国资源综合利用.2004,7(2):15-18.
    [4]符艳妍,崔振强,郎咸明.剩余污泥的处理及综合利用[J].有色矿冶.2004,2(4):45-46.
    [5]牛樱,陈季华.污泥处理技术进展[J].中国纺织大学学报.2000,4(8):100-103.
    [6]牛樱,陈季华.剩余污泥处理技术进展[J].工业用水与废水.2000,31(5):4-6.
    [7]付融冰,杨海真,甘明强.中国城市污水厂污泥处理现状及其进展[J].环境科学与技术.2004,9(5):108-111.
    [8]石磊.城市污泥处理、处置技术概述[J].江西化工.2005,6(3):52-54.
    [9]熊帆,黄君涛,钟理.城市污泥的处理处置与资源化利用[J].广东化工.2005,7(1):87-90.
    [10]中华人民共和国统计局.2006中国统计年鉴[M].北京:统计出版社.2006,5(7),461-498.
    [11]胡晓容.简析制定《能源法》的必要性[J].教育科学家.2009,2(4):45-46.
    [12]苏亚欣,毛玉如,赵敬德.新能源与可再生能源概论[M].北京:化学工业出版社.2006,4(7),46-49.
    [13]张克强,高怀友.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社.2004,8,34-35.
    [14]Pavlostathis S.G,Gossett J.M. Preliminary Conversion Mechanisms Anaerobic Digestion of Biological Sludges [J]. Journal of Environmental Engineering, 1988,114(3):575-592.
    [15]李长生.农村沼气实用技术[M].北京:金盾出版社.2004:1-2.
    [16]ErdalU G, Soroushian F, KittoW,et al. A Technology Review forCodigestion of Food Waste Biosolids and/or Manure[A]. Proceedings of Joint residuals and biosol-idsmanagement conference[C].Nashville:TN,2005.
    [17]李俊涛,钱小青,赵由才.泔脚的厌氧消化处理可行性研究[J].上海环境科学.2008,22(9):646-648.
    [18]李权柄.厨余垃圾热解实验研究[J].环境工程学报.2009,2(1):38-40.
    [19]张振华.厨余垃圾的两段混速热解技术研究[J].科技信息.2010,8(35):517-518.
    [20]张振华,汪华林,胥培军等.厨余垃圾的现状及其处理技术综述[J].再生资源化.2007,6(5):8-9.
    [21]崔亚伟,陈金发.厨余垃圾的资源化现状及前景展望[J].中国资源综合利用.2006,4(10):16-18.
    [22]赵由才,宋立杰,张华,胡家伦.实用环境工程手册固体废物污染控制与资源化[M].化学工业出版社:2002.
    [23]李渊.亚临界水技术处理厨余垃圾生成有机酸的实验研究[J].现代化工.2008,7(2):118-120.
    [24]吴燕,张文阳,庞艳.畜禽养殖废物资源化与“零废物”目标[J].中国畜牧杂志.2009,32(8):9-12.
    [25]王永成.不同温度条件猪鸡粪混合厌氧消化性能的研究.东北农业大学硕士学位论文.2007.
    [26]相俊红,胡伟.我国畜禽粪便废弃物资源化利用现状[J].现代农业装备,2006,6(2):21-23.
    [27]马传杰.牛粪厌氧发酵处理研究.东北农业大学硕士学位论文.2005.
    [28]A.Lehtomaki,S.Huttunen,J.A.Rintala.Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production:Effect of crop to manureratio [J]. Resources, Conservation and Recycling 2007, (51):591-609.
    [29]Chuanping Feng,Sadoru Shimada. A pilot plant two-phase anaerobie digestion system for bioenery recovery from swine wastes and garbage[J]. Waste Management 2008,9(28):1827-1834.
    [30]W. Parawira, J.S. Read, B. Mattiasson. Energy production from agricultural residues:High methane yields in pilot-scale two-stage anaerobic digestion[J].Biomass and Bioenergy,2008(32):44-50.
    [31]Sang Hyoun Kim,Sun Kee Han,Hang Sik Shin.Feasibility of bio-hydrogen production by anaerobic co-digestion of foodwaste and sewage sludge [J].International Journal of Hydrogen Energy,2004,29(4):1607-1616.
    [32]X. Gomez, M.J. Cuetos, J. Cara. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes,Conditions for mixing and evaluation of the organic loading rate[J]. Renewable Energy,2006(31):2017-2024.
    [33]Heguang Zhu, Wayne Parker, Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges[J]. International Journal of Hydrogenenenrgy,2008,(33):3651-3659.
    [34]Rene Alvarez, Gunnar Liden, Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano [J], WasteManagement,2008(28):1933-1940.
    [35]楚莉莉等.不同原料及其配比厌氧发酵产气效果研究[D].出版地:西北农林科技大学.2008.
    [36]李荣平,李秀金等.厨余和牛粪混合厌氧发酵产气性能试验研究[J],可再生能源.2008,26(2)64-68.
    [37]李东,孙永明等.食物垃圾和废纸联合厌氧消化产甲烷[J],环境科学学报.2009,29(3)577-583.
    [38]瞿贤,何品晶等.生物质组成差异对生活垃圾厌氧产甲烷化的影响[J].中国环境科学.2008,28(8):730-735.
    [39]兰劲涛等.影响有机固体废弃物厌氧成气因素的研究[D],重庆大学.2005.
    [40]凤颀,孙秀丽等.蔬菜废物的两相厌氧消化产气研究[J],辽宁城乡环境科技.2006,26(1):34—45.
    [41]陈广银,郑正等.稻草与猪粪不同比例混合的厌氧消化特性[J],环境化学.2009,2(1):21-24
    [42]胡纪萃,周孟建等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社.2003年.
    [43]聂永丰.三废处理工程技术手册:固体废物卷[M].北京:化学工业出版社,2000,5(03):251-25.
    [44]Bryant M P,Wolin EA,Wolin M J,et al.Methanobacillus omelianskii,a symbioticassociation of two species of bacteria. Archives of Microbiology.1997,59:20-31.
    [45]Bryant M P.Microbial methane production-theoretical aspects.Journal of Animal Science,2009,48(1):193-201.
    [46]方芳.催化填料研制及其变速生物滤池处理城市污水性能研究.重庆大学博士学位论文.2002.
    [47]杨军.城市生活垃圾填埋处置中的温度-化学耦合作用研究.西南交通大学博士学位论文.2007.
    [48]朱亚兰.城市生活垃圾与污水厂剩余厌氧污泥混合厌氧消化研究.西南交通大学硕士学位论文.2008.
    [49]陈坚.环境生物技术[M],北京:中国轻工业出版社.重庆大学硕士学位论文.1999.
    [50]贾传兴.有机垃圾两相厌氧消化中氮素转化特性的试验研究.重庆大学硕士学位论文.2007
    [51]郑士民.自氧微生物学[M].北京:中国建筑工艺出版社.1988.
    [52]孙进杰,赵丽兰等.沼气正常发酵的工业条件[J].农村能源.2000,(4):20-21.
    [53]李晓岩,邢永杰,刘安波等.常温中试升流式厌氧污泥层反应器污泥颗粒化过程研究[J].环境科学,1990,11(6):2225
    [54]李刚,欧阳峰,杨立中.两相厌氧消化工艺的研究与进展[J].中国沼气.2001,19(2):25-29
    [55]Bernal M P,Navarro A F,Sanchez-Monedero M A,Roig A,Cegarra J.Infuence of sewage sludge compost stability and Maturity on carbon and nitrogenmineralization in soil.Soil Biol.Biochem,1998,30(3):305-313.
    [56]张碧波.城市有机垃圾与污泥联合消化的试验研究.湖南大学硕士学位论文.2006.
    [57]Braber K.Anaerobic digestion of municipal solid waste:a modern waste disposapptionon theverge of breakthrough.Biomass&Bioenergy,1995,9(1-5):265-276.
    [58]李军,杨秀山.微生物与水处理工程[M].北京:化学工业出版社.2002.
    [59]任南琪,王爱杰.厌氧生物技术与原理应用(M].北京:化学工业出版社.2007.
    [60]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社.1998,25(03):535-537.
    [61]Vieitez E R,Ghosh S.Biogasifification of Solid Waste by Two-phase Anaerobic Fermentation[J].Biomass Bioenergy,1999,16(5):299-309.
    [62]赵由才.可持续生活垃圾处理与处置[M].北京:化学工业出版社,2007.
    [63]张波,徐剑波,蔡伟民.有机废物厌氧消化过程中氨氮的抑制性影响[J].中国沼气.2003,21(3):26-30.
    [64]Poggi-Varaldo H M,Medina E A,Fernandez-Villagomez G,etal.Inhibition of mesophilic solidsubstrate anaerobic digestion(DASS)by ammonia-richwastes[Z].Proceedings of 52nd Purdue Industrial Waste Conference,West Lafayette,Indiana,1997.
    [65]Gallert C,Winter J.Mesophilic and thermophilic anaerobicdigestion of source-sorted organic waste:effect.of ammonia onglucose degradation and methane production [J]. AppliedMicrobiology and Biotechnology,1997,48:405-410.
    [66]Prkin G F.The effeet of ammonia on methare fermentationprocess[J].Water Pollut.Control Fed.1989,61(1):55-59.
    [67]任南琪,赵丹.厌氧生物处理丙酸产生和积累的原因及控制对策[J].中国科学.2002,32(1):83-89.
    [68]Prkin G F.The effeet of ammonia on methare fermentation process[J].Water Pollut.ControlFed..1989,61 (1):55-59.
    [69]蒋建国,王岩,隋继超等.厨余垃圾高固体厌氧消化处理中氨氮浓度变化及其影响[J].中国环境科学.2007,27(6):721-726.
    [70]李荣平,李秀金.半连续式厨余和牛粪混合厌氧消化[J].北京化工大学学报.2007(34):8-11.
    [71]Campos C M,Anderson G K.The effect of the liquid upflow velocity and the subatrate concentration on the strart-up and steady-state periods of lab-periods of lab-scale UASB reactors[J].Wat sci Technol.1992,25(7):41-50.
    [72]马磊,王德汉,谢锡龙等.接种量对餐厨垃圾高温厌氧消化的影响[J].农业工程学报,2008,24(12):178-182.
    [73]王凤,张文阳.城市生活垃圾不同可生化单基质负荷与厌氧污泥混合厌氧试验研究[J].中国西部科技.2008,(2):24-26.
    [74]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700